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Abstract 

Background 

A significant number of studies have investigated the use of blood-derived gene expression 

profiling as a biomarker for Alzheimer’s Disease (AD). However, the typical approach of 

developing classification models trained on subjects with AD and complimentary cognitive 

healthy controls may result in markers of general illness rather than being AD-specific. 

Incorporating additional related neurological and age-related disorders during the 

classification model development process may lead to the discovery of an AD-specific 

expression signature. 

Methods 

Two XGBoost classification models were developed and optimised. The first used the typical 

approach, training on 160 AD and 160 cognitively normal controls, while the second was 

trained in 6318 AD and 6318 mixed controls. Up-sampling was performed in each training 

set to the minority classes to avoid sampling bias, and both classification models were 

evaluated in an independent dataset consisting of 127 AD and 687 mixed controls. The 

mixed control group represents a heterogeneous ageing population consisting of Parkinson’s 

Disease, Multiple Sclerosis, Amyotrophic Lateral Sclerosis, Bipolar Disorder, Schizophrenia, 

Coronary Artery Disease, Rheumatoid Arthritis, Chronic Obstructive Pulmonary Disease, 

and cognitively healthy subjects. 

Results 

The typical approach resulted in a 74 gene classification model with a validation 

performance of 58.3% sensitivity, 30.3% specificity, 13.4% PPV and 79.7% NPV. In contrast, 

the second approach resulted in a 28 gene classification model with an overall improved 

validation performance of 46.5% sensitivity, 95.6% specificity, 66.3% PPV and 90.6% NPV. 

Conclusions 

The addition of related neurological and age-related disorders into the AD classification 

model developmental process identified a more AD-specific expression signature, with 

improved ability to distinguish AD from other related diseases and cognitively healthy 

controls. However, this was at the cost of sensitivity. Further improvement is still required to 

identify a robust blood transcriptomic signature specific to AD. 
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Introduction 
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder affecting an 

estimated one in nine people over the age of 65 years of age, making it the most common 

form of dementia worldwide [1]. Current clinical diagnosis of the disease is primarily based 

on a time-consuming combination of physical, mental and neuropsychological examinations. 

With the rapid increase in the prevalence of disease, there is a growing need for a more 

accessible, cost-effective and time-effective approach for early diagnosis and monitoring AD. 

For research purposes, brain positron emission tomography (PET) scans and cerebral spinal 

fluid (CSF) have been used for disease identification. In particular, decreased Aβ and 

increased tau levels in CSF have been successfully used to distinguishing between AD, mild 

cognitive impairment (MCI) and cognitive healthy individuals with high accuracy. However, 

as a relatively invasive and costly procedure, it may not appeal to the majority of patients or 

be practical on a large-scale trial basis for screening the population [2] [3] [4]. Peripheral 

blood-derived biomarkers could potentially be a solution to this problem.  

Blood is a complex mixture of fluid and multiple cellular compartments that are consistently 

changing in protein, lipid, RNA and other biochemical entity concentrations [5], which may be 

useful for AD diagnosis. A recent study reviewed 163 candidate blood-derived proteins as 

potential AD biomarkers from 21 separate studies [6]. The overlap of biomarkers between 

studies was limited, with only four biomarkers α-1-antitrypsin, α-2-macroglobulin, 

apolipoprotein E and complement C3 found to replicate in five independent cohorts. 

However, a follow-on study discovered these biomarkers were not specific to AD, and were 

also discovered to be associated with other brain disorders including Parkinson’s Disease 

(PD) and Schizophrenia (SCZ) [7], suggesting the need to consider other neurological and 

related disorders in study designs to enable the discovery of biomarkers specific to AD. 

Similarly, several studies have attempted to exploit blood transcriptomic measurements for 

AD biomarker discovery. Initial research was limited to the analysis of single differentially 

expressed genes (DEG) as a means to distinguish AD from cognitively healthy individuals [2] 

[8]. However, the limited overlap and reproducibility of DEG from independent cohorts 

suggests this method alone is not reliable enough [2]. A solution to this problem would be to 

use information across all genes simultaneously through machine learning algorithms to 

identify combinations of gene expression changes that may represent a biomarker for AD. 

This technique has been employed in multiple studies, which have demonstrated the ability 

to differentiate AD from non-AD subjects [3] [9] [10] [11] [12] [3] [9]. However, small sample 
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size and lack of independent validation datasets most likely led to overfitting. The decrease 

in costs associated with microarray technologies led a study developing an AD classification 

model based on a larger training set of 110 AD and 107 controls and validating in a larger 

independent cohort of 118 AD and 118 controls. The model achieved 56% sensitivity, 74.6% 

specificity, and an accuracy of 66%, which equated to 69.1% Positive Predictive Power 

(PPV) and 63% Negative Predictive Power (NPV) [10]. This was one of the first studies to 

demonstrate validation in an independent cohort; however, the classification model still 

lacked the 90% predictive power desired from a clinical diagnostic test [13]. 

Previous studies have demonstrated the potential use of blood transcriptomic levels to 

differentiate between AD and cognitively healthy individuals; however, they are yet to be 

precise enough for clinical utility and are yet to be extensively evaluated on specificity by 

assessing model performance in a heterogeneous ageing population of multiple diseases. 

This validation process is critical to determine whether the classification model is indeed 

disease-specific, a general indication of ill health, or an overfit.  

This study developed a novel XGBoost classification model trained on blood transcriptomic 

profiling from AD, related mental disorders (Parkinson’s disease [PD], Multiple Sclerosis 

[MS], Amyotrophic Lateral Sclerosis [ALS], Bipolar Disorder [BD], Schizophrenia [SCZ]), 

age-related disorders (Coronary Artery Disease [CD], Rheumatoid Arthritis [RA], Chronic 

Obstructive Pulmonary Disease [COPD]), and cognitively healthy subjects to differentiate AD 

from diseased and otherwise normal subjects. The classification model was developed with 

clinical utility in mind, with each dataset processed and transformed independently and 

evaluated in an independent ageing heterogenous population (testing set) consisting of 

similar diseases as the training set. 

Methods 

Data acquisition 

Microarray gene expression studies were sourced from publicly available repositories GEO 

(https://www.ncbi.nlm.nih.gov/geo/) and ArrayExpress (https://www.ebi.ac.uk/arrayexpress/) 

in May 2018. Study inclusion criteria were; 1) microarray gene expression profiling must be 

performed on an age-related or neurological disorder, 2) RNA was extracted from whole 

blood or a component of blood, 3) study must contain at least ten subjects, and 4) data was 

generated on either the Illumina or Affymetrix microarray platform using a BeadArray 

containing at least 20,000 probes. The microarray platform was restricted to Affymetrix and 

Illumina only, as replication between the two platforms is generally very high [14], and 
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BeadArrays restricted to a minimum of 20,000 probes to maximise the overlap of genes 

across studies, while also optimising the number studies available for inclusion. 

Data processing  

The data processing pipeline was designed with reproducibility and clinical utility in mind. 

New subjects could be independently processed and predicted through the same 

classification model without using any prior knowledge on gene expression variation of the 

data used to develop the classification model and without making any alteration to the 

classification model itself. All data processing was undertaken in RStudio (version 1.1.447) 

using R (version 3.4.4). Microarray gene expression studies were acquired from public 

repositories using the R packages “GEOquery” (version 2.46.15) and “ArrayExpress” 

(version 1.38.0). For longitudinal studies involving treatment effect, placebo subjects or initial 

gene expression profiling from baseline subjects before treatment were used. Studies 

consisting of multiple disorders were separated by disease into datasets consisting of 

diseased subjects and corresponding healthy controls if available.  

Raw gene expression data generated on the Affymetrix platform were “mas5” background 

corrected using R package “affy” (version 1.42.3), log2 transformed and then Robust Spline 

Normalised (RSN) using R package “lumi” (version 2.16.0). Datasets generated on the 

Illumina platform were available in either a “raw format” containing summary probes and 

control intensities with corresponding p-values or a “processed format” where data had 

already been processed and consisted of a subset of probes and samples deemed suitable 

by corresponding study authors. When acquiring studies, preference was given to “raw 

format” data where possible, and when available, was “normexp” background corrected, log2 

transformed, and quantile normalised using the “limma” R package (version 3.20.9).  

Sex was then predicted using the R package “massiR” (version 1.0.1) and subjects with 

discrepancies between predicted and recorded sex removed from further analysis. Next, 

within each gender and disease diagnosis group of a dataset, probes above the “X” 

percentile of the log2 expression scale in over 80% of the samples were deemed “reliably 

detected”. To account for the variation of redundant probes across different BeadArrays, the 

“X” percentile threshold value was manually adjusted until a variety of robust literature 

defined house-keeping genes were correctly defined as expressed or unexpressed in their 

corresponding gender groups [15]. Any probe labelled as “reliably detected” in any group 

(based on gender and diagnosis) was taken forward for further analysis from all samples 

within that dataset. This substantially eliminates noise [16] and ensures disease and gender-

specific signatures are captured within each dataset. 
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Next, to ensure homogeneity within biological groups, outlying samples were iteratively 

identified and removed using the fundamental network concepts described in [17]. Finally, to 

enable cross-platform probes to be comparable, platform-specific probe identifiers were 

annotated to their corresponding universal Entrez gene identifiers using the appropriate 

BeadArray R annotation files; “hgu133plus2.db”, “hgu133a.db”, 

“hugene10sttranscriptcluster.db”, “illuminaHumanv4.db” and “illuminaHumanv3.db”.  

Cross-platform normalisation 

To enable transcriptomic information between datasets to be directly comparable, a 

rescaling technique, the YuGene transform, was applied to each dataset independently. 

YuGene assigns modified cumulative proportion value to each measurement, without losing 

essential underlying information on data distributions and allows transformation of 

independent studies and individual samples [18]. This allows new data to be added without 

global renormalisation and enables the training and testing data to be independently 

rescaled. Common probes across all processed datasets that contained both female and 

male subjects were extracted from each dataset and independently rescaled using the R 

package YuGene (version 1.1.5). YuGene transformation assigns a value between 0 and 1 

to each gene, where 1 is highly expressed. As samples originated from publicly available 

datasets, potential duplicate samples may exist in this study. To address this issue, 

correlation analysis was performed on all samples using the common probes. Any sample 

with a Pearson’s correlation coefficient equal to 1 was suggested to be a duplicate sample 

and would be removed from further analysis. 

Training Set and Testing Set assignment  

Multiple datasets from the same disease were available, allowing entire datasets to be 

assigned to either the “Training Set” for classification model development or “Testing Set” for 

independent external validation purposes. Larger datasets from the same disease were 

prioritised to the training set, allowing the machine learning algorithm to learn in a larger 

discovery set.  

Individual subjects within the training and testing set were assigned a “0” class if the 

individual was AD or “1” if the individual was non-AD (includes healthy controls and non-AD 

diseased subjects). Grouping the non-AD subjects into a single class effectively mimics a 

large heterogeneous ageing population where subjects may have a related mental disorder, 

neurodegenerative disease, age-related disease or are considered relatively healthy.  
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Classification model development 

Two classification models were created. (i) The first was developed using only the AD and 

associated control datasets available in the training set and is referred to as the “AD vs 

healthy control” classification model. (ii) The second classification model was developed 

using all datasets and diseases available in the training set (AD, non-AD disease and all 

controls) and is referred to as the “AD vs mixed control” classification model. The second 

approach aimed to develop a classification model that may be more specific in identifying AD 

than the typical “AD vs healthy control” classification model. 

Classification models were built using a powerful tree boosting algorithm, XGBoost, which in 

2015 was used in every winning team in the top 10 of the Data Mining and Knowledge 

Discovery competition for a wide range of machine learning problems [19] and was 

suggested to be one of the most sophisticated methods at the time of this work [20], [21]. 

Furthermore, the tree learning algorithm uses parallel and distributed computing and is 

approximately 10 times faster than existing methods and allows many hyperparameters to 

be tuned to reduce the chance of overfitting [20]. 

First, the training sets were balanced by up-sampling the minority class with replacement to 

match the number of samples in the majority class. As the second classification model (“AD 

vs mixed control”) consisted of multiple diseases and complementary controls in the training 

set, all the control samples were assumed to be healthy and were therefore pooled. Then, 

within each disease classes of the mixed control group were up-sampled to match the total 

number of samples in the pooled control group. The AD samples were then up-sampled to 

match the total number of samples in the mixed control group. This process would ensure 

that all diseases in the mixed control group had the same probability to be used during the 

model development process. 

Next, the R package “xgboost” (version 0.6.4.1) was used to create optimised models. 

Default tuning parameters were set to eta=0.3, max_depth=6, gamma=0, 

min_child_weight=1, subsample=1, colsample_bytree=1, objective=“binary:logistic”,  

nrounds=5000, early_stopping_rounds parameters=20 and eval_metric=”logloss”. The 

“seed” was randomly assigned “222” throughout the model developmental stages for 

reproducibility purposes. The initial model was built and internally evaluated using 10-fold 

cross-validation with stratification which calculates a test logloss mean at each nrounds 

iteration, stopping if an improvement to the test logloss means is achieved in the last 20 

iterations. The nrounds iteration that achieved the optimal test logloss mean was used to 

build the initial classification model, reducing the chance for an “overfit” model. 
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During the internal cross-validation process, each feature (gene) was assigned an 

importance value (“variable importance feature”) based on how well it contributed to the 

correct prediction of individuals in the training set. The higher the variable importance value 

for a gene, the more useful that gene was in distinguishing AD subjects from non-AD 

individuals. The genes contributing to the initial XGBoost model were each assigned a 

variable importance value. The least two variable important features were then iteratively 

removed, classification models re-built, and logloss performance measures re-evaluated. 

This process was repeated through all available baseline features, with the minimum logloss 

from all iterations used to determine the most predictive genes. This process is referred to as 

“recursive feature elimination” and has been shown to improve classification model 

performance and reduce model complexity by removing weak and non-predictive features 

[22]. 

Following identification of the most predictive genes, the classification model was further 

refined by iteratively tuning through the following hyperparameter values: max_depth (2:20, 

1), min_child_weight (1:10, 1), gamma (0:10, 1), subsample (0.5:1, 0.1), 

colsample_bytree (0.5:1, 0.1), alpha (0:1, 0.1), ), lambda (0:1, 0.1), and eta (0.01:0.2, 

0.01), whilst performing a 10-fold cross-validation with stratification and evaluating the test 

logloss mean to select the optimum hyperparameters.   

Classification model evaluation  

The classification models were validated on the independent unseen testing set, predicting 

the diagnosis of all subjects as a probability ranging from 0 to 1, where AD ≤ 0.5 > non-AD. 

The prediction accuracy, sensitivity, specificity, PPV and NPV were calculated to evaluate 

the overall classification model’s performance. To assess the sensitivity and specificity of the 

classifiers, ROC curves and AUC scores were generated using the R package “ROCR” 

(version 1.07) with the following recommended diagnostic interpretations used: “excellent” 

(AUC = 0.9-1.0), “very good” (AUC = 0.8-0.9), “good” (AUC = 0.7-0.8), “sufficient“ (AUC = 

0.6-0.7), “bad” (AUC = 0.5-0.6) , and “test not useful” when AUC value is <0.5 [23]. 

The clinical utility metrics were calculated to evaluate the clinical utility of the classification 

models. The positive Clinical Utility Index (CUI +) was calculated as PPV * (sensitivity/100) 

and the negative Clinical Utility Index (CUI -) calculated as NPV * (sensitivity/100). The 

Clinical Utility Index (CUI) essentially corrects the PPV and NPV values for occurrence of 

that test in each respective population and scores can be converted into qualitative grades 

as recommended: “excellent utility” (CUI >= 0.81), “good utility” (CUI >=0.64) and 

“satisfactory utility” (CUI >=0.49) and “poor utility” (CUI < 0.49) [24]. An overview of the 

classification model development and evaluation process is provided in Figure 1. 
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The biological importance of predictive features 

The final classification model taken forward for external validation contains a list of ranked 

genes which collectively differentiate AD from non-AD subjects. These genes have been 

derived from multiple disorders and may be involved with biological processes, which was 

therefore assessed though Gene Set Enrichment Analysis (GSEA). The predictive genes 

were analysed using an Over-Representation Analysis (ORA) implemented through the 

ConsensusPathDB (http://cpdb.molgen.mpg.de) web-based platform (version 33) [25] in 

November 2018. For GSEA analysis, a minimum overlap of the query signature and 

database was set as 2. 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 29, 2019. ; https://doi.org/10.1101/621987doi: bioRxiv preprint 

https://doi.org/10.1101/621987


 

Figure 1: Overview of Study Design. “Logloss” metric was used throughout the model developmental stage to identify 

optimal features and hyperparameters. Abbreviations: cv = cross-validation and RFE = Recursive Feature Elimination. 
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Results 

Summary of data processing 

Twenty-one publicly available studies were identified, acquired and processed. Separating 

studies by disease status resulted in 22 datasets, which consisted of 3 AD, 3 MS, 3 SCZ, 3 

CD, 3 RA, 2 COPD, 2 BD, 2 PD and 1 ALS orientated dataset. Only 15 datasets contained 

both diseased and complementary control subjects, while the remaining 7 contained only 

diseased subjects. An overview of the demographics of each dataset is illustrated in Table 1. 

Independently processing the 22 datasets resulted in a total of 2740 samples after Quality 

Control (QC), of which 287 samples were AD. Since 11 different BeadArrays had been used 

to expression profile the 9 different diseases, and as 7 datasets were only available in a 

“processed format” (GSE63060, GSE63061, E-GEOD-41890, GSE23848, E-GEOD74143, 

E-GEOD-54629 and E-GEOD-42296), each dataset varied in the number of “reliably 

detected” genes after QC (detailed in Table 1). Initially, an overlap of the common 

measurable probes across all 22 datasets which were also deemed “reliably detected” in any 

one of the datasets was compiled, resulting in 7452 genes. In theory, this would ensure all 

measurable sex and disease-specific genes are captured. However, following independent 

transformation of each dataset, platform and BeadArray-specific batch effects were 

observed (Figure 2a-b). This can be largely explained by different platforms having different 

probe designs to target different transcripts of the same gene, leading to significant 

discrepancies and even absence in the measurement of the same gene by different 

platforms [14]. Therefore, to address this platform and BeadArray-specific batch effect, 1681 

common “reliably detected” genes across all datasets that contained both male and female 

subjects (20 datasets) were extracted from each dataset and independently YuGene 

transformed. Essentially, these 1681 genes are expressed at a level deemed “reliably 

detected” in all 11 different BeadArrays. The distribution of the 1681 genes in each subject is 

shown in Figure 2c-d and can be seen to be more evenly distributed across the 2740 

subjects than Figure 1a-c, a characteristic desired for the machine learning algorithms. 

Correlation analysis was then performed on all samples, which suggested all samples were 

highly correlated, with the maximum per sample correlation coefficients ranging from 0.86-

0.99. No sample was deemed to be a duplicate, and therefore, no additional sample was 

removed following QC. 
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Figure 2: Distribution of gene expression across all subjects. a) and b) demonstrates batch effects caused by 

specific platform and BeadArrays when extracting 7452 unique genes deemed “reliably detected” in any of the 22 

datasets. The shallow “n” curve in density plot a) are dominantly Illumina generated data. In contrast, c) and d) 

reveals a more evenly distributed gene expression profile across all subjects when extracting the 1681 common 

“reliably detected” genes, and therefore was used for classification model development. 
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Table 1: Dataset Demographics 

Disorder 

Study ID 

(associated 

publication) 

Platfor

m 
BeadArray 

Tissu

e 

Sourc

e 

Demographics  

Before QC 

Samples Removed  

During QC 

Demographics  

After QC 
Training 

and Testing 

set 

Assignment 

No. 

Probe

s 

Case 

Sex 

(M/F) 

Control 

Sex 

(M/F) 

No. 

Sample

s 

No. Gender 

Mismatches 

No. 

Outlying 

Sample 

No. 

Probe

s 

Case 

Sex 

(M/F) 

Contr

ol Sex 

(M/F) 

No. 

Sample

s 

Alzheimer's 

Disease 

GSE63060 ([26]) I HT-12 v3.0 WB 38323 46/99 42/62 249 2 10 5364 45/93 40/59 237 Training 

GSE63061 ([26]) I HT-12 v4.0 WB 32049 51/81 55/87 274 5 4 5241 48/79 54/84 265 Testing 

E-GEOD-6613 ([27]) A HG U133A WB 22283 8/15 11/11 45 0 1 4184 8/14 11/11 44 Training 

Parkinson's 

Disease 

E-GEOD-6613 ([27]) A HG U133A WB 22283 38/12 0/0 50 0 0 3674 38/12 0/0 50 Training 

E-GEOD-72267 

([28]) 
A HG U133A 2.0 PBMC 22277 23/17 8/11 59 0 0 8742 23/17 8/11 59 Testing 

Multiple 

Sclerosis 

GSE24427 ([29]) A HG U133A  WB 22283 9/16 0/0 25 0 0 6633 9/16 0/0 25 Testing 

E-GEOD-16214 

([30]) 
A HG U133 plus 2.0 PBMC 54675 11/71 0/0 82 0 3 8098 11/68 0/0 79 Training 

E-GEOD-41890 

([31]) 
A Exon 1.0 ST PBMC 33297 20/24 12/12 68 0 1 8157 19/24 12/12 67 Training 

Schizophreni

a 

GSE38484 ([32]) I HT-12 v3.0 WB 48743 76/30 42/54 202 9 5 6700 69/28 39/52 188 Training 

E-GEOD-27383 

([33]) 
A HG U133 plus 2.0 WB 54675 43/0 29/0 72 0 1 11297 42/0 29/0 71 Testing 

GSE38481 ([32]) I Human-6 v3 WB 24526 4/11 16/6 37 2 1 8106 11/3 15/5 34 Testing 

Bipolar 

Disorder 

E-GEOD-46449 

([34]) 
A HG U133 plus 2.0 L 54675 28/0 25/0 53 0 0 9882 28/0 25/0 53 Training 

GSE23848 ([35]) I Human-6 v2 WB 48701 6/14 5/10 35 0 0 7211 6/14 5/10 35 Testing 

Cardiovascul

ar Disease 

E-GEOD-46097 

([36]) 
A HG U133A 2.0 PBMC 22277 102/36 60/180 378 0 24 7676 94/36 57/167 354 Training 

GSE59867 ([37]) A Exon 1.0 ST WB 33297 85/26 0/0 111 0 3 7936 82/26 0/0 108 Testing 

E-GEOD-12288 

([38]) 
A HG U113A WB 22283 88/22 84/28 222 0 8 4815 83/22 82/27 214 Training 

Rheumatoid E-GEOD-74143 A HT HG U113 plus WB 54715 81/296 0/0 377 1 23 8112 80/273 0/0 353 Training 
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Arthritis ([39]) 

E-GEOD-54629 

([40]) 
A Exon 1.0 ST WB 33297 11/58 0/0 69 0 0 11931 11/58 0/0 69 Testing 

E-GEOD-42296 

([41]) 
A Exon 1.0 ST PBMC 33297 4/15 0/0 19 0 0 10417 4/15 0/0 19 Testing 

Chronic 

Obstructive 

Pulmonary 

Disease 

E-GEOD-54837 

([42]) 
A HG U133 plus 2.0 WB 54675 91/45 57/33 226 0 16 5531 83/44 52/31 210 Training 

E-GEOD-42057 

([43]) 
A HG U133 plus 2.0 WB 54675 52/42 22/20 136 3 4 6445 49/39 21/20 129 Testing 

ALS E-TABM-940 A HG U133 plus 2.0 WB 54675 27/26 18/19 90 3 10 10442 27/25 15/10 77 Training 

Total 
     

904/95

6 
486/533 2879 25 114 

 

870/90

6 
465/49 2740 

 

Each study is accompanied by its corresponding publication (if available), where individual study design can be obtained. When possible, datasets were 

obtained in their raw format, except for GSE63060, GSE63061, E-GEOD-41890, GSE23848, E-GEOD74143, E-GEOD-54629 and E-GEOD-42296 which 

were only available in a processed form where dataset had already been background corrected, log2 transformed and normalised by techniques stated in 

corresponding publications. Multiple datasets from the same disease existed in this study. The dataset with the larger number of diseased subjects was 

prioritised into the training set for better discovery. Study ID’s initiating with “GSE” and “E-GEOD” were obtained from GEO and ArrayExpress respectively. 

Abbreviations are as follows: I=Illumina, A=Affymetrix, WB=Whole Blood, PBMC=Peripheral Blood Mononuclear cell and L=Lymphocytes. 
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Training Set and Testing Set demographics 

Multiple datasets from the same disease were obtained for this study, with the largest 

dataset from each disease assigned to the training set to improve discovery. However, three 

AD datasets were available, and the two largest datasets were generated on the Illumina 

platform, and the third on the Affymetrix platform. To address any subtle differences in gene 

expression which may still exist in the data due to platform differences, the largest Illumina 

AD and the Affymetrix AD datasets were both assigned to the Training Set.  

Following dataset assignment, the training set consisted of 160 AD subjects and 1766 non-

AD subjects, while the testing set consisted of 127 AD subjects and 687 Non-AD subjects. 

The Non-AD group in both the training and testing set consisted of subjects with either PD, 

MS, SCZ, BD, CD, RA, COPD or were relatively healthy. Only one ALS dataset suitable for 

this study was identified and was deemed too small to split into the training and testing set. 

Therefore, the ALS dataset was assigned to the training set, allowing the machine learning 

algorithm to learn multiple disease expression signatures, which could further aid in 

differentiating AD from Non-AD subjects. Samples in the training set were up-sampled to 

prevent biasing the majority classes during model development. This resulted in “AD vs 

healthy” classification model consisting of 160 AD samples and 160 complimentary healthy 

control samples, and the “AD vs mixed controls” being trained on 6318 AD samples and 

6318 non-AD samples. The “AD vs mixed controls” training set contains significantly more 

samples as the pooled controls consisted of 702 samples; therefore, the remaining 8 

disease classes were up-sampled to the same sample size which totalled 6318 samples. 

The AD samples were then up-sampled to 6318 to balance the training set. An overview of 

subjects in the training and testing set is provided in Table 2. 

Table 2: Overview Training and Testing set subjects 

Dataset 
Training Set 

Testing Set 
AD vs healthy control AD vs mixed control 

Alzheimer's Disease 160* 6318 (160*) 127 

Parkinson's Disease 0 702 (50) 40 

Multiple Sclerosis 0 702 (122*) 25 

Schizophrenia 0 702 (97*) 56* 

Bipolar Disorder 0 702 (28) 20 

Cardiovascular Disease 0 702 (235*) 108 

Rheumatoid Arthritis 0 702 (353) 88* 

Chronic Obstructive Pulmonary Disease 0 702 (127) 88 

ALS 0 702 (52) 0 

Pooled Controls 160 (127*) 702* 262 

Entire datasets from each disease were assigned to either the “Training Set” for classification model 

development or the “Testing Set” for validation purposes. Datasets with a larger number of diseased 
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subjects were prioritised into the training set to increase discovery. Two classification models were 

developed, the first was developed using only the 160 AD and associated 127 control samples, which 

were up-sampled to 160 to develop the “AD vs healthy control” classification model. The pooled 

controls in the “AD vs healthy control” training set originates only from AD datasets and can be 

regarded as cognitive healthy controls. The second classification model was developed using all 

datasets and diseases available in the training set and is referred to as the “AD vs mixed control” 

classification model, where samples in the minority classes are up-sampled to match the 702 samples 

in the pooled controls. The mixed control group totalled 6318 samples. Therefore, the AD group was 

up-sampled to 6318 to create a balanced training set. Sample numbers provided in brackets are 

before up-sampling. Sample numbers with an asterisk (*) indicates multiple datasets were available, 

and subject numbers shown are a sum across these datasets.  

“AD vs healthy control” classification model development and performance 

The “AD vs healthy control” classification model was developed using only the two AD 

datasets (GSE63060 and E-GEOD-6613) available in the training set, which after up-

sampling consisted of 160 AD and 160 cognitive healthy controls. The model was initially 

built using default parameters which selected 126 predictive features from the available 1681 

genes, resulting in a cross-validation test logloss mean of 0.47 (0.21 SD). Further refinement 

of the model identified 74 predictive genes and the optimum hyperparameters as eta=0.12, 

max_depth=10, gamma=0, min_child_weight=1, subsample=1, colsample_bytree=1, 

alpha=0, lambda= 1 and nrounds =63, which improved the test logloss mean to 0.27 (0.1 

SD). 

The “AD vs healthy control” classification model was validated on the independent testing 

set and achieved a sensitivity of 58.0%, specificity of 30.0% and a balanced accuracy of 

44.3% (additional classification performance metrics are provided in Table 3). The probability 

predictions of individual samples in the testing set is illustrated in Figure 3a, where 

misclassification can be observed in all diseases and controls, demonstrating an increased 

false positive rate and the inability of the classification model to confidently assign a positive 

(0) or negative (1) class to each subject.  

A ROC curve was generated for the “AD vs healthy control” classification model 

performance (Figure 4), which demonstrates a low TP rate in comparison to random and the 

AUC score of 0.49 suggests this “test is not useful” as a diagnostic test. The clinical utility 

values (CUI +ve = 0.08, CUI -ve = 0.24) mirrors the AUC score interpretation, as the CUI 

values suggest the classification model is “poor” at detecting the presence and absence of 

AD and based on current validation results, has no real clinical utility. 
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“AD vs mixed control” classification model development and performance 

The “AD vs mixed control” classification model was developed on the entire training set, 

which after up-sampling consisted of 6318 AD and 6318 non-AD subjects. The classification 

model was built using default parameters which selected 231 genes from the available 1681 

genes as predictive features and resulted in cross-validation test logloss mean of 0.015 

(0.009 SD). ). Further refinement of the model identified 28 predictive features, eta=0.08, 

max_depth=6, gamma=0, min_child_weight=1, subsample=1, colsample_bytree=1, 

alpha=0, lambda=0.9 and nrounds=139 as the optimum parameters which improved the 

cross-validation test logloss mean to 0.009 (0.005 SD). 

The “AD vs mixed control” classification model was further validated on the testing set and 

achieving 46.5% sensitivity, 95.6% specificity, and a balanced accuracy of 71.0% (additional 

classification performance metric are provided in Table 3). The performance of this 

classification model improves on the typical “AD vs healthy control” classification model in all 

performance metrics, except for sensitivity, where a decrease in performance is observed 

from 58% to 46.5%. Nevertheless, due to the “AD vs mixed control” classification model 

predicting less false positives, an increase in PPV (66.3%) is observed when compared to 

the “AD vs healthy control” classification model (PPV = 13.4%). Furthermore, as illustrated in 

Figure 3b, the probability predictions for individuals in the testing set are more correctly and 

confidently predicted when compared to the typical “AD vs healthy control” classification 

model, only misclassifying 21 pooled controls (8% of total pooled controls), 2 CD (2% of CD 

subjects), and 7 SCZ (13% of SCZ subjects) as AD. The “AD vs mixed control” classification 

model ROC curve (Figure 4) achieves an improved AUC score of 0.84 which translates to a 

“very good” diagnostic test, however, the clinical utility values (CUI +ve = 0.31 and CUI -ve = 

0.87) suggests this classification model is “poor” in the detection of AD but “excellent” to rule 

out “AD”.  

Table 3: Classification model performance 

  
“AD vs healthy control” 

classification model 

“AD vs mixed control” 

classification model 

Sensitivity 58.3% 46.5% 

Specificity 30.3% 95.6% 

Balanced Accuracy 44.3% 71.0% 

PPV 13.4% 66.3% 

NPV 79.7% 90.6% 

AUC 0.49 0.84 

AUC Rating Test not useful Very good 

CUI +ve 0.08 0.31 

CUI +ve Rating Poor Poor 
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CUI -ve 0.24 0.87 

CUI -ve Rating Poor Excellent 

 

 

Figure 3: Illustrates the probability prediction of samples from the testing set being AD (0) or non-AD (1). Subjects 

in the testing set represent a heterogeneous ageing population with subjects being clinically diagnosed with 

various mental-health related disorders, neurodegenerative diseases, age-related diseases or are relatively 

healthy. a) illustrates the confidence of the “AD vs healthy control” classification model distinguishing subjects in 

the testing set and b) illustrates the confidence of the “AD vs mixed control” classification model in predicting the 

same testing set. Controls represent pooled non-diseased subjects from all datasets. Diseases are abbreviated 

as follows; AD = Alzheimer’s disease, BD = Bipolar disease, CD = Coronary Artery disease, COPD = Chronic 

Obstructive Pulmonary Disease, MS = Multiple Sclerosis, PD = Parkinson’s Disease, RA = Rheumatoid Arthritis 

and SCZ = Schizophrenia.  
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Figure 4: AD classification model ROC curves. The blue line represents the typical “AD vs healthy control” 

classification model’s ROC curve which is trained using AD and complimentary healthy control subjects. The red 

line represents the “AD vs mixed control” classification model’s ROC curve which is trained using AD and non-AD 

diseased and healthy control subjects. The ROC curves were generated from the performance of both 

classification models in the testing set and demonstrate an improved TP and FP rate with the “AD vs mixed 

control” classification model, which achieved an improved AUC value of 0.84 when compared to the typical “AD 

vs healthy” classification approach which achieved an AUC score of 0.49 

“AD vs mixed control” classification model’s predictive features 

The variable importance was calculated for the 28 predictive genes (gene list provided in 

Supplementary Table 1) with the 20 most predictive genes illustrated in Figure 5. The gene 

LDHB provides the greatest predictive value with a relative importance value of 0.7. GSEA 

performed on the 28 genes identified four biological processes significantly enriched; WNT 

ligand biogenesis and trafficking (p-value= 9.56e-4, q-value=0.04), Alzheimer disease 
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(p-value= 3.70e-3, q-value=0.05), Herpes simplex infection (p-value= 4.61e-3, q-

value=0.05), and Huntington disease (p-value= 5.19e-3, q-value=0.05). Additional 

information on gene overlap between the 28 predictive genes and biological pathways is 

provided in Supplementary Table 2.  

 

Figure 5: Relative Importance of the 20 most predictive genes for the “AD vs mixed control” classification model  
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Discussion 
Previous attempts to identify blood-derived gene expression profiling for AD diagnosis have 

relied on the typical approach of training machine learning algorithms on AD and cognitively 

healthy subjects only, inadvertently leading to classification models learning expression 

signatures that may be of general illness rather than being disease-specific. Validating such 

a classification model in a heterogeneous ageing population may fail to distinguish AD from 

similar mental health disorders, neurodegenerative diseases, age-related disorders and 

cognitive healthy individuals. To address this issue, this study developed an “AD vs mixed 

control” classification model based on a training set comprised of AD, PD, MS, BD, SCZ, 

CD, RA, COPD, ALS and a set of pooled healthy individuals totalling 1926 subjects. The 

individual classes within the mixed control group varied in sample size, with the pooled 

controls representing the largest class consisting of 702 samples. Therefore, to avoid 

sampling bias during the classification model development, the individual classes in the 

mixed control group were each up-sampled with replacement to 702, which totalled 6318 

samples. The AD group were then up-sampled to 6318, classification model developed, 

optimised and evaluated in an external independent cohort comprised of similar diseases 

and controls totalling 814 subjects. 

The typical approach of developing a classification model trained on AD and complimentary 

cognitive healthy control subjects produced a model with a sensitivity of 58.3% in an 

independent cohort of 127 AD subjects. The performance of this model is slightly better than 

a previous attempt which attained a sensitivity of 56.8% when validated in an independent 

testing set of 118 AD subjects [10]. However, when evaluating this typical AD classification 

model in a heterogeneous ageing population, a process often neglected in previous studies, 

very low specificity of 30.3% was attained which equated to a low PPV of only 13.4%. PD is 

the second most common cause of dementia [1] and was seen to be most misclassified as 

AD. However, since misclassification was observed in all groups including large portions of 

the controls, this classification model is most likely not capturing signals of AD, dementia or 

general illness, but is most likely a result of technical noise, individual study batch effects 

and overfitting. This is mirrored in the model’s performance metrics which translates to a 

“poor” clinical utility in detecting the presence and absence of AD. Overall, the typical 

approach of AD classification model development failed to accurately distinguish AD 

subjects in a heterogeneous ageing population consisting of PD, MS, BD, SCZ, CD, RA, 

COPD, ALS and relatively healthy controls.  

In contrast, the “AD vs mixed control” classification model attained a validation PPV of 

66.3% and NPV of 90.6% on the same testing set, which outperforms the validation PPV of 
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13.4% and NPV of 79.9% achieved by the “AD vs healthy control” classification model. 

However, this improvement was at the cost of sensitivity, which was reduced from 58.3% 

(“AD vs healthy control”) to 46.4% (“AD vs mixed control”). Nevertheless, an overall increase 

in the clinical utility of the “AD vs mixed control” classification model was measured and 

according to the recommended CUI interpretations in [24], the model is “poor” in “ruling in” 

AD but “excellent” in “ruling out” AD.  

The performance of the “AD vs mixed control” classification model can be suggested to be 

superior due to the increased number of samples in the training set. The “AD vs healthy 

control” classification model was developed using 160 AD samples while the “AD vs mixed 

controls” classification model was developed using 6318 AD samples. However, it is 

important to note the AD samples in both training sets originated from the same subjects, 

with AD sample numbers in the “AD vs mixed control” training set up-sampled to account for 

the variation of sample sizes across the individual classes in the mixed control group. 

Therefore, the increased performance achieved by the “AD vs mixed control” classification 

model is most likely the result of incorporating additional related neurological and age-

related disorders into the classification model development process, which aided in the 

identification of a more AD-specific expression signature than the typical approach of using 

only AD and corresponding control samples. Although this improved the ability to distinguish 

AD from other related diseases and cognitively healthy controls, the sensitivity of the model 

was reduced and needs to be further enhanced for this type of research to be beneficial in 

the clinical setting. 

The underlying replication of predictive genes across blood-based transcriptomic biomarker 

studies are inconsistent [44]–[47]. Nevertheless, sets of genes within independent studies 

have been able to consistently distinguish AD from complimentary controls [44]. Therefore, 

the predictive features in this study warrant further investigation to assess their biological 

relevance to AD. The “AD vs mixed control” classification model differentiates AD from other 

diseases and healthy controls using the relationship of 28 genes. GSEA identified “Herpes 

simplex infection” as one of the biological pathways being significantly enriched prior to 

multiple corrections, with an overlap of 3 genes (CDC34, HCFC1 and HLA-DMA). This 

suggests gene expression changes associated with this process are measurable in blood 

and may contribute towards identifying AD subjects. Pathogenic viral components have been 

long suspected of playing an essential role in the onset and progression of AD. A recent 

study identified common viral species in normal and ageing brains, with an increased human 

herpesvirus 6A and human herpesvirus 7 in AD brains [48]. In addition, a recent 

transcriptomic meta-analysis study identified genes involved with “interspecies 

interactions” were specifically enriched in AD brains when taking into account expression 
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changes in related neurological disorders [49]. The current observation extends the previous 

suggestions of viral involvement in AD brains to blood, as the expression of blood-derived 

genes involved in the “Herpes simplex infection” can be used to distinguish AD from other 

neurological diseases and control subjects in this study. 

Age is one of the most significant risk factors for AD, and the prevalence of the disease is 

known to increase with age. A meta-analysis study investigating blood transcriptional 

changes associated with age in 14,983 humans, identified 1,496 differentially expressed 

genes with chronical age [50], of which three genes (LDHB, AARS and ABR) are in the “AD 

vs mixed control” classification model’s 28 predictive genes. The classification models most 

predictive gene LDHB is ranked 28th in the meta-analysis study and was also observed to be 

negatively associated with age in the brain, specifically the frontal cortex and cerebellum 

[50]. The datasets used in this study were publicly available, and as such, were 

accompanied with limited phenotypic information, including age. Therefore, age was not 

accounted for during the classification model developmental process. However, as this study 

uses a variety of age-related diseases, in addition to the 3 AD datasets, and study designs 

generally incorporate complementary age-matched controls, it is highly unlikely the 

classification model is predicting age alone but is more likely using a combination of signals 

including age to distinguish AD. Without age information for all subjects, this study is unable 

to conclude how age is influencing the model prediction process. 

All data used in this study were publicly available, and as such, many were accompanied by 

limited phenotypic information, including basic sex information, which was predicted based 

on gene expression when missing. Therefore, this study was unable to incorporate additional 

phenotypic information during the classification model building process, which has been 

shown to improve model performance [10]. Information such as comorbidities, age and 

medications are unknowns which could be affecting performance in this study. For instance, 

control subjects in this study that originated from non-AD datasets were screened negative 

for their corresponding disease of interest but were not screened for cognitive function. i.e. 

control subjects from the CD datasets were included in their retrospective dataset if they did 

not have CD, they were not necessarily checked for cognitive impairment. Therefore, some 

misclassified control subjects may indeed be on the AD spectrum, and it's important to note 

subjects from the pooled control group were most misclassified as AD by the “AD s mixed 

control” classification model. However, it is also important to note the training set used to 

develop the “AD vs mixed control” classification model also contains these controls which 

have not been screened for AD.  If these controls or age-related disease subjects are 

comorbid with AD, the classification model may have inadvertently learned to be biased 

towards a subgroup of AD subjects with no comorbid with any other disease, hence the low 
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sensitivity validation performance when introducing additional datasets into the classification 

model developmental process. 

This study involved a number of subjects clinically diagnosed with age-related diseases, and 

most likely, are on some sort of therapeutic treatment to manage or treat the underlying 

disease, another piece of vital information generally missing from publicly available datasets 

and from this study. As therapeutic drugs have been well-known to affect gene expression 

profiling, including memantine, a common drug used to treat AD symptoms [51], the “AD vs 

mixed control” classification model may have inadvertently learnt gene expression 

perturbations due to therapeutic treatment rather than disease biology, and would, therefore, 

fail in the clinical setting to diagnose AD subjects who are not already on medication. To 

address this issue along with co-morbidity, clear and detailed phenotypic information would 

be needed for all subjects, which is encouraged for future studies planning to submit genetic 

data to the public domain. 

This study used datasets generated on 11 different microarray BeadArrays, resulting in 

datasets ranging from 22277-54715 probes prior to any QC. Coupled with differences in 

BeadArrays designs across platforms, the overlap of genes was drastically reduced to 1681 

common “reliable detected” genes across all datasets. This ensured gender-specific 

expression changes were captured; however, this may have also inadvertently lost some 

disease-specific changes. To address this issue, these subjects need to be expression 

profiled on the same microarray platform and ideally the same expression BeadArray, which 

currently doesn’t exist in the public domain. The advances in sequencing technologies which 

can capture expression changes across the whole transcriptome can potentially solve this 

issue and future studies are encouraged to replicate this study design with RNA-Seq data 

with detailed phenotypic information when/if available, albeit, this may bring new challenges. 

Conclusion  
This study relied on publicly available microarray gene expression data, which too often 

lacks detailed phenotypic information for appropriate data analysis and needs to be 

addressed by future studies. Nevertheless, with the available phenotypic information and 

limited common “reliably detected” genes across the different microarray platforms and 

BeadArrays, this study demonstrated the typical approach of developing an AD blood-based 

gene expression classification model using only AD and complimentary healthy controls fails 

to accurately distinguish AD from a heterogeneous ageing population. However, by 

incorporating additional related neurological and age-related diseases into the classification 

model development process can result in a model with improved “predictive power” in 

distinguishing AD from a heterogeneous ageing population. Nevertheless, further 
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improvement is still required in order to identify a robust blood transcriptomic signature more 

specific to AD.   
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