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Abstract 7 

The retino-cortical visual pathway is retinotopically organized: Neighbourhood relationships 8 
on the retina are preserved in the mapping to the cortex. Size relationships in that mapping 9 
are also highly regular: The size of a patch in the visual field that maps onto a cortical patch 10 
of fixed size follows, along any radius and in a wide range, simply a linear function with 11 
retinal eccentricity. As a consequence, and under simplifying assumptions, the mapping of 12 
retinal to cortical locations follows a logarithmic function along that radius. While this has 13 
already been shown by Fischer (1973), the link between the linear function – which 14 
describes the local behaviour by the cortical magnification factor M – and the logarithmic 15 
location function for the global behaviour, has never been made fully explicit. The present 16 
paper provides such a link as a set of ready-to-use equations using Levi and Klein’s E2 17 
nomenclature, and examples for their validity and applicability in the retinotopic mapping 18 
literature are discussed. The equations allow estimating M in the retinotopic centre and 19 
values thus derived from the literature are provided. A new structural parameter, d2, is 20 
proposed to characterize the cortical map, as a cortical counterpart to E2, and typical values 21 
for it are given. One pitfall is discussed and spelt out as a set of equations, namely the 22 
common myth that a pure logarithmic function will give an adequate map: The popular 23 
omission of a constant term renders the equations ill defined in, and around, the retinotopic 24 
centre. The correct equations are finally extended to describe the cortical map of Bouma’s 25 
law on visual crowding. The result contradicts recent suggestions that critical crowding 26 
distance corresponds to a constant cortical distance.  27 

Keywords: Cortical map; logarithmic map; cortical magnification factor; visual cortex; M-28 
scaling; E2 value; retinotopy; M0; retinotopic centre; Bouma’s Law; crowding; myths; visual 29 
field; local/global 30 

Introduction  31 

One of the most beautiful organizational principles of the human brain is that of 32 
topographical mapping. Whilst perhaps universal to the brain, its regularity is most apparent 33 
for the three primary senses mediated through the thalamus – sight, hearing, and touch – 34 
i.e., in retinotopy, tonotopy, and somatotopy. For the visual domain with which we are 35 
concerned here, the regularity of topography is particularly striking and is at a level that 36 
lends itself to mathematical description by analytic functions. The seminal papers by Fischer 37 
(1973) and Schwartz (1977, 1980) derive the complex logarithm as a suitable function for 38 
mapping the location in the visual field to the location of its projection’s in (a flat-map of) 39 
the primary visual cortex, by which the visual field’s polar-coordinate grid gets mapped onto 40 
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a rectilinear cortical grid. The log function’s image domain – the complex plane – is 41 
reinterpreted thereby as a two-dimensional real plane.1 As Schwartz explains in the two 42 
papers, the rationale for employing the log function in the radial direction is that its first 43 
derivative is an inverse-linear function, the latter implicit in the cortical magnification 44 
concept for the visual field as proposed by Daniel & Whitteridge (1961). Expressed more 45 
directly, the integral of an inverse linear function is the logarithmic function. Intuitively, 46 
summing-up (integrating over) little steps on the cortical map, where each step obeys 47 
cortical magnification, will result in the log mapping. 48 

Schwartz’s (1977, 1980) papers with the complex-log mapping have become rather popular 49 
in visual psychophysics and visual neurophysiology. Van Essen, Newsome & Maunsell (1984), 50 
e.g., use it for explaining the topography of the macaque’s primary visual cortex, writing 51 
“Along the axis corresponding to constant polar angle, magnification is inversely 52 
proportional to eccentricity, and hence distance is proportional to the logarithm of 53 
eccentricity (x  log E)” (p. 437). Levi, Klein & Aitsebaomo (1985, Fig. 14) and Virsu et al. 54 
(1987, Fig. 7) plot psychophysical thresholds in terms of cortical units. As another example, 55 
Klein & Levi (1987), in the context of modelling hyperacuity in peripheral vision, derive from 56 
the log rule that, if vernier-acuity offsets are assumed to have a constant cortical 57 
representation – i.e. one that is independent of eccentricity – vernier offsets will depend 58 
linearly on eccentricity in the visual field (we will come back to that in the last section). 59 
Horton & Hoyt (1991) use it to point out that the well-known inverse-linear function for the 60 
cortical magnification factor M (CMF) follows from a log-spaced cortical map. Engel et al. 61 
(1997, Fig. 9, Fig 12; 1994, Fig. 2), and Larsson & Heeger (2006), use the (real-valued) log 62 
function implicitly when they use an exponential for the inverse location function (which 63 
corresponds to a log forward mapping). Duncan & Boynton (2003) fit their fMRI activity 64 
maps for the V1 topology using Schwartz’s complex-log mapping. The most advanced 65 
development is Schira, Tyler, Spehar & Breakspear’s (2010) closed-form analytic 66 
representation for the cortical maps, at the same time accommodating for the horizontal-67 
vertical anisotropy and preserving cortical area constancy across meridians by an added 68 
shear function. 69 

While Fischer’s and Schwartz’s papers present the mathematical relationships 70 
(withexamples for their application) Klein & Levi (1987) provide an empirical link between 71 
psychophysical data and location on the cortical map. For characterizing the inverse-linear 72 
CMF-vs-eccentricity function, they use a concept they had developed earlier for 73 
psychophysical results (Levi, Klein, & Aitsebaomo, 1984; Levi et al., 1985): The slope of that 74 
linear function, when normalized to the foveal value, can be quantified by a single number, 75 
called E2. The concept is illustrated graphically in Figure 1B below: In an x-y plot vs 76 
eccentricity, E2 is the (negative) X-axis intercept or, alternatively, the (positive) eccentricity 77 
value at which the foveal value is incremented by itself (i.e., doubles). Klein & Levi (1987) 78 
further bridge the gap to proportionality when they show that relationships become simpler 79 
and more accurate when the  data are not treated as a function of eccentricity E itself, but of 80 
a transformed eccentricity, E*, referred to as effective eccentricity, E* = E + E2. The linear 81 
cortical magnification function thereby turns into proportionality. In the cortical map, 82 
locations – i.e. distances from the retinotopic centre – are then proportional to the 83 

                                                
1 Note that the elegance of the complex-log representation is deceiving in that not all properties of the complex 

plane have a counterpart in the 2D real plane (which is undesirable for a mathematical representation). For 
example, the square of a value on the upper vertical meridian does not correspond to a value on the left 
horizontal meridian, as would be implied by i² = –1. 
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logarithm of effective eccentricity, x  log (E+E2). The approach is verified by showing the 84 
empirical data both as thresholds and in cortical units (Klein & Levi, 1987, Fig. 5; for rescaling 85 
that figure’s right ordinate the authors posit that 1 mm of cortex corresponds to ~10% of 86 
effective eccentricity). 87 

However, the papers discussed so far have not yet fully exploited the tight mathematical link 88 
between the linear and the logarithmic law for its empirical use. While the basic 89 
mathematical form of the mapping function  log (E) or log (E+E2)  is drawn upon and made 90 
use of, further parameters are left free to vary and to be determined by fitting to the data. 91 
The derivations in the present paper take the log-mapping approach one step further. Unlike 92 
these and other papers (discussed below), the parameters for the logarithmic map are here 93 
obtained by mathematical derivation from the linear law. In a neuroscience context, that law 94 
will be the inverse of the CMF. For the psychophysicist, measures of low-level visual-95 
perceptual function like the minimal angle of resolution (MAR) can be an approximation. In 96 
both cases, Levi and Klein’s E2 concept is the basis here. We thereby arrive at a set of fully 97 
explicit equations that allow converting the linear, local-behaviour law of the CMF, specified 98 
by E2, to a description of the global behaviour, the location on the cortical map. These 99 
equations are the message of the paper. In a next step, the empirical data for the cortical 100 
maps (from fMRI or single-cell analysis) are then used to verify the correctness of those 101 
parametrical equations. This approach represents a more principled one than before. It 102 
further places additional constraints on the describing functions, thus adding to their 103 
reliability. 104 

Since such derivations have been attempted before and have led to erroneous results or 105 
have stopped short of exploring the implications, derivations are presented in a step-by-step 106 
manner, considering at each step what that means. Key equations are highlighted by 107 
surrounding boxes for easy spotting, i.e. those that should be of practical use in describing 108 
the cortical map. Or, for example, for obtaining improved estimates for the foveal CMF, M0. 109 

Instead of the complex log we here consider the simpler case of the real-valued, 1D 110 
mapping, where eccentricity in the visual field, expressed in degrees of visual angle along a 111 
radius, is mapped onto the distance of its representation from the retinotopic centre, 112 
expressed in millimetres. The resulting real-valued logarithmic function shall be called the 113 
cortical location function. Taking the 1D case implies no loss of generality; the function is 114 
easily generalized to the 2D case by writing it as a vector function. Compared to the complex 115 
log, the real function has the added advantage of allowing separate parameters for the 116 
horizontal and vertical meridian, required to meet the visual field’s horizontal-vertical 117 
anisotropy. 118 

Once these relationships for the cortical location function are established, they need to be 119 
verified by empirical data. We use data from the literature and our own for this. It turns out 120 
that not only do the fits work excellently, and even better than the original fits, but that the 121 
constraints imposed by the parametric equations can also be used for the long-standing 122 
problem of improving estimates for the foveal CMF (M0). Another issue addressed there are 123 
attempts to become independent of the retinotopic centre’s location. That centre’s exact 124 
location appears to be difficult to find (it is often specified only approximately), and some 125 
authors like to use some other reference location instead. It turns out, however, that while 126 
equations can be referenced to some other location than the centre, true independence 127 
from the latter cannot be achieved by any means.  128 
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In the context of these derivations, I propose a new metric, d2, measured in millimetres, for 129 
characterizing the cortical map. It is the equivalent of E2 (which is measured in degrees visual 130 
angle). Like E2 in the visual field, d2 allows specifying the steepness of location change in the 131 
cortical map, e.g. for quantifying the horizontal-vertical anisotropy or even for comparisons 132 
between species. 133 

In another section, it is further argued that the simplified version (x  log E) that is not 134 
uncommon in the fMRI literature needs to be avoided and that the full version with a 135 
constant term added in the log’s argument needs to be employed (i.e., x  log (E + c)). There 136 
is further apparently confusion about what does and what does not represent the required 137 
constant term, which adds to a common myth that omitting the term simplifies matters. 138 

Finally, the cortical location function can be used, perhaps unexpectedly, to derive the 139 
cortical distances in visual crowding. Crowding happens when neighbouring patterns to a 140 
target stimulus are closer than a critical distance; that critical distance can be described by 141 
Bouma’s law (Bouma, 1970; Strasburger, Harvey, & Rentschler, 1991; Pelli, Palomares, & 142 
Majaj, 2004; Pelli & Tillman, 2008; Whitney & Levi, 2011; Strasburger, 2020). We thus arrive 143 
at a cortical version of Bouma’s law. While this has been done before (Levi et al., 1985; 144 
Motter & Simoni, 2007; Pelli, 2008; Nandy & Tjan, 2012; Strasburger, Rentschler, & Jüttner, 145 
2011; Strasburger & Malania, 2013), the present derivations go beyond  those in that they 146 
include the fovea and provide the derivations. 147 

1. Concepts 148 

Peripheral vision is unlike central vision as Ptolemy (90–168) already noted. Yet just how it is 149 
different is still a puzzling question. The goal here is to draw the attention to the highly 150 
systematic organization of the early neural processing stages by deriving equations that 151 
describe its architecture. But before  doing so we need to be explicit on a number of 152 
concepts that are the foundation for what follows. 153 

The linear law and the hyperbola graph. Four types of analytic functions are central for 154 
describing functional dependencies on eccentricity – in the visual field or in retinotopic 155 
areas: linear and inverse-linear, and logarithmic and exponential. Their graphs look entirely 156 
different (giving rise to misleading intuition; Rosenholtz, 2016, Strasburger, 2020) yet the 157 
first two and second two are effectively equivalent to each other. Let’s start with the first 158 
pair (the second pair follows in Figure 3). 159 

Aubert and Foerster’s (1857) characterization of the performance decline with retinal 160 
eccentricity as a linear increase of minimum resolvable size – sometimes referred to as the 161 
Aubert-Foerster law – is still the conceptual standard. It corresponds to what is now called 162 
M-scaling when based on cortical magnification (Virsu & Rovamo, 1979; Virsu et al., 1987) or 163 
the change of local spatial scale when the scaling factor is not thus constrained (Watson, 164 
1987). Examples for the linear law are shown in Figure 1A and 2A. However, by the end of 165 
the 19th century it also became popular to use the inverse of minimum size instead, i.e. 166 
acuity, in an attempt to make the sensory decline more graphic (e.g. Fick, 1898, shown in 167 
Figure 1B). And, since the inverse-linear function’s graph is close to a hyperbola, we arrive at 168 
the well-known hyperbola-like function of, e.g., acuity vs. eccentricity seen in most 169 
textbooks, or in Østerberg’s (1935) equally well-known cone-density graph. Examples of that 170 
graph for the cortical map are in Dougherty et al. (2003, Fig. 5) and Harvey & Dumoulin 171 
(2011, Fig. 4B), shown in Figure 1 C and D. 172 
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Figure 1. Examples for the linear and the inverse-linear (approx. hyperbola) graph. Even though the two are 
equivalent, their intuitive interpretation is often different, with the linear graph taken as evidence of a shallow 
performance decline and the inverse-linear graph as evidence of a steep decline (Rosenholtz, 2016; Strasburger 
2020). A. MAR for various visual performance parameters; Weymouth (1958, Fig. 13). B. Visual acuity; Fick (1898, 
Fig. 2). C. Cortical magnification factor M; Dougherty et al. (2003, Fig. 5). A hyperbola graph, obtained from linear 
regression to the inverse data (M=1/(0.033E+0.1355)), and an axis intercept M0=1/b have been added to the original 
graph. D. Same; Harvey & Dumoulin, 2011, Fig. 4B. In C and D note the steep incline toward the retinotopic centre 
and that no data are obtained in or near the centre. The central value M0 is therefore difficult to derive directly from 
those graphs. 

Yet, graphic as it may be, the hyperbola graph does not lend itself to a comparison of decline 173 
parameters. Weymouth (1958) therefore already argued for using the linear graph, 174 
introducing the concept of the minimal angle of resolution (MAR) as a general measure of 175 
size threshold. Weymouth summarized how the MAR and other spatial visual performance 176 
parameters depend on retinal eccentricity (Figure 1A). Importantly, Weymouth stressed the 177 
mandatory use of a non-zero, positive y-axis intercept for these functions (Weymouth, 1958, 178 
p. 109). This will be a major point here in the paper; it is related to the necessity of a 179 
constant term in the cortical-location function as discussed below.  180 

Cortical magnification. Daniel & Whitteridge (1961) and Cowey & Rolls (1974) introduced 181 
cortical magnification as a quantitative concept for retinotopic mapping, which, for a given 182 
visual-field location, summarizes functional density along the retino-cortical pathway into a 183 
single number. The linear cortical magnification factor (CMF), M, was defined as the 184 
diameter in the primary visual cortex onto which 1 deg of the visual field projects (areal M 185 
was defined as an areal counterpart). Enlarging peripherally presented stimuli by M turns 186 
out to counter performance decline to a large degree for many visual tasks (reviewed, e.g., 187 
by Virsu et al., 1987); it was thus suggested as a general means of equalizing visual 188 
performance across the visual field (Rovamo & Virsu, 1979). Even though this so-called 189 
strong hypothesis was soon dismissed (e.g. Westheimer, 1982, p. 161), the strong tie 190 
between cortical distances and (in particular) low-level psychophysical tasks is still striking. 191 

The relationship between the early visual architecture and psychophysical tasks is still a 192 
matter of debate; why, for example, do different visual tasks show widely differing slopes of 193 
their eccentricity functions (Figure 1A)? In contrast, the manner in which the CMF varies 194 
with eccentricity is largely agreed upon: M decreases with eccentricity – following 195 
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approximately a hyperbola (Figure 1C and D) – and its inverse increases linearly (Schwartz, 196 
1980; Van Essen et al., 1984; Tolhurst & Ling, 1988; Horton & Hoyt, 1991, Slotnick, Klein, 197 
Carney, & Sutter, 2001, Duncan & Boynton, 2003; Larsson & Heeger, 2006; Schira, Wade, & 198 
Tyler, 2007). Figure 2A shows a few examples for the latter. Note that in the figure there is 199 
one function from psychophysics shown along with the anatomical estimates (Rovamo & 200 
Virsu, 1979; Virsu & Rovamo, 1979; Virsu et al., 1987). Note also that all functions need to 201 
have a positive y-axis intercept, be it ever so slight, because otherwise M were undefined, 202 
i.e., infinite. 203 

A 

 

B 

Figure 2. A. The inverse of the cortical magnification factor or, equivalently, the size of a patch in the 
visual field that projects onto a patch of constant size in the cortex, as a function of eccentricity in the 
visual field (Fig. 9 in Strasburger et al., 2011, reproduced for illustrating the text). All functions show a 
mostly linear behaviour. Their slope is quite similar, with the exception of Van Essen et al.’s (1984) data 
for the macaque; other data show similar slopes between human and monkey (e.g. Oehler, 1985). Note 
that Rovamo & Virsu’s function is based on psychophysical data. Note also that all functions need to have 
a positive y-axis intercept. B. An illustration of the E2 concept. E2 is defined as the eccentricity where the 
foveal value doubles, or (equivalently) as the eccentricity increment that leads to an increment by the 
foveal value. It is also the negative x-axis intercept. Note that the foveal value does not double every E2 
increment (cf. Strasburger, 2020). Importntly, note that the concept can be used for both psychophysical 
and anatomical data. 

Other equations: Empirical data typically fit the linear concept quite well in the considered 204 
range of about 40° eccentricity, but, nevertheless, fits can sometimes be improved by 205 
introducing a slight nonlinearity (Table 1). Rovamo, Virsu, & Näsänen (1978), as an example, 206 
used a polynomial by adding a small 3rd-order term; Van Essen et al. (1984), Tolhurst & Ling 207 
(1988), and Sereno et al. (1995) increased the exponent of the linear term slightly above 1. 208 
Virsu & Hari (1996) used a sine function, based on geometrical considerations. Only a part of 209 
the sine’s period comes into play so that the function is still close to linear in that range. The 210 
latter function is interesting because it is the only one that can be extended to eccentricities 211 
larger than 90°(cf. Strasburger, 2020). However, improvements over a linear approach are 212 
mostly small or absent and do not warrant the added complexity in the derivations to follow, 213 
so we will not pursue this further. 214 
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Equation Source Comments 

)1(1
0

1 aEMM    

Cowey & Rolls (1974) 
(data from Wertheim, 1894) 
Schira et al., 2010 
Harvey & Dumoulin, 2011 

Inverse-linear equation 

)1( 2
1

0
1 EEMM    

Levi et al. (1985, Table 1) 
Klein & Levi (1987) 
Horton & Hoyt (1991) 
Dougherty et al. (2003) 

Inverse-linear equation using E2. 

)1( 31
0

1 bEaEMM  

 
Rovamo & Virsu (1979) Nonlinearity by an added small 3rd-

order term 

)1(1
0

1 aEMM    
Van Essen et al. (1984), =1.1 
Tolhurst & Ling (1988) , =1.1 
Sereno et al (1995), =1.26 

Non-linearity by an added 
exponent  close to 1 

)sin(1 EbaM   
Virsu & Hari (1996), 
Näsänen & O'Leary (2001) 

Only 1/8 of the sine period is used 

Table 1. Equations used for describing eccentricity functions (modified from Strasburger et al., 2011). 215 

The E2 concept. For a quick comparison of eccentricity functions, Levi et al. (1984, p. 794) 216 
introduced the E2 concept by pointing out the specific eccentricity at which the respective 217 
foveal value doubles (Figure 2B). More generally, E2 is the eccentricity increment at which y 218 
increases by the foveal value. I.e., at eccentricity E2 the foveal value is doubled and at twice 219 
E2 is tripled. As a graphic aide, E2 is also the distance from the origin of where the linear 220 
function crosses the eccentricity axis. 221 

E2 is most often used for psychophysical tasks but lends itself equally well for describing the 222 
anatomical function (Levi et al., 1985, Table 1; Klein & Levi, 1987; Horton & Hoyt, 1991; 223 
Dougherty et al., 2003). Eq. (1) states the corresponding equation. 224 

12
1

0
1  EEMM . (1) 225 

M–1 in that equation is measured in °/mm (one might call it the retinal magnification factor:  226 
it corresponds to the receptive field size of a cortical neuron on the retina). M0

–1 is that value 227 

in the fovea’s centre. The function’s slope is given by 2
1

0 / EM  , so when these functions are 228 

normalized to the foveal value, their slope is 1/E2. I.e., larger E2 corresponds to shallower 229 
slope. Parameter E2 thus captures an important property of the functions (how they 230 
increase/decrease) in a single number. A summary of values was reported by Levi et al. 231 
(1984), Levi et al. (1985), Klein & Levi (1987), or more recently by Strasburger et al. (2011, 232 
Tables 4–6). These reported E2 values vary widely between different visual functions. They 233 
also vary considerably for functions that seem directly comparable to each other (for 234 
example, E2 for vernier acuity: 0.62°–0.8°; for M–1: 0.77°–0.82° or even 3.67° in Dougherty et 235 
al., 2003; for Landolt-C acuity: 1.0°–2.6°; letter acuity: 2.3°–3.3°; gratings: 2.5°–3.0°). On the 236 
other hand, E2 can also be surprisingly similar for tasks that seem entirely unrelated, like for 237 
example the E2 of 1.22° for the perceived travel extent in the fine-grain movement illusion 238 
(Foster, Thorson, McIlwain, & Biederman-Thorson, 1981). Note also the limitations of E2: 239 
since, for example, the empirical functions always deviate a little from linearity, the 240 
characterization by E2, by its definition, works best at small eccentricities. 241 

M-scaling and local scale: The left hand ratio in eq. (1), M–1/M0
–1, is the ratio by which a 242 

peripherally seen stimulus needs to be size-scaled to occupy cortical space equal to a foveal 243 
stimulus. So the equation can be re-written as 244 
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120  EESS , (2) 245 

where S is scaled size and S0 is the size at the fovea’s centre. S0 can be considered the size-246 
scaling unit in the visual field, and E2 the locational scaling unit (i.e. the unit in which scaled 247 
eccentricities are measured). If E2 refers to the cortical map, this is the concept of M-scaling. 248 
If E2 in the equation refers to some other eccentricity function, this corresponds to a more 249 
abstract way of size scaling, called local scale (Watson, 1987). 250 

The cortical location function: Fischer (1973) and Schwartz (1977, 1980) proposed the 251 
complex log function for mapping the visual field to the cortical area. The key property of 252 
interest for that mapping is the behaviour along a radius (from the fovea) in the visual field; 253 
the simpler real-valued log function can thus be used instead of the complex logarithm. This, 254 
then, maps the eccentricity in the visual field to the distance from the retinotopic centre on 255 
the cortical map (Figure 3B). Neuroscience papers often prefer to show the inverse function 256 
(i.e. mirrored along the diagonal with the x and y axis interchanged, thus going “backwards” 257 
from cortical distance to eccentricity), which is the exponential function shown schematically 258 
in Figure 3A.  259 

The constant term: Schwartz (1980) has discussed two versions of the function that differ in 260 
whether there is a constant term added in the argument; the difference is illustrated in the 261 
graph. The version without the constant is often considered simpler and is thus often 262 
(inappropriately) preferred. A point in the following will be that that simplicity is deceiving 263 
and can lead to wrong conclusions – and more complicated equations. Note that the 264 
constant term is at different places in the equations: For the exponential function in figure 265 
part (A) it is added to the exponential, for the logarithmic function in (B) it is within the log’s 266 
argument. As will be seen later, the constant term in both cases corresponds to the positive 267 
y-intercept of the linear function (Figure 2B). 268 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 28, 2021. ; https://doi.org/10.1101/621458doi: bioRxiv preprint 

https://doi.org/10.1101/621458
http://creativecommons.org/licenses/by/4.0/


 9 

A 

0

1

2

3

4

5

6

7

8

Cortical location d  (mm)

Ec
ce

nt
ri

ci
ty

 E
in

 th
e 

vi
su

al
 fi

el
d 

(°
)

Retinotopic center

Fovea 
center

with constant term

without constant term 
(impossible)

beaE d 

deaE 

 

B 

0 1 2 3 4 5 6 7 8

Eccentricity E  in the visual field (°)

Co
rt

ic
al

 lo
ca

tio
n 

d
 (m

m
)

with constant term

without constant term 
(impossible)

)'log( Ead 

)''log( bEad 

 

Figure 3.  Schematic graph of the cortical location function introduced by Fischer (1973) and Schwartz 
(1977, 1980) , along a radius from the retinotopic centre. A version with, and another without a constant 
term (parameter b or b' in the equation) are shown. The constant term’s omission was intended as a 
simplification for large eccentricities but is not physically possible near or in the foveal centre. The graph in 
(A) shows eccentricity E as a function of cortical distance d (which is an exponential); Schwartz (1980) 
discussed mainly the inverse function shown in (B), i.e. for d as a function of E (which is logarithmic). 

The retinal and the retinotopic centre: There is an important difference in difficulty between 269 
measuring at the fovea’s exact centre and at the cortical retinotopic counterpart. Whereas 270 
psychophysical measurements at the fovea are particularly simple and reliable, determining 271 
the exact retinotopic centre and the CMF at that location, M0, appear the most difficult and 272 
M0’s value is mostly extrapolated from peripheral values. The consequences of this include 273 
different strategies in research between the two fields regarding the map. 274 

Anisotropy. The visual field is not isotropic: Performance declines differently between radii. 275 
Slopes differ between vertical and horizontal, and upper vs lower field. Accordingly, iso-276 
performance lines (for the binocular field) are distorted ellipses rather than circular outside 277 
the central visual field, which is isotropic (e.g. Wertheim, 1894, Harvey & Pöppel, 1972; 278 
Pöppel & Harvey, 1973). Rovamo & Virsu (1979, p. 498) accordingly computed separate M 279 
estimates for each meridian. There is further a nonlinearity at the transition from the 280 
isotropic to the anisotropic field (Pöppel & Harvey, 1973, Fig. 6). Correspondingly, early 281 
visual areas are also anisotropic (e.g. Horton & Hoyt, 1991). The effect of anisotropy on the 282 
cortical magnification factor is quantitatively treated by Schira et al. (2007, 2010); their M0 283 
estimate is the geometric mean of the isopolar and isoeccentric M estimates. In the 284 
equations presented below, the horizontal/vertical anisotropy can be accommodated by 285 
letting the parameters depend on the radius in question. There are further anisotropies that 286 
are not accounted for by varying slopes along the radii (Schira et al., 2007, 2010). These 287 
authors, for preserving area constancy across meridians, thus extend modelling by a shear 288 
function (using the hyperbolic secans; Schira et al., 2010, eq. 6 and Fig. 2). Mappings then 289 
differ between meridians, with deviations from linearity most noticeable on, and close to, 290 
the vertical meridian at around 1° eccentricity (Schira et al., 2010, Fig. 2). The derivations 291 
presented below, for simplicity, do not include these refinements. 292 

Symbols in the paper: To keep the overview, symbols used in the paper are summarized in 293 
Table 2. Some of those are in standard use and some are newly introduced in the remainder. 294 
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 295 

 Visual Field Cortical Map 
Cortical magnification factor M–1 M 
Stimulus size S – 
Location as distance from the centre E d 
Location as distance from a reference – dຄ 
Levi and Klein’s E2 E2 d2 

Location of reference as distance from the centre – dref

Critical distance for crowding  
Critical distance for crowding in the very centre  
E2 for critical crowding distance Ê2 –

Table 2. Summary of symbols used in the paper 296 

2. The cortical location function 297 

2.1 Cortical location specified relative to the retinotopic centre 298 

The ratio S/S0 in eq. (2) is readily estimated in psychophysical experiments as the size of a 299 
stimulus relative to its foveal value for achieving equal perceptual performance. However, its 300 
physiological counterpart M–1/M0

–1 in eq. (1) appears difficult to assess directly, even though 301 
it is a physiological concept. Instead, it is typically derived by extrapolation from peripheral 302 
values, e.g. from the cortical-location function d = d(E) (Figure 3). The function links a cortical 303 
distance d in a retinotopic area to the corresponding distance in the visual field that it 304 
represents. More specifically, d is the distance (in mm) on the cortical surface between the 305 
representation of a visual-field point at eccentricity E, and the representation of the fovea 306 
centre. Under the assumption of linearity of the cortical magnification function M–1(E), this 307 
function is logarithmic (Figure 3B) and its inverse E = E(d) exponential (Figure 3A), as shown 308 
by Fischer (1973) and Schwartz (1977, 1980). Since the E2 parameter allows a simple 309 
formulation of the linear eccentricity functions (Figure 2), as e.g. in eq. (1), it will be useful to 310 
state the location function with those notations. First steps have been derived in Strasburger 311 
et. al. (2011, eqs. 10 – 13; corresponding here eqs. 3 – 6). The present derivations go further. 312 
The location function allows a concise quantitative characterization of the early retinotopic 313 
maps. 314 

For its derivation, notice first that, locally, the cortical distance of the respective 315 
representations d(E) and d(E+E) of two nearby points along a radius, at eccentricities E and 316 

E+E, is given by M(E)∙E. This follows from M’s definition and the fact that M refers to 1°. 317 
The cortical magnification factor M is thus the first derivative of d(E), i.e., 318 

)(' EdM  . (3) 319 

Conversely, the location d on the cortical surface (i.e., the global aspect) is the integral over 320 
M, starting at the fovea centre: 321 


E

dEEMEd
0

)()( . (4) 322 

If we insert eq. (1) – i.e. the equation using E2 – into eq. (4), we have 323 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 28, 2021. ; https://doi.org/10.1101/621458doi: bioRxiv preprint 

https://doi.org/10.1101/621458
http://creativecommons.org/licenses/by/4.0/


 11 

 


E

dE
EE

M
Ed

0 2

0

/1
)(  324 

      )1ln( 220 EEEM  (with 0E ), (5) 325 

where ln denotes the natural logarithm. 326 

The inverse function, E(d) is derived by inverting eq. (5), 327 

)1( 20
2  EM

d

eEE  (with 0d ). (6) 328 

It states how the eccentricity E in the visual field depends on the distance d of the 329 
corresponding location in a retinotopic area from the retinotopic centre. With slight 330 
variations, discussed below, it is the formulation often referenced in fMRI papers on the 331 
cortical mapping. Note that, by its nature, it is only meaningful for positive values of cortical 332 
distance d. The significance of this point will become apparent later. 333 

We can simplify that function further by introducing an analogue to E2 in the cortex. Observe 334 
that like any point in the visual field the location at E2 has a representation (on the meridian 335 
in question), whose distance from the retinotopic centre we denote as d2. Thus, d2 in the 336 
cortex represents E2 in the visual field. 337 

To express eq. (6) using d2 instead of M0, first apply the equation to that location d2: 338 

)1( 20

2

22  EM

d

eEE  . (7) 339 

Solving that for the product M0 E2 gives 340 

2ln/220 dEM  , (8) 341 

which, inserted into eq. (6) in turn gives 342 

)12( 2
2  ddEE . (9) 343 

Eq. (9) is the most concise way of stating the cortical location function. We can also restate it 344 
however as 345 

)1( 2)2(ln
2  ddeEE  (10) 346 

since the exponential to the base e is often more convenient (ln again denotes the natural 347 
logarithm). 348 

This equation (eq. 10) is particularly nice and simple provided that d2, the cortical equivalent 349 
of E2, is known. That value, d2, could thus play a key role in characterizing the cortical map, 350 
similar to the role of E2 in visual psychophysics (cf. Table 4 – Table 6 in Strasburger et al., 351 
2011, or earlier the tables in Levi et al., 1984, Levi et al., 1985, or Klein & Levi, 1987). 352 
Estimates for d2 derived from literature data are summarized in Section 2.4 below, as an aid 353 
for concisely formulating the cortical location function. 354 

The new cortical parameter d2 can be calculated from eq. (8), restated here for convenience: 355 

2ln202 EMd   (8a) 356 
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2.2 Cortical location specified relative to a reference location 357 

Implicit in the definition of d or d2 is the knowledge about the location of the fovea centre’s 358 
cortical representation, i.e. of the retinotopic centre. That locus has proven to be hard to 359 
determine precisely, However, and instead of the centre it has thus become customary to 360 
use some fixed eccentricity Eref as a reference. Engel et al. (1997, Fig. 9; 1994, Fig. 2), for 361 
example, use Eref = 10°. Larsson & Heeger (2006, Fig. 5) use Eref = 3°. 362 

To restate eq. (6) or (10) accordingly, i.e. with some reference eccentricity different from 363 
Eref = 0, we first apply eq. (10) to that reference: 364 

)1( 2)2(ln
2  dd

ref
refeEE , (11) 365 

where dref denotes the value of d at the chosen reference eccentricity, e.g. at 3° or 10°. 366 

Solving then that equation for d2 and plugging the result into eq. (9) or (10), we arrive at 367 

)1)1(( /
2 2

 refref dd
E

EEE . (12) 368 

Expressed to the base e instead, we have 369 

)1( )/(
2  refddeEE 

, with )1ln(
2
 E

Eref  (and 0d ), (13) 370 

which represents the location function expressed relative to a reference eccentricity Eref, and 371 
its equivalent in the cortical map, dref. (One could also derive eq. (13) directly from eq. (6).) 372 
Note that if, in that equation, E2 is taken as the reference eccentricity for checking, it reduces 373 
to eq. (10) as expected. So, E2 can be considered as a special case of a reference eccentricity. 374 
Note further that, unlike the location equations often used in the retinotopy literature (Van 375 
Essen et al., 1984, in the introduction; Duncan & Boynton, 2003; Larsson & Heeger, 2006), 376 
the equations are well defined in the fovea centre: for d = 0, the eccentricity E is zero, as it 377 
should. 378 

What reference to choose is up to the experimenter. However, the fovea centre itself cannot 379 
be used as a reference eccentricity – the equation is undefined for dref = 0 (since the 380 
exponent is then infinite). Thus, the desired independence of knowing the retinotopic 381 
centre’s location has not been achieved  that knowledge is still needed, since d, and dref, in 382 
these equations are defined as the respective distances from that point. 383 

Equations (12) and (13) have the ratio d/d ref in the exponent. It is a proportionality factor for 384 
cortical distance. From the intercept theorem in geometry we know that this factor cannot 385 
be re-expressed by any other expression that leaves the zero point undefined. True 386 
independence from knowing the retinotopic centre, though desirable, thus cannot be 387 
achieved. 388 

We can nevertheless shift the coordinate system such that locations are specified relative to 389 
the reference location, dref. For this, we define a new variable dǻ as the cortical distance (in 390 
mm) from the reference dref instead of from the retinotopic centre (see Figure 4 for an 391 
illustration for the shift and the involved parameters), where dref is the location 392 
corresponding to some eccentricity, Eref. By definition, then, 393 

refddd ˆ  (14) 394 

 395 
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Figure 4: Illustration of the cortical distance measures used in equations (6) – (23), and of 
parameter b in eq. (18) further below.  
d    – cortical distance of some location from the retinotopic centre, in mm;  
dref – distance (from the centre) of the reference that corresponds to Eref;  
d1°  – distance of the location that corresponds to E = 1°;  
dǻ    – distance of location d from the reference dref. 

In the shifted system – i.e., with dǻ instead of d as the independent variable – eq. (6) for 396 
example becomes 397 

)1( 20

ˆ

2 


EM

dd ref

eEE . (15) 398 

The equation might be of limited practical use, however (like eq. 6 from which it was 399 
derived), since the parameters M0 and E2 in it are not independent; they are inversely 400 
related to each other as seen in eq. (8) or (8a) (or eq. 17). That interdependency is removed 401 
in eq. (9) or (10), (which work from the retinotopic centre), or eq. (13) (which used a 402 
reference eccentricity). The latter (eq. 13), in the shifted system becomes 403 

)1(

ˆ

2 


ref

ref

d

dd

eEE


, with )1ln(
2
 E

Eref  (and 0ˆ  refdd ). (16) 404 

That equation now has the advantage over eq. (15) of having only two free parameters, E2 405 
and dref. (Eref is not truly free since it is empirically linked to dref.) The foveal magnification 406 
factor M0 has dropped from the equation. Indeed, by comparing eq. (13) to eq. (6) (or by 407 
comparing eq. (15) to (16)), M0 can be calculated from dref and E2 as 408 

2
0 E

d
M ref



 ,  (17) 409 

where   is defined as in the previous equation. With an approximate location of the 410 
retinotopic centre (needed for calculating dref) and an estimate of E2, that latter equation 411 
leads to an estimate of the foveal magnification factor, M0 (see Section 2.4 for examples). 412 

Equations (16) and (17) are crucial to determining the retinotopic map in early areas. They 413 
should work well for areas V1 to V4 as discussed below. The connection between the linear 414 
and log or exponential function based estimations provided by these equations allows cross-415 
validating the empirically found parameters and thus leads to more reliable results. Duncan 416 
& Boynton (2003), for example, review the linear law and also determine the cortical 417 
location function empirically but do not draw the connection. Their’s and others’ approaches 418 
are discussed as practical examples in the section after next (Section 2.4). 419 

2.3 Independence from the retinotopic centre with the simplified function? 420 

Schwartz (1980) had offered a simplified location function where the constant term is 421 
omitted, which works at sufficiently large eccentricities. Frequently that was the preferred 422 
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one by other authors as seemingly being more practical. The present section briefly 423 
highlights how this approach leads astray if pursued rigorously. 424 

The simplified version of the location function E(dǻ) omits the constant term in eq. (6) and 425 
those that follow from it (i.e., the “–1” in eq. 6 up to eq. 16). Instead, the equation 426 

)ˆ( bdaeE   (18) 427 

is fit to the empirical data, with free parameters a and b. The distance variable in it is dǻ as 428 
before, i.e., the cortical distance from a reference dref representing some eccentricity Eref in 429 
the visual field. Engel et al. (1997, Fig. 9; 1994, Fig. 2), for example, use Eref = 10° for such a 430 
reference, and for that condition report the equation  E = exp (0.063 (dǻ + 36.54)). Larsson & 431 
Heeger (2006, Fig. 5), as another example, use Eref = 3°, and for area V1 in that figure give the 432 
function E = exp (0.0577 (dǻ + 18.0)). Note that neither of these equations contains the 433 
required constant term (cf. Figure 3), since the constants (36.54 and 18.0) are inside, not 434 
outside the exponential’s argument. 435 

We can attach meaning to the parameters a and b in eq. (18) by constraining the function 436 
appropriately (see Strasburger, 2019, for the derivation). By that we arrive at an equation 437 

)( 1̂/ˆ  dd
refref EEE , (19) 438 

where dǻ1° is the distance of the 1° line from the reference eccentricity’s representation; it is 439 
around –36.5 mm for Eref = 10° as used by Engel et al. (1994, 1997). 440 

This is now the simplified cortical location function, i.e. the simplified analogue to eq. (16), 441 
with parameters spelt out. One can easily verify that the equation holds true at the two 442 
defining points, i.e. at 1° and the reference eccentricity. Note also that, as intended, knowing 443 
the retinotopic centre’s location in the cortex is not required since dǻ is defined relative to a 444 
non-zero reference. However, in between these two points the function has the wrong 445 
curvature (see Fig. 4 in the next section, fat black line). Importantly, however, the equation 446 
fails with small eccentricities, for the simple reason that E cannot become zero in that 447 
equation. In other words, the fovea’s centre is never reached, even at the retinotopic centre.  448 

So the seeming simplicity of eq. (18) that we started out from leads astray in and around the 449 
fovea – which, after all, is of prime importance for vision. The next section illustrates the 450 
impact of the constant term with data from the literature. 451 

2.4 Practical use of the equations: examples 452 

2.4.1 The approach of Larsson & Heeger (2006) 453 

Now that we have derived two sets of equations for the location function (i.e. with, and 454 
without, a constant term in Section 2.1 and 2.3, respectively) let us illustrate the difference 455 
with data on the cortical map. The first example are data from Larsson & Heeger (2006, 456 
Fig. 5) for area V1. As a reminder, this is about eq. (16) on the one hand – in 457 

essence )1(
ˆ
 dbeaE , derived from eq. (6) – and the discouraged eq. (18) or (19) on the 458 

other hand (in essence dbeaE
ˆ

 , i.e. no constant term outside the exponent – Larsson & 459 

Heeger’s constant ‘18.0’ within the exponent is part of the coefficient a). 460 

For the reasons explained above, the retinotopic centre is left undefined by Larsson & 461 
Heeger (2006), and a reference eccentricity of Eref = 3° is used instead. The fitted equation in 462 
the original graph in their paper is stated as E = exp (0.0577 (dǻ+18.0)), which corresponds to 463 
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eq. (18) with constants a = 0.0577, and b = –dǻ1° = 18.0. Its graph is shown in Figure 5 as the 464 
thick black line copied from the original graph. It is continued to the left as a dotted blue line 465 
to show the behaviour toward the retinotopic centre. At the value of dǻ = –b, i.e. at a distance 466 
of dǻ1° = –18.0 mm from the 3° representation (as seen from eq. 18 or 19), the line crosses the 467 
1° point. To the left of that point, i.e. towards the retinotopic centre, the curve deviates 468 
markedly upward and so the retinotopic centre (E = 0°) is never reached. 469 

Comparison of Laws, ref. Larsson & Heeger Fig. 5, 
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 470 

Figure 5. Comparison of conventional and improved analytic functions for describing the cortical location 471 
function. Symbols show the retinotopic data for area V1 with reference location dref = 3° from Larsson and 472 
Heeger (2006, Fig. 5) (symbols for nine subjects). Superimposed is the original fit (thick black line), according 473 
to eq. (18) (E = exp (a (dǻ + b))) or eq. (19), i.e. a fit without a constant term). The blue dotted line continues 474 
that fit to lower eccentricities; the fitted E(dǻ) function goes to (negative) infinite cortical distance, which is 475 
physically meaningless. The pink and green line show graphs of the preferable eq. (16) that was derived 476 
from integrating the inverse linear law (eq. 1).The equations are underconstrained if M0 is not known; two 477 
pairs of parameter choices are shown, [E2 = 0.6°, dref = 38 mm] and [E2 = 1.0°, dref = 35 mm], respectively. 478 
The corresponding retinotopic centre’s magnification factor M0 can be calculated by eq. (17) as 35.4 mm/° 479 
and 25.3 mm/° for the two cases, respectively. Black and brown line: E(dǻ) function with parameters derived 480 
by Duncan & Boynton (2003), M0 = 18.5 mm/° and E2 = 0.831° (black), and with dref = 15.5 mm (brown) for 481 
comparison (discussed in the next section). Note that, by definition, the curves from Larsson & Heeger pass 482 
through the 3° point at dǻ = 0 mm. Note also that, according to the authors, the data beyond ~10 mm were 483 
biased and can be disregarded. 484 

The pink and the green curve in Figure 5 are two examples for a fit of the equation with a 485 
constant term (i.e., for eq. 16). Note that the equations are underconstrained unless either 486 
the location of the retinotopic centre or the central CMF M0 are known. The pink curve uses 487 
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E2 = 0.6° and dref = 38 mm, and the green curve E2 = 1.0° and dref = 35 mm. Apparently, 488 
smaller E2 values go together with larger dref values for a similar shape. Within the range of 489 
the data set, the two curves fit about equally well; the pink curve is slightly more curved (a 490 
smaller E2 is accompanied by more curvature). Below about 1° eccentricity, i.e. around half 491 
way between the 3° point and the retinotopic centre, the two curves deviate markedly from 492 
the original fit. The new curves fit the data better there than the original and, in particular, 493 
reach a retinotopic centre. Of the two, the pink curve (with E2 = 0.6°) reaches the centre at 494 
38 mm from the 3° point, and the green curve at 35 mm. 495 

The centre cortical magnification factor, M0, for the two curves can be derived from eq. (17), 496 
giving a value of 35.4 mm/° and 25.3 mm/°, respectively. These two estimates differ 497 
substantially from one another – by a factor of 1.4 – even though there is only a 3-mm 498 
difference of the assumed location of the retinotopic centre. This illustrates the large effect 499 
of the estimate for the centre’s location on the foveal magnification factor, M0. It also 500 
illustrates the importance of a good estimate for that location. 501 

There is a graphic interpretation of the foveal magnification factor M0 in these graphs. From 502 
eq. (6) one can derive that M0

–1 is equal to the function’s slope at the retinotopic centre. 503 
Thus, if the function starts more steeply (as does the green curve compared to the pink one),  504 
M0

–1 is higher and thus M0 is smaller. 505 

The figure also shows two additional curves (black and brown), depicting data from Duncan 506 
& Boynton (2003), which are discussed below. To better display the various curves’ shapes, 507 
they are shown again in Figure 6 but now without the data symbols. Figure 6 also includes an 508 
additional graph, depicting the exponential function E = exp(0.063(dǻ + 36.54)) reported by 509 
Engel et al. (1994, 1997). In it, dǻ is again the cortical distance in millimetres but this time 510 
measured from the 10° representation. E, as before, is the visual field eccentricity in 511 
degrees. For comparison with the other curves, the curve is shifted (by 19.1 mm cortical 512 
distance) on the abscissa, to show the distance from the 3° point. The curve runs closely with 513 
that of Larsson & Heeger (2006) and shares its difficulties. 514 
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Figure 6. Same as Figure 5 but without the data symbols, for better visibility of the curves. The additional 516 
dash-dotted curve next to that of Larsson & Heeger’s depicts the equation by Engel et al. (1997). 517 

 518 

2.4.2 The approach of Duncan & Boynton (2003) 519 

In addition to the curves just discussed, Figure 5 and Figure 6 show a further E(dǻ) function 520 
that is based on the results of Duncan & Boynton (2003). That function obviously differs 521 
quite a bit from the others in the figure and it is thus worthwhile studying how Duncan & 522 
Boynton (2003) derived these values. The paper takes a somewhat different approach for 523 
estimating the retinotopic mapping parameters for V1 than the one discussed before. 524 

As a first step in Duncan & Boynton’s paper, the locations of the lines of equal eccentricity 525 
are estimated for five eccentricities  (1.5°, 3°, 6°, 9°, 12°) in the central visual field, using the 526 
equation w = k * log (z + a). The function looks similar to the ones discussed above, except 527 
that z is now a complex variable that mimics the visual field in the complex plane. On the 528 
horizontal half-meridian (where z is real-valued) that is equivalent to eq. (6) in the present 529 
paper, i.e., to an E(d) function that includes a constant term (here parameter a) in the log’s 530 
argument and with the retinotopic centre as the reference. At these locations, the authors 531 
then estimate the size of the projection of several  1°-patches of visual space (see their Fig. 532 
3; this is where they differ in their methodology from other approaches). By definition, these 533 
sizes are the cortical magnification factors Mi at the corresponding locations. Numerically, 534 
these sizes are then plotted vs. eccentricity in the paper’s Fig. 4 (reproduced in Figure 7A). 535 
Note that this is not readily apparent from the paper, since both the graph and the 536 
accompanying figure caption state something different. In particular the y-axis is labelled 537 
incorrectly (as is evident from the accompanying text). For clarity, therefore, Figure 7B here 538 
plots these data with a corrected label and on a linear y-axis. 539 
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Duncan & Boynton (2003), Fig. 4
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 541 

Figure 7. Duncan & Boynton’s (2003) Fig. 4, showing the cortical magnification factor’s variation with 542 
eccentricity. (A) Original Fig. 4. The open symbols follow a power function (note the double-linear 543 
coordinates). (B) Redrawn on a linear y-axis and with a corrected y-axis label (M in mm/°). Open circles 544 
show the original data. Note that the equation used in (A) and proposed earlier in the paper (p. 662), 545 
M = 9.81*E–0.83, predicts an infinite foveal magnification factor, shown as the blue curve (with blue 546 
diamonds for visibility). In contrast, the inverse-linear fit M–1 = 0.065 E + 0.054 proposed later in the paper 547 
(p. 666) fits the data equally well in the measured range of 1.5° to 12° but in contrast predicts a reasonable 548 
foveal magnification factor M0 of 18.5 mm/°. The E2 value for the latter equation is E2 = 0.83. The additional 549 
green curve shows an equation by Mareschal et al. (2010) (see next section). (C) The inverse of the same 550 
functions. Note the slight but important difference at 0° eccentricity, where the original curve is zero and its 551 
inverse is thus undefined, whilst the linear function is non-zero and its inverse thus well-defined. 552 

The authors next fit a power function to those data, stated as M = 9.81*E –0.83 for the cortical 553 
magnification factor (note the double-logarithmic coordinates in 7A). There is more 554 
confusion, however, because it is said that, from such power functions, the foveal value can 555 
be derived by extrapolating the fit to the fovea (p. 666). That cannot be the case, however, 556 
since, by the definition of a power function (including those used in the paper), there is no 557 
constant term. The function therefore goes to infinity towards the fovea centre, as shown in 558 
Figure 7B (dashed line). Furthermore, E2, which is said to be derived in this way in the paper, 559 
cannot be derived from a nonlinear function (because the E2 concept requires a linear or 560 
inverse-linear function). The puzzle is resolved with a reanalysis of Duncan & Boynton’s Fig. 561 
4. It reveals how the foveal value and the connected parameter E2 were, in fact, derived: as 562 
an inverse-linear function which fits the data equally well in the measured range of 1.5° – 563 
12° eccentricity (Figure 7B and 7C, continuous line; note the slight but crucial difference in 564 
7C the retinotopic centre). From that function, the foveal value and E2 are readily derived. 565 
Indeed, the two values correspond to the values given in the paper. 566 

The distance of the isoeccentricity lines from the retinotopic centre is not specified in 567 
Duncan & Boynton (2003). We can derive it from eq. (17), though, because M0 and E2 are 568 
fixed: 569 

20 EMdref  . (20) 570 

With the authors’ parameters (M0 = 18.5 mm/° and E2 = 0.83), the scaling factor  in that 571 
equation comes out as  = 1.03 (from eq. 16). From that, dref = d1.5° = 15.87 mm. As a further 572 
check, we can also derive a direct estimate of dref from their Fig. 3. For their subject ROD, for 573 
example, the 1.5° line is at a distance of d1.5° = 15.45 mm on the horizontal meridian. That 574 
value is only very slightly smaller than the one derived above. For illustration, Figure 5 and 575 
Figure 6 in the previous section also contain a graph for that value (thin black line). 576 
Conversely, with dref given, M0 can be derived from eq. (17) (or eq. 20), which gives a slightly 577 
smaller value of M0 = 18.0 mm/°. The two curves are hardly distinguishable; thus, as 578 
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previously stated, dref and M0 interact, with different value-pairs resulting in similarly good 579 
fits. 580 

In summary, the parameters in Duncan & Boynton’s (2003) paper: M0 = 18.5 mm/° and 581 
E2 = 0.83, are supported by direct estimates of the size of 1°-projections. They are taken at 582 
locations estimated from a set of mapping templates, which themselves are derived from a 583 
realistic distance-vs.-eccentricity equation. The paper provides another good example how 584 
the linear concept for the magnification function can be brought together with the 585 
exponential (or logarithmic) location function. The estimate of M0 comes out considerably 586 
lower than in more recent papers (e.g. Schira et al., 2009; see Figure 8 below). Possibly the 587 
direct estimation of M at small eccentricities is less reliable than the approach taken in those 588 
papers. 589 

2.4.3 Mareschal, Morgan & Solomon (2010) 590 

Figure 7 shows an additional curve from a paper by Mareschal et al. (2010) on cortical 591 
distance, who base their cortical location function partly on the equation of Duncan & 592 
Boynton (2003). Mareschal et al. (2010) state their location function as 593 











4)(log72.5

4)054.0065.0(
)('

73.1

1

EE

EE
EM  (21) 594 

The upper part of the equation is that of Duncan & Boynton (pink curve) and is used below 595 
an eccentricity of 4°. The green continuous line shows Mareschal’s log equation above 4°, 596 
and the dashed line shows how the log function would continue for values below 4°. As in 597 
the previous examples, the latter is not meaningful and is undefined at zero eccentricity, 598 
which is why Mareschal et al. switched to the inverse-linear function (i.e. the pink curve) at 599 
that point. The problem at low eccentricity is apparent in Fig. 9 of their paper where the x-600 
axis stops at ½ deg, so the anomaly is not fully seen. For their analysis, the switch of 601 
functions is not relevant since eccentricities other than 4° and 10° were not tested. However, 602 
the example is added here to illustrate that the case distinction in eq. (21) could be avoided 603 
with the new equations derived here. 604 

2.4.4 An added exponent: Sereno et al. (1995) 605 

To accommodate for a slight curvature in the inverse CMF function (Figure 2A), several 606 
authors have suggested using a modestly nonlinear function for its modelling (Rovamo & 607 
Virsu, 1979; Van Essen et al., 1984; cf. Table 1). One way to achieve this is using a power 608 
function, i.e., adding an exponent to the linear function with a value slightly above 1: 609 

)1(1
0

1 aEMM  

 (22) 610 

Van Essen et al. (1984), e.g., use an exponent of 1.1. Following their lead, Sereno et al. 611 
((1995)) posit 612 

 (23) 613 

for the CMF, where A, B, and exponent C are free parameters, and r denotes eccentricity 614 
along a radius (the equations are found in the paper’s footnotes 24, 25, and 26). For the case 615 
C = 0, the equation is reduced to the standard inverse-linear function (eq. 1). By integration, 616 
they derive from that the cortical location function, called mapping function D(r) =  M(r)dr in 617 
their paper: 618 
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  with C ≠ 0 (24) 619 

In their fits to the anatomical data, C comes out with values close to 1. 620 

Note that both eq. (22) and (23) are well-defined and meaningful in the retinotopic centre 621 
(r=0). Note also, however, that the exponent (C) must not be zero for the location function 622 
(eq. 24). I.e., the location function is undefined for the inverse-linear CMF function. That 623 
latter case is discussed in Sereno et al.’s Footnote 26, where C = 1; the cortical location 624 
function is then said to converge to 625 

D(r) = A log [r + B]. (25) 626 

(i.e., similar to eq. 5). 627 

In that equation, however, lies the fatal error that led to the avoidance of the (much simpler) 628 
logarithmic location function. On closer inspection and comparison to eq. (5), one can see 629 
that, even though there is a constant term (namely B), the scaling factor for the independent 630 
variable r is missing. The equation should be something like D(r) = A log [Cr + B]. Therefore, B 631 
is effectively constrained to 1 because only then is D(r=0) = 0. In other words, the constant 632 
term B is not actually a free parameter. 633 

Interestingly, Sereno et al. (1995) are aware of the shortcomings of the latter equation. They 634 
write, “Our data could also be fit with this equation, but only if we allowed B to be negative, 635 
which results in a singularity (infinite magnification factor) before the center-of-gaze is 636 
reached. A good fit without a singularity could only be achieved with C above 1”. They 637 
continue saying, “The combinations of parameters given here fit the cortical distance data 638 
[i.e., referring to the location function] very closely but still give unrealistically large 639 
estimates of cortical magnification at the exact center of the fovea […], indicating that the 640 
standard equation for M is inadequate to accurately describe cortical magnification in the 641 
very center of the fovea in humans even with C > 1.” What went unnoticed is that a simple 642 
remedy would have been using the correct additive constant term and a scaling factor for r. 643 

2.4.5 Toward the retinotopic centre: Schira et al. 644 

As discussed above, predictions on the properties at the retinotopic centre depend critically 645 
on determining its precise location and thus require data at small eccentricities. Schira, Tyler 646 
and coworkers have addressed that problem in a series of papers (Schira et al., 2007; Schira, 647 
Tyler, Breakspear, & Spehar, 2009; Schira et al., 2010) and provide detailed maps of the 648 
centres of the early visual areas, down to 0.075° eccentricity. They also develop parametric, 649 
closed analytical equations for the 2D maps. When considered for the horizontal direction 650 
only, these equations correspond to those discussed above (eq. 1 and eq. 16/17) (the 651 
equations differ on, and close to, the vertical meridian – Schira et al., 2007; Schira et al., 652 
2010 – but this is not relevant here). 653 

Figure 8 shows magnification factors from Schira et al., 2009, Fig. 7A, with figure part B 654 
showing their V1 data (red curve), but redrawn on double-linear coordinates. As can be 655 
seen, the curve runs close to a hyperbola. Its inverse is shown in Figure 8C, which displays 656 
the familiar, close-to-linear behaviour over a wide range, with a positive y-axis intercept that 657 
corresponds to the value at the retinotopic centre, M0

–1. From the regression line, M0 and E2 658 
are readily obtained and are E2 = 0.21° and M0 = 47.6 mm, respectively. Interestingly, a 659 
rather large value of M0 is obtained compared to previous reports. Partly (as can also be 660 
seen from the graph) that can be caused by a single, most peripheral point; the centrally 661 
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located values predict a somewhat shallower slope of the linear function. If one disregards 662 
that point in the regression, one arrives at a slightly larger E2 and smaller M0 value: E2 = 0.33° 663 
and M0 = 34.8 mm. The latter values might be the more accurate predictors for V1’s central 664 
point. 665 
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Figure 8. The cortical magnification factor’s dependency on eccentricity from Schira, Tyler, Breakspear & 667 
Spehar (2009, Fig. 7A). (A) Original graph. (B) V1 data for M, from Schira et al.’s graph but drawn on double-668 
linear coordinates, showing the hyperbola. (C) Resulting inverse factor, again on linear coordinates. The 669 
regression line, M–1 = 0.0977 E + 0.021, fits the whole set and predicts E2 = 0.21° and M0 = 47.6 mm. The 670 
regression equation M–1 = 0.0867 E + 0.0287 is a fit to only the first four points and might be a better 671 
predictor for the retinotopic centre, resulting in the values E2 = 0.33° and M0 = 34.8 mm. 672 

In summary, the derived equations provide a direct link between the nomenclature more 673 
well-known in psychophysics and that in the neurophysiological literature on retinotopy. 674 
They were applied to data for V1 (Fig. 2) but will work equally well for higher early visual 675 
areas, including V2, V3, and V4 (cf. Larsson & Heeger, 2006, Fig. 5; Schira et al., 2009, Fig. 7). 676 
M0 is expected to be slightly different for the other areas (Schira et al., 2009, Fig. 7) and so 677 
will likely be the other parameters. 678 

2.4.6 d2 – a structural parameter to describe the cortical map 679 

As shown in Section 2.1, a newly defined structural parameter d2 can be used to describe the 680 
cortical location function very concisely (eq. 9 or 10). Parameter d2 is the cortical 681 
representation of Levi and Klein’s E2. That is, d2 is the distance from the retinotopic centre, 682 
measured in mm, corresponding to eccentricity E2, which is where the foveal value doubles. 683 
Eq. (8) can serve as a means to obtain an estimate for d2. Essentially, d2 is the product of M0 684 
and E2 with a scaling factor. Table 2 gives a summary of d2 estimates thus derived. The value 685 
of d2  8 mm with E2 = 0.33°, based on Schira et al.’s (2009) data which go down to very low 686 
eccentricities, might be the most accurate estimate currently given their sophisticated 687 
methodology for assessing the map closely around the retinotopic centre. 688 

Similar to what E2 does for the linear or inverse-linear function – be it the anatomical CMF or 689 
thresholds in a psychophysical task – d2 concisely captures the properties of the map in a 690 
single number. It is given in physical units (mm) and can thus be drawn directly into a 691 
retinotopic map. E2 can be (and has been) used as a summary measure for the CMF but is 692 
not as well-suited because its units are in deg visual angle on the retina (or in the visual 693 
field), i.e. needs to be translated to spatial, cortical units. Currently, typical characterisations 694 
of the cortical map are done by drawing iso-eccentricity lines at several eccentricities (10°, 695 
20°, 30°, etc.). In a similar way, a single d2 line could be drawn on the cortical map, or d2 696 
could marked as a point on a radius. As a characteristic measure, d2 could be used in many 697 
ways, for comparison of the anisotropy in the cortical maps, between species, individuals, 698 
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gender, etc. Or indeed it could describe any other retinotopic map like those for V2 – V4 or 699 
that for the LGN, the pulvinar, the reticular nucleus of the thalamus, once data are available. 700 
Differences between d2 show a difference in the architecture. 701 

That said, d2 shares certain limitations of E2 (Strasburger et al., 2011, Fig. 11 and Table 3). 702 
Like the latter, it relies on data in, and near, the retinotopic centre and can thus be expected 703 
to be most meaningful at small to medium eccentricities. Its validity for describing the curve 704 
at larger eccentricities further depends on the premise that location in the map results from 705 
integrating the local magnification function, i.e., that local magnification factors “add up”. 706 
For the CMF, that appears to be the case, as evidenced by the good fit of location data 707 
shown in Figure 5 and other log location functions in the literature. Yet for local properties 708 
that are likely based on differences in neural wiring, like the colour channels studies in 709 
D’Souza et al. (2016), that might not be the case. d2, in those cases, will characterise the 710 
function, but not its map. 711 

Note in Table 2 that both the estimates for M0 (the central CMF for V1) and E2 vary quite a 712 
bit between neuroanatomical studies. Except for Dougherty et al.’s (2003, Fig. 5) estimate, 713 
current M0 estimates are much larger than the old estimates of M0 = 8.55 mm/° from Cowey 714 
& Rolls (1974) or M0 = 7.99 mm/° from Rovamo & Virsu (1979) (for more estimates of M0, 715 
see Strasburger et al., 2011, Table 5). At the same time, again except Dougherty et al. (2003, 716 
Fig. 5), modern E2 values for the CMF on the whole appear smaller than the old values 717 
(Cowey & Rolls: 1.75°, Rovamo & Virsu: 3.0°). Since, in essence d2 is the product of the two, 718 
these variations in opposite directions are evened by d2 which indeed varies less between 719 
studies. This might be another reason why d2 could be a more suitable structural parameter 720 
for a retinotopic map than either M0 or E2 on its own. 721 

Study M0 [mm/°] E2 [°] d2 [mm] Curve 

Larsson & Heeger (2006) 35.4 0.6 14.72 Fig. 4, pink 

                       “ 25.3 1.0 17.54 Fig. 4, green 

Duncan & Boynton (2003) 18.5 0.831 10.66 Fig. 4, black 

Schira, Tyler, Breakspear & Spehar (2009) 47.6 0.21 6.93 Fig. 7C 

                       “ 34.8 0.33 7.96 Fig. 7C, 2nd regression 

Dougherty et al. (2003, Fig. 5) 7.4 3.67 18.8 Fig. 1C, pink (for V1) 

D'Souza, Auer, Frahm, Strasburger & Lee (2016, Fig. 4) 32.32* 0.45 10.08 |L-M| Channel 

                       “ 32.32* 0.97 21.73 Lum Channel 

                       “ 32.32* 3.4 76.17 S Channel 

Table 2. Values of the parameter d2 from an analysis of data in several studies, by eq. (8): d2 = M0 E2 ln(2). d2 722 
is the cortical representation of E2 and characterizes the cortical location function in a single value. 723 

*M0 was not estimated in that paper; the mean of the preceding M0 values (except Dougherty et al., 2003 724 
which has an exceptionally low M0) was used for the calculation instead. 725 

3. Crowding and Bouma’s Law in the cortex 726 

The preceding sections were about the cortical location function; in the final section that 727 
function will be applied to an important property of cortical organization: visual crowding. 728 
Whereas, in the preceding, cortical location was the target of interest, in this section we are 729 
concerned with cortical distances. 730 
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As reviewed in the introduction, MAR-like functions like acuity generally change in 731 
peripheral vision in that critical size scales with eccentricity, so deficits can (mostly) be 732 
compensated for by M-scaling (as, e.g. in Rovamo & Virsu, 1979). For crowding, in contrast, 733 
target size plays little role (Strasburger et al., 1991; Pelli et al., 2004; Whitney & Levi, 2011). 734 
Instead, the critical distance between target and flankers scales with eccentricity, though at 735 
a different rate than MAR (Rosenholtz, 2016; Strasburger, 2020). This scaling characteristic 736 
of crowding is known as  Bouma’s rule or Bouma’s law (Bouma, 1970; Strasburger et al., 737 
1991; Pelli et al., 2004; Pelli & Tillman, 2008; Strasburger, 2020). The corresponding 738 
distances in the primary cortical map are thus governed by differences of the cortical 739 
location function as derived here in Section 2. Crowding’s critical distance (or indeed any 740 
distance, including acuity gap size) is thus, in a sense, a spatial derivative of location. Pattern 741 
recognition, at even slight eccentricities, is governed by the crowding phenomenon and is 742 
largely unrelated to visual acuity (or thus to cortical magnification) (Strasburger et al., 1991; 743 
Pelli et al., 2004; Pelli et al., 2007; Pelli & Tillman, 2008; Strasburger & Wade, 2015). For 744 
understanding crowding it is paramount to look at its cortical basis, since we know since 745 
Flom, Weymouth, & Kahnemann (1963) that crowding is of cortical origin (as also 746 
emphasized by Pelli, 2008). 747 

A question that arises naturally in that context then is how the cortical equivalent of critical 748 
crowding distance varies across the visual field. Klein & Levi (1987) were the first to consider 749 
a related question, namely how the cortical distance for distance threshold in a vernier task 750 
varies with eccentricity. They conclude that it is approximately constant. That conclusion was 751 
based on the observation that taking the first derivative of Schwartz’s (1980) log mapping 752 
using the constancy assumption will result in the well-known inverse-linear cortical 753 
magnification function. Conversely, their empirically determined position thresholds, when 754 
mapped by an inverse-linear cortical magnification function (with an E2 of 0.6), turned out 755 
mostly constant across a wide range of eccentricities (cf. Klein & Levi’s Fig. 5). Later, Duncan 756 
and Boynton (2003), after estimating M based on Schwartz’s (1980) log mapping and 757 
applying that to obtain cortical distances (see Section 2.4.2), show that, for scaled vernier 758 
tasks and scaled gratings, the cortical equivalents are again mostly constant (above 1.5° 759 
eccentricity; 2003, Fig. 4). Similarly, with respect to the cortical distance for crowding’s 760 
critical distance, it has been proposed that it is likely a constant, with the same reasoning 761 
Motter & Simoni, 2007; Pelli, 2008; Mareschal, Morgan, & Solomon, 2010; oddly, the original 762 
source for the log mapping, Fischer, 1973, is not cited in the above papers). 763 

Elegant as it seems as a take-home message, however, the constancy assumption is most 764 
likely incorrect as a general rule and is only true at sufficiently large eccentricities. If stated 765 
as a general rule, it rests on the same shortcut of equating linearity and proportionality, i. e. 766 
the omission of the constant term that gave rise to those cortical location functions that 767 
miss the retinotopic centre (Section 2.3). Based on the properties of the cortical location 768 
function derived in Section 2, it will turn out that the critical cortical crowding distance 769 
increases steeply within the fovea (where, e.g., reading mostly takes place) and reaches an 770 
asymptote beyond perhaps 5° eccentricity, consistent with a constancy at sufficient 771 
eccentricity. Accordingly, Pelli (2008) warns against extrapolating the constancy toward the 772 
retinotopic centre. Remarkably (and to my pleasant surprise),  after I had completed the 773 
derivations it turned out that the analytic equation exposed below nicely agrees with those 774 
presented by Motter & Simoni (2007, Fig. 7). In that figure, reproduced here in Figure 9B, 775 
only the more peripheral data above about 10° show the presumed constancy. 776 
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Let us turn to the equations. Bouma (1970) stated what is now known as Bouma’s law for 777 
crowding (Strasburger, 2020): 778 

bEspace  , (26) 779 

where 
space  is the free space between the patterns at the critical distance and b is a 780 

proportionality factor. Bouma (1970) proposed an approximate value of b = 0.5 = 50%, which 781 
is now widely cited, but he also mentioned that other proportionality factors might work 782 
equally well; indeed, Pelli et al. (2004) have shown that b can take quite different values, 783 
depending on the exact visual task. Yet even though the factor may be different between 784 
tasks, the implied linearity of eq. (26) almost always holds up. The law could thus be restated 785 
as saying that free space for critical spacing is proportional to eccentricity, with the 786 
proportionality factor taking some value around 50% or 40%, depending on the task. 787 

In today’ literature it has become customary to state flanker distance not as free space but 788 
as measured from the respective centres of target and flankers. The critical spacing then 789 
remains largely constant across sizes as Tripathy & Cavanagh, 2002 and others have shown. 790 
To restate Bouma’s law for that centre-to-centre distance  , let the target pattern have a 791 
size S in the radial direction (e.g., width in the horizontal), so that spaceS   . Then eq. 792 

(26) becomes 793 

SbE  . (27) 794 

This equation no longer represents proportionality yet is still linear in E. Importantly, 795 
however, going from Bouma’s equation (eq. 26) to that in eq. (27) reflects adding the 796 
constant term that we talked about in the preceding sections. And formally, that equation 797 
(27) is analogous to size scaling as in. (2). Analogously to Levi and Klein’s E2 we therefore 798 

introduce a parameter 2Ê for crowding, as the eccentricity where the foveal value of critical 799 

distance doubles. Denoting the foveal value of critical distance by 0 , we get, from eq. (27): 800 

)1ˆ/( 20  EE . (28) 801 

Obviously, that equation is analogous to eq. (1) and (2) that we started out with; it describes 802 
how critical distance in crowding is linearly dependent on (but is not proportional to) 803 
eccentricity in the visual field. In this respect, it thus behaves like acuity and many other 804 
spatial visual performance measures, just with a different slope and axis intercept. 805 

With the equations derived in the preceding sections, we can now derive the critical 806 
crowding distance in the cortical map, i.e. the cortical representation of critical distance in 807 
the visual field. Let us denote that distance by   (kappa). By definition, it is the difference 808 
between the map locations for the target and a flanker at the critical distance in the 809 

crowding task: tf dd  . The two cortical locations df and dt are, in turn, obtained from 810 

the mapping function, which is given by inverting eq. (6) above: 811 






 

2
20 1ln E

EEMd , (with 0E ). (29) 812 

As before, d is the distance of the location in the cortical map from the retinotopic centre. 813 
So, critical distance   for crowding in the retinotopic map is the difference of the respective 814 
d values for target and flanker, tf dd  : 815 
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(by eq. 29 and 28), where Et and Ef are the respective eccentricities at which target and 817 
flanker are located. 818 

After simplifying and setting target eccentricity EEt   for generality, this becomes 819 






















)1(

)ˆ1(
1ln

2

2

2

0
20

E
E
E

E

E
EM

 . (31) 820 

Note that we stated that equation previously (Strasburger & Malania, 2013, eq. 13, and 821 
Strasburger et al., 2011, eq. 28), but, alas, incorrectly: a factor was missing. 822 

To explore this function, its graph is shown in Figure 9A and we look at two special cases. In 823 
the retinotopic centre, equation (31) predicts a critical distance 0  in the cortical map of 824 











2

0
200 1ln

E
EM

 . (32) 825 

With increasing eccentricity,   departs from that foveal value and increases, depending on 826 

the ratio 22
ˆ/ EE  (provided E2 > Ê2 which can be reasonably assumed; Latham & Whittaker 827 

(1996; Strasburger, 2020). Numerator and denominator are the E2 values for the location 828 
function and the crowding function, respectively (eq. 1 vs. eq. 28). They are generally 829 
different, so their ratio is not unity. 830 

With sufficiently large eccentricity, the equation converges to 831 












2

0
20 ˆ

1lnlim
E

EM
E

 . (33) 832 

The expression is shown as dashed line in Figure 9A. It is identical to that for the foveal value 833 
in eq. (33) except that E2 is now replaced by the corresponding value Ê2 for crowding.  834 
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Figure 9. (A) Graph of eq. (31) with realistic values for M0, E2, Ê2, and 0 . The value of E2 for M–1 was 

chosen as E2 = 0.8° from Dow, Snyder, Vautin, & Bauer, 1981 (as cited in Levi et al., 1985, or 
Strasburger et al., 2011, Table 4). M0 = 29.1 mm was chosen to give a good fit with this E2 in Fig. 2. 
Foveal critical distance was set to 0 = 0.1° from Siderov, Waugh, & Bedell, 2013, 2014. An 
Ê2 = 0.36° would obtain with this 0  and the value of4° = 1.2° in Strasburger et al., 1991; it also 
serves as an example for being a clearly different value than E2 for the cortical magnification factor, 
to see the influence of the 

22
ˆ/ EE  ratio on the graph. Cortical critical distance  starts from the 

value given in eq. (32) for the fovea centre (around 2 mm) and converges to the value in eq. (33). 
(B) Cortical critical distance for crowding from Motter & Simoni (2007, Fig. 7), showing the 
qualitative similarity for the dependency. The curves are effectively based on Duncan & Boynton’s 
(2003) inverse-linear equation (see Figure 7B above, pink curve), which implies M0 = 18.5 mm/° 
und E2 = 0.83°. The middle curve (triangles) is comparable to the curve in (A). The different 
asymptote in (B) stems from a different M0. 

Importantly, note that kappa varies substantially around the centre, by around two-fold 835 
between the centre and 5° eccentricity with realistic values of E2 and Ê2. This, as said above, 836 
is at odds with the conjecture that the cortical critical crowding distance is basically a 837 
constant (Motter & Simoni, 2007; Pelli, 2008; Mareschal et al., 2010). Pelli (2008) presented 838 
a mathematical derivation for the constancy, very similar to the one presented above –  839 
based on Bouma’s law and Schwartz’ (1980) logarithmic mapping function. The discrepancy 840 
arises from the underlying assumptions: Pelli used Bouma’s law as proportionality, i.e., in its 841 
simplified form stated in eq. (26) (its graph passing through the origin). The simplification 842 
was done on the grounds that the error is small outside the retinotopic centre and plays 843 
little role; the paper appropriately warns that additional provisions must be made at small 844 
eccentricities. Schwartz’s (1980) (simplified) mapping function was consequently also used in 845 
its simplified form (without the constant term), for the same reason. With these 846 
simplifications the critical distance in the cortex indeed turns out as simply a constant. 847 

As should be expected, at sufficiently high eccentricities   is close to constant in the 848 
derivations given above (Figure 9). These equations (eq. 31–33) can thus be seen as a 849 
generalization of Pelli’s result that now also covers the (obviously important) case of central 850 
vision. 851 

For comparison, Figure 9B shows critical crowding spacing on the cortical map from a paper 852 
on visual search by Motter & Simoni (2007). Note that the shown curves, though inspired by 853 
their experimental search data, are not based on these but are based on a cortical-surface 854 
model (shown in their Fig. 1), obtained by M-scaling visual distances. Critical distances are 855 
assumed to follow Bouma’s law, with a Bouma factor of ½. M-scaling is by Duncan & 856 
Boynton’s (2003) inverse-linear equation (1/M(w) = 0.065w + 0.054; shown here in Figure 7B 857 
above, pink curve). The figure’s basis is thus the same as in the present paper and effectively 858 
shows Bouma’s law mapped onto the cortex. The three curves refer to different flanker 859 
location and reflect crowding asymmetry (see Strasburger, 2020, for review) (upper curve: 860 
peripheral flanker, lower curve: central flanker); the middle curve is is for equal-eccentricity 861 
flanker distances and is the one comparable to the curve in (A). Duncan & Boynton’s 862 
equation implies M0 = 18.5 mm/° and E2 = 0.83° (cf. Table 2 above). That E2 is similar to that 863 
assumed in Figure 9A; M0 is different. As we have seen in eq. (33), the asymptote depends 864 
on these two values. The different asymptote in 9B thus stems from the different M0. 865 

Pelli & Tillman (2008, Online Supplement) derive a value of 6 mm for the asymptote. It is 866 
based on eq. (18) above, as reported by Larsson & Heeger (2006), and a Bouma factor of 0.4. 867 
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An interesting (though unrealistic) special case of eq. (31) is the one in which E2 and Ȇ2 are 868 
equal.  is then a constant, as Pelli (2008) predicted. Its value in that case would be simply 869 
given by 870 











2

0
20 1ln

E
EM

 , for 22 ÊE  . (34) 871 

On a different note, equations (31)–(34) have M0 as a scaling factor and, as said before, M0 872 
appears to be more difficult to determine empirically. However, M0 can be replaced, as 873 
shown above. From eq. (17) we know that 874 


refd

EM 20 , (35) 875 

which, by the definition of , takes a particularly simple form when we choose d2 (the 876 
cortical equivalent of E2) as the reference: 877 

2ln
2

20

d
EM   (36) 878 

(this is the same as eq. 8a). We can then rewrite the equation for the critical cortical 879 
crowding distance (eq. 31) as 880 






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


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2

02
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E

d  . (37) 881 

Similarly, the two special cases given in eq. (32) and (33) become 882 











2

02
0 1ln

2ln E

d   (38) 883 

and 884 












2

02

ˆ
1ln

2ln
lim

E

d
E

 . (39) 885 

Values for d2 derived from the literature by eq. (36) that could be plugged into eq. (38) and 886 
(39) were provided in Table 2 above. These two equations ((38) and (39)), for the retinotopic 887 
centre and eccentricities above around 5°, respectively, could lend themselves for 888 
determining critical crowding distance in the cortex. 889 

In summary for the cortical crowding distance, the two well-established linear eccentricity 890 
laws –for cortical magnification in neuroscience and critical crowding distance in 891 
psychophysics –together with Fischer’s (1973) or Schwartz’s (1977; 1980) equally well-892 
established logarithmic mapping rule, predict a highly systematic behaviour of crowding’s 893 
critical distance in the cortical map. Given the very similar mappings in areas V2, V3, V4 894 
(Larsson & Heeger, 2006; Schira et al., 2009), that relationship can be expected to be similar 895 
in those areas as well (see Figure 9A for a graph). Since the equations for crowding follow 896 
mathematically, they should work well there with suitable E2 values inserted. Thus, direct 897 
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confirmations of their behaviour can cross-validate mapping models and might shed light on 898 
the cortical mechanisms underlying crowding. 899 

4. Outlook 900 

Where does this leave us? The early cortical visual areas are very regularly organized and 901 
their spatial maps appear to be pretty similar. Yet variation of perceptual performance 902 
across the visual field differs widely between visual tasks, as highlighted by their respective, 903 
widely differing E2 values. For cortical magnification, in contrast, E2 estimates appear quite 904 
similar to each other. It is not yet clear how different spatial scalings in psychophysics can 905 
emerge from a largely uniform cortical architecture when there can be only one valid 906 
location function on any radius. The equivalence between psychophysical E2 and the cortical 907 
location function in the preceding equations thus likely only hold for a single E2, presumably 908 
the one pertaining to low-level tasks that are somehow connected to stimulus size. Ê2 for 909 
critical crowding distance would be an example for a psychophysical descriptor that is 910 
decidedly not related to stimulus size (Tripathy & Cavanagh, 2002; Pelli et al., 2004); it rather 911 
reflects location differences. The underlying cortical architecture that brings about 912 
psychophysical E2 values different from that of the CMF (like Ê2) could be neural wiring 913 
differences, within or between early visual areas, underneath a similar topography. 914 

The link between the (local) CMF function and the (global) cortical location function derived 915 
here rests on the assumption of spatial additivity – that local distances add-up to global 916 
distances and the location function is thus the integral of the CMF function. E2 values 917 
different from that of the CMF thus do not translate to a location function. When two 918 
different E2 values act together, as in crowding, nonlinear functions as those in Figure 9 919 
arise.  920 

To go further, one of the basic messages of the cortical-magnification literature is the 921 
realization that by M-scaling stimulus size some, but not all, performance variations are 922 
equalised across the visual field. In parameter space, these other variables can be said to be 923 
orthogonal to target size. Pattern contrast is such a variable (Strasburger, Rentschler, & 924 
Harvey, 1994) which needs to be scaled independently from size to equalize performance in 925 
pattern recognition. Temporal resolution is another example (Poggel, Calmanti, Treutwein, & 926 
Strasburger, 2012). Again, differing patterns of connectivity between retinal cell types, visual 927 
areas, and along different processing streams likely underlie these performance differences. 928 
The aim of the present paper is just to point out that a common spatial location function 929 
underlies the early cortical architecture that can be described by a unified equation. This 930 
equation includes the fovea including the retinotopic centre, and has parameters that are 931 
common in psychophysics and physiology. 932 
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