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Abstract 36 
Recent studies have established that the circadian clock influences onset, progression and 37 

therapeutic outcomes in a number of diseases including heart disease and cancer. There are, however, no 38 
tools to monitor the functional state of the circadian clock and its downstream targets in humans. We 39 
provide such a tool and demonstrate its clinical relevance by an application to breast cancer where we 40 
find a strong link between overall survival and our measure of clock dysfunction. We use a machine-41 
learning approach and construct an algorithm called TimeTeller which uses the multi-dimensional state of 42 
the genes in a transcriptomics analysis of a single biological sample to assess the level of circadian clock 43 
dysfunction. We demonstrate how this can distinguish differences between healthy and diseased tissue 44 
and demonstrate that the clock dysfunction metric is a potentially new prognostic and predictive breast 45 
cancer biomarker that is independent of the main established prognostic factors.   46 
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Introduction 47 
The cell-endogenous circadian clock regulates tissue-specific gene expression in cells that drives 48 

rhythmic daily variation in metabolic, endocrine, and behavioural functions. Indeed, around half of all 49 
mammalian genes are expressed with a 24-hour rhythm (1, 2). Moreover, recent studies demonstrated that 50 
the circadian clock influences therapeutic outcomes in a number of diseases including heart disease and 51 
cancer (3-9), and that disruption of the normal circadian rhythm and sleep (e.g. through shift work) is 52 
associated with higher risk of obesity, hypertension, diabetes, CHD, stroke and cancer (10-13).  53 

A principal aim of circadian medicine (14, 15) is to develop techniques and methods to integrate 54 
the relevance of biological time into clinical practice. However, although circadian disruption is known to 55 
affect multiple organs, it is difficult to monitor the functional state of the circadian clock and its 56 
downstream targets in humans. Consequently, there is a critical need for tools to do this that are practical 57 
in a clinical context. Our focus is on the development of such a technique, and here we will illustrate its 58 
utility to predict breast cancer survival. We present a machine-learning approach to measuring circadian 59 
clock functionality from the expression levels of 10-15 key genes in a single tissue sample. Our algorithm 60 
is applied to breast cancer where previous studies have highlighted the relevance of circadian clocks for 61 
carcinogenesis and treatment effects (16-19) but where no simple method would currently allow its 62 
measurement in daily oncology practice. We find a strong link between overall survival and our measure 63 
of clock dysfunction. 64 

There are now several algorithms which aim to estimate the time at which a transcriptomic dataset 65 
was collected using the expression levels of the core clock genes (14, 20-25). While these have hinted at 66 
the idea of using such a time-telling approach to measure circadian clock functionality (23) they are not 67 
purposely constructed to do this, but rather to predict internal timing of functional host circadian systems 68 
(Note S6). Moreover, for practical use, it is highly desirable to be able to do this using just a single 69 
clinical sample, and these algorithms do not attempt this. We therefore developed a new algorithm called 70 
TimeTeller to estimate clock functionality from a single sample. 71 

While in the cells of most healthy tissues the cell cycle is gated or phase-locked by the circadian 72 
clock (26, 27), cancer cells often escape this control and display altered molecular clocks (28-30). 73 
Dysregulation of clock genes promotes tumorigenesis (22) through mechanisms involving the cell cycle 74 
(31, 32), DNA damage (33), and metabolism (34). Moreover, the circadian clock rhythmically controls 75 
many molecular pathways which are responsible for large time-of-day dependent changes in drug toxicity 76 
and efficacy (3, 4, 35). It is therefore of interest to determine whether the functionality of the clock in 77 
tumour tissue is a prognostic factor for treatment response and survival.  78 

We demonstrate that TimeTeller can characterise differences in the distribution of the dysfunction 79 
metric between healthy and diseased tissue and between different disease strata, and that the dysfunction 80 
metric can be used as a prognostic factor to identify differences in outcome. In particular, we show that in 81 
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a large cohort of patients with non-metastatic breast cancer the resulting TimeTeller dysfunction metric is 82 
a prognostic factor for survival and provide evidence that it is independent of other known factors. In this 83 
cohort, 82% of the patients with good clock function (i.e. for which the dysfunction metric is below a 84 
natural threshold) survive past ten years while only 62% of the others survive as long.  85 

Our approach directly assesses the systemic functionality of a key regulatory system, the circadian 86 
clock, from one sample. A key aspect is that we directly assess the multi-dimensional state of the clock 87 
genes and study the coordinated behaviour of all the genes together rather than focus on each gene 88 
separately. In this way, we can measure the functionality of the clock system as a whole much more 89 
effectively. 90 

Results 91 
The mouse and human versions of TimeTeller are trained on two different datasets. The mouse 92 

dataset, from Zhang et al. ((1), Note S1) consists of the transcriptomes of 12 mouse tissues measured 93 
every 2 hours over 48 hours while the human training data set from Bjarnason et al. ((36), Note S1) 94 
comes from punch biopsies of oral mucosa taken every four hours over 24 hours from five females and 95 
five males. This human dataset was chosen because a key initial aim was to develop TimeTeller in order 96 
to analyse clock function in the tumour biopsies from the REMAGUS trial (37) and our analysis 97 
suggested that it was important to match the microarray technologies (Fig. S2) which in this case was 98 
Affymetrix U133 2.0. The procedure for using these datasets to successfully produce TimeTeller’s 99 
probability model is explained in the Materials and Methods section. 100 

Rhythmicity and synchronicity analysis was used to determine the panel of genes for TimeTeller 101 
(Materials and Methods, SI Fig. S1, Table S2). This analysis is essential to ensure the choice of a panel of 102 
genes with good circadian rhythmicity combined with minimal variation across tissues and datasets. It 103 
typically produces a panel of between 10 and 16 gene probes and, for the human dataset, the genes 104 
selected were all core clock genes or key clock-controlled genes, including ARNTL (BMAL1), NPAS2, 105 
PER1, PER2, PER3, NR1D1, NR1D2 (REV-ERBα), CIART (CHRONO), TEF and DBP. 106 

TimeTeller works on the combined expression level of these genes and calculates a likelihood 107 
curve LX(t) which for healthy tissue should express the probability that the expression profile X was 108 
measured at time t. If this time is not known, then it is natural to estimate it as the time T at which LX(t) is 109 
maximal i.e. at the maximum likelihood estimate (MLE) (Materials and Methods). Then we can 110 
characterise precision using ideas from statistics and information theory to obtain a quantity, which we 111 
denote by Θ, that characterises the imprecision of the estimate T (Materials and Methods). We call Θ the 112 
clock dysfunction metric based on the hypothesis that precise timekeeping implies good functionality. 113 

We have tested this clock dysfunction metric using both simulated and real data. Simulated data 114 
were obtained by developing a stochastic version of a relatively detailed published model of the 115 
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mammalian circadian clock (38) and stochastically simulating this (Note S5). This data was used to 116 
design the algorithm and to test the effectiveness of TimeTeller, for example, to determine the advantage 117 
of local approaches over a global one (Fig. S3, Tables S4 & S5), and to analyse TimeTeller’s 118 
effectiveness in detecting the efficiency of partial knockdowns of various efficiencies of the central clock 119 
gene BMAL1 (ARNTL). We found (Fig S7) that the efficiency of the knockdown was effectively 120 
recapitulated by an increase in Θ. We then applied TimeTeller to a number of mouse and human datasets. 121 

In healthy tissue TimeTeller accurately assesses time and identifies variation in chronotype. 122 

To assess the accuracy of TimeTeller in estimating the time T of a sample and to evaluate the 123 
likelihood curves LX(t), we firstly tested it on the training datasets using a leave-one-out approach. For the 124 
Zhang et al. mouse data, we removed the tissues one at a time, constructed the probability model for 125 
TimeTeller using the expression profiles from the other tissues and then used TimeTeller to estimate the 126 
times of the transcriptomes for the removed tissue. For the human Bjarnason et al. data we carried out a 127 
similar leave-one-out approach but where an individual rather than a tissue was left out. 128 

Figure 1. Time estimation. (A,B) 129 
Correlation plots for actual versus 130 
predicted time for (A) the Zhang et 131 
al. data ((1), Note S1) using 11 132 
probes and 8 organs and (B) the 133 
human oral mucosa data ((39), Note 134 
S1) using a leave-one-out approach. 135 
The 5 male (M) and 5 female (F) 136 
subjects are identified with a 137 
different colour. (C,D) The 138 
likelihood functions LX(t) obtained 139 
for the samples from a 140 
representative time for the mouse 141 
(left) and human (right) datasets. 142 
The vertical lines mark the time of 143 
the sample and there is a likelihood 144 
curve for each sample. The 145 
maximum point of the likelihood 146 

functions is used to estimate the time when the sample was taken. (D). For each individual in the 147 
Bjarnason et al. data the residual (estimated time - real time) is plotted against the phase of the gene as 148 
measured by COSINOR. As explained in the text this shows that a substantial part of the error is 149 
actually due to variations in the individual sample’s chronotype rather than misestimation by 150 
TimeTeller. See Fig. S5 for similar plots for all genes in the TimeTeller panel. 151 

The results are shown in Fig. 1 and the accuracy of the estimations is apparent (Fig. 1A,B). For the 152 
Bjarnason et al. human data the mean absolute error is 1.32h (Table S3) but analysis shows that much of 153 
this comes from chronotype variation. For example, Male15 and Female18 in Fig. 1B have consistent, yet 154 
opposite, phase shifts in their estimated times. To further understand this, we plotted the error in the 155 
TimeTeller estimate against the phase of each of the genes in the TimeTeller panel (Fig. 1D & Fig. S5), 156 
using COSINOR (40) to measure gene phase. The part of this error at a given time not due to chronotype 157 
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variation is indicated by the distance of the plotted points from the line where is the 158 
expected phase of the gene at that time, shown by the horizontal black line. We see that the points are 159 
typically very close to  and that the disposition of the points is similar across genes (Fig. 1D & 160 
Fig. S5). We are therefore able to identify coherent phase variation in the clock genes for each individual. 161 

For the mice, no coherent phase shift was found for any of the tissues as would be expected from 162 
their genetic homogeneity and the mixing of material from multiple mice. Moreover, in this case the use 163 
of the full 48-hour space allows us to observe that TimeTeller’s transcriptomic time signature at CTt is 164 
essentially the same as at CT(t+24). This means that there is no significant change to the circadian clock 165 
gene shape after the mice have been in the dark for an extra 24 hours. 166 

Healthy tissue clocks in mice are characterised by a clear upper threshold. 167 

The range of Θ values resulting from applying TimeTeller to the mouse training dataset using a 168 
leave-one-out approach as above are shown in the histogram in Fig. 2A. The upper bound to this range 169 
helps us to define what Θ values represent a functioning circadian clock. The majority of the data has Θ < 170 
0.1, but the distribution has a tail up to approximately Θ = 0.2. We therefore define good clock function 171 
(GCF) for mouse samples as those having . We refer to thresholds chosen in this way as a 172 
priori as they have the advantage of being chosen naturally without the potential issues associated with 173 
tuning and optimisation, for example to maximise statistical significance.  174 

 175 
Figure 2. A. Histogram showing the 176 
distribution of Θ values for the Zhang et al. 177 
data. For all 182 samples of the Zhang data, 178 
the distribution of Θ values has a median 179 
around 0.05, a tail that extends to 180 
approximately 0.2 and two outliers. B. Scatter 181 
plot showing the real time versus estimated 182 
time for the LeMartelot et al. liver timecourse 183 
data together with the observed range of Θ 184 
values (inset). C. Likelihood functions for 185 
the MLE time T of samples of the Fang et 186 
al. data. They have been plotted on a 187 
logarithmic scale to reveal structure in the 188 
very low KO curves. Blue curves represent 189 
WT samples with clear peaks around CT32-190 
36, and the negligible amplitude curves in red 191 

for the KO data. D. Box plot of Θ values for WT and KO data. There is a very significant difference 192 
between the groups. Wilcoxon's logrank test p < 10-6. 193 

We compared the above results with the estimation of time T and the Θ values in another published 194 
mouse dataset, Le Martelot et al. ((41), Note S1.2), which uses the same microarrays and obtained very 195 
good agreement (Fig. 2B). The mean absolute error for time estimation is less than one hour. The Θ 196 
values range between 0.02 and 0.11 with one value at Θ = 0.17 (Fig. 2B). Thus, all values fall within the 197 
GCF criterion  defined in the previous section. 198 
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TimeTeller can identify perturbed but functioning clocks. 199 

The gene REV-ERBα is regarded as the main controller of the ZT18-24 phase of the mammalian 200 
circadian clock (42) and, interestingly, activation of clock REV-ERBα can be a therapeutic approach for 201 
several types of cancer (43) and life-threatening cholangitis (44). Thus, knocking REV-ERBα out leaves a 202 
functional but perturbed clock when compared to wild-type mice (42). Therefore, we applied TimeTeller 203 
to an experimental dataset Fang et al. (42) comparing liver samples of REV-ERBα deficient and wild type 204 
mice entrained to LD12:12 cycles. Since REV-ERBα is one of the panel of genes used in TimeTeller it 205 
would not be surprising that TimeTeller could distinguish REV-ERBα deficient mice from WT mice, and 206 
indeed this is the case. Therefore, for this validation, we use a version of TimeTeller that excludes REV-207 
ERBα from its panel of genes. This modified TimeTeller clearly detects that the REV-ERBα deficient 208 
mice have a functional but significantly perturbed clock when compared to wild-type mice (Fig. 2D). 209 
Although the WT (blue) likelihoods are wide and irregularly shaped, they produce relatively accurate and 210 
consistent estimations of ZT around 36h, with corresponding Θs between 0.03 and 0.13 and a mean 211 
absolute error of around 2 hours for time estimations of the WT data. This slightly raised estimation error, 212 
but good Θ values, could be explained by the discrepancy arising from the use of mice in constant 213 
darkness to train TimeTeller to estimate the time of mice that have been in regular LD cycles. The (red) 214 
KO likelihoods appear almost entirely flat if not plotted on a logarithmic scale (Fig. 2C). 215 

Healthy and diseased human tissue have different Θ distributions. 216 

Using a leave-one-out approach as above, TimeTeller was used to find the Θ values for the training 217 
data, using all ten healthy individuals from Bjarnason et al. This defines the Θ distribution for healthy 218 
functioning human clocks and is shown in Fig. 3(A,B). For most human samples in the training set, Θ < 219 
0.09, with a maximum value at Θ = 0.155. The Θ values were relatively uniform across individuals (Fig. 220 
S9).This maximum value provides an a priori upper threshold for a “functioning clock” range. When 221 
applying TimeTeller to independent human datasets we define a tissue sample to have good clock 222 
function (GCF) if Θ < ΘGCF = 0.155. 223 

In Fig. 3(A) we also show the Θ distributions for two other healthy datasets which served as 224 
controls in the indicated studies, thus emphasizing the similarities in Θ distribution from three 225 
independent healthy oral mucosa datasets. The control Θ distributions can then be compared with two 226 
cancer datasets that used the same microarray technology, including oral squamous cell carcinoma (41) 227 
and breast carcinomas. Similarly, in Fig. 3(B) we compare the histogram of Θ values from the training 228 
data with that from the patients in the REMAGUS trial. We observe that, although around half of the 229 
REMAGUS data has Θ values in the same range as the healthy Bjarnason et al. data, the distributions for 230 
the cancer data are significantly biased towards larger values of Θ. 231 

 232 
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Figure 3. (A) Box plots of Θ 233 
distribution for healthy and 234 
cancerous tissue. As indicated 235 
they are from Bjarnason et al. 236 
(Note S1), Boyle et al. ((39), 237 
Note S1.3), Feng et al. ((45), 238 
Note S1.3), and the REMAGUS 239 
trial (Note S1.3). (B) Histogram 240 
showing the distribution of Θ 241 
values for healthy oral mucosa 242 
training data (red) and breast 243 

cancer samples (blue). The Θ distribution of the 60 healthy oral mucosa samples and the 226 244 
REMAGUS tumour samples distributions are shown. Histograms are stacked.  245 

More specifically, Feng et al. (45) conducted a comparative analysis of healthy oral mucosa 246 
transcriptome and oral squamous cell carcinoma transcriptome (Fig. 3A). The resulting MLEs are plotted 247 
against the Θ values in Fig. S15. The normal and dysplasic samples show realistic estimated timings 248 
(9am-3pm) while the cancerous samples show some unrealistic estimations during the night, but with 249 
more than half of them having Θ > 0.1. The Θ distribution for the cancerous samples and the combined 250 
normal and dysplasic samples are clearly different (Wilcoxon Rank Sum test p = 0.0003) with the cancer 251 
data being significantly biased towards larger values of Θ (Fig S15). 252 

GCF is associated with a significant survival advantage for breast cancer. 253 

Our main application of TimeTeller concerns the REMAGUS multicenter randomised phase II clinical 254 
trial which aimed to assess the response of primary breast cancer to different protocols of neoadjuvant 255 
chemotherapy according to tumour hormonal receptor status and HER2 expression (37, 46-48). Of the 256 
trial’s 340 patients, 226 had a pretreatment cancer biopsy using the same RNA extraction procedure and 257 
analysed with Affymetrix U133A microarrays. There is 10-year survival data for all but two of these. 258 
TimeTeller was used to estimate the time and calculate the clock dysfunction metric Θ for all 224 tumour 259 
transcriptome samples. 260 

To consider whether Θ was indicative of survival we used the threshold  above and the 261 
definition of Good Clock Function (GCF) and asked whether the survival of those with GCF was 262 
different from those without it. A Kaplan-Meier survival analysis (Fig. 4A,B) showed clear statistically 263 
significant separation of survival curves with the analysis showing that while 82% of patients with GCF 264 
survived for ten years or more, only 61% of the other patients survived as long (p = 0.026) (Fig. 4A). 265 
These results did not depend on this precise choice of threshold but we underline that  is chosen a 266 
priori using the healthy data and is not chosen by optimising the p-value.  267 
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268 
Figure 4. (A) Kaplan-Meier survival plot showing differences in survival for patients with or without GCF (log 269 
rank test p=0.022). (B) Kaplan-Meier survival plot showing differences in survival for patients with GCF, those 270 
with poor clock function (PCF) or worst clock function (WCF) (log rank test p=0.018). The blue curve suggests 271 
that individuals with WCF have increased survival until 7-8 years after treatment. If the WCF individuals are 272 
considered separately (see text), the difference between the overall survival of the GCF and the PCF groups is 273 
highly statistically significant (log-rank p= 0.0058). 274 

In examining the relation between Θ and survival outcomes we noticed that, if the group without 275 
GCF was further subdivided into those with the worst clock function (WCF) (i.e. Θ > ΘWCF = 0.3) and the 276 
rest (defined as poor clock function, PCF), we observed an even stronger highly significant survival 277 
advantage of GCF over PCF (log rank test p = 0.0058). The threshold ΘWCF for WCF approximately 278 
optimised this p-value but the p-value remains well below 0.02 for all choices of the threshold between 279 
0.25 and 0.325. We discuss the WCF group below. 280 

Dysfunction Θ differs significantly between comparable prognostic factor strata. 281 

In the light of these observations, we studied the Θ distributions and hazard ratios for GCF against 282 
PCF for each main established prognostic factor stratum. For breast cancer these factors are related to 283 
receptors expression above established threshold for estrogen receptors (ER+/ER-); progesterone 284 
receptors (PR+/ PR-); and human epidermal growth factor protein receptors (HER2+/HER2-). Prognostic 285 
factors also include triple negative (TN) (i.e. ER-, PR-, and HER2-); histologic differentiation grade 286 
(well, 1; intermediate, 2 or poor, 3); tumour staging according to size (largest diameter of <5 cm, T1-T2, 287 
or > 5 cm, T3-T4); nodal status (pN0/pN1-3); and lympho-vascular invasion (LVI, yes/no). 288 

For almost all of the above prognostic factors we find statistically significant differences between 289 
the respective strata (Fig. 5). High clock dysfunction Θ values characterised breast tumours that were 290 
large (T3-4, diameter > 5 cm) rather than small (T1-2) (bilateral t-test, p = 0.014), or were poorly rather 291 
than well or moderately well differentiated (Grade 3 vs. 1-2, p = 0.026). Moreover, the clock dysfunction 292 
metric had higher values in the breast cancers that did not express estrogen receptors (p = 0.006), and/or 293 
progesterone receptors (p = 0.007), or were triple negative (p= 0.0005), as well as in those where 294 
neoadjuvant chemotherapy did not achieve pathologic Complete Response (pCR). 295 
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 296 
 297 

Figure 5. Boxplots showing distributions of Θ values for the main prognostic strata: Estrogen 298 
receptors, Progesterone receptors, HER2 receptors, Triple Negative status, Grade, Nodal Status, 299 
Tumour size, and the reach of a pathologic Complete Response (pCR) after the administration of neo-300 
adjuvant chemotherapy. 301 

Within many strata the calculated hazard ratio reveals a strong survival advantage for GCF 302 

We calculated hazard ratios (HRs) of an earlier death for the GCF vs.PCF patients for each factor 303 
using the Cox proportional hazards model (49) and performed both univariate (Fig. 6A,B) and 304 
multivariate (Fig. 6C,D,E)  analyses. In the univariate analysis we observe a statistically significant 305 
survival advantage in terms of the HR for the whole population and for each of the following strata: 306 
limited tumour size (T1-T2), a well differentiated tumour (Grade 1 or 2), no lymphovascular invasion 307 
(LVI-), ER+, PR-, HER2-, and not displaying high susceptibility to chemotherapy (pCR-) (Fig. 6B, Fig. 308 
S12). 309 

In the multivariate analysis for the whole population and those strata identified by the univariate 310 
analysis, the mean HR for both GCF vs. nonGCF and GCF vs. PCF remained well below one implying a 311 
strong survival advantage for GCF. For example, in the group of 96 patients with grade 1 or 2 tumours, 312 
there is a very advantageous mean HR of 0.24 for GCF vs. PCF with a p-value of 0.021. This means that, 313 
holding the other covariates constant, compared to those with PCF there is a 76% reduction in the hazard 314 
rate for GCF. We see (Fig. 6D) that for this group GCF is largely independent of the other factors and has 315 
the strongest effect, even stronger than tumour size (a small tumour gives a 60% reduction compared to a 316 
large one and other factors have a much smaller effect). Given the modest numbers involved, this is a 317 
striking result underlining the strength of GCF and a similar result is found for the even smaller group of 318 
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tumours that are grade 1 or 2 and HER2 negative. Although, statistical significance at the p < 0.05 level 319 
was only found in these strata, a power analysis suggested that all of those identified by the univariate 320 
analysis might become significant if the patient group is increased to a few times the current size (Fig. 321 
6F). Taken together, all the analyses suggest that the circadian clock function of tumours, measured by 322 
our metric Θ, adds further independent information and represents itself a potentially useful prognostic 323 
and predictive biomarker. The results for GCF vs. notGCF are similar (Fig. S12. & S13). 324 

 325 

 326 
Figure 6. (A-E) Analysis of 327 
overall survival using the Cox 328 
Proportional Hazards Model to 329 
calculate hazard ratios (HRs) for 330 
GCF vs. PCF. Horizontal bars in 331 
figures indicate 95% confidence 332 
limits and the squares mark the 333 
estimated means. (A,B) 334 
Univariate analysis for all 335 
considered prognostic factors. 336 
(C,D) Multivariate analysis of 337 
overall survival using the Cox 338 
model for (C) all samples, and 339 
(D) those with grade 1 or 2 340 
tumours. The global p-value 341 
evaluates the omnibus null 342 
hypothesis that all of the HRs are 343 
1. The p-values associated with 344 
each factor concern the HR for 345 
that factor where one compares 346 
the hazard for GCF against the 347 
hazard for the alternative, 348 
conditional on the other 349 
prognostic factors being the 350 

same. (E) HR values for multivariate analysis of GCF vs. PCF in all prognostic strata showing significance in 351 
the univariate analysis. (F) Power analysis for the various patient groups showing the number of patients 352 
needed to achieve a given power for the Cox model. This uses the R package ssizeEpiCont which provides a 353 
sample size calculation for Cox proportional hazards regression with nonbinary covariates. 354 

Does WCF lead to heightened susceptibility to chemotherapy? 355 

A Kaplan-Meier survival analysis of GCF vs. PCF vs. WCF (Fig. 4B) shows that the WCF group 356 
appear to have a survival advantage up to about 7 or 8 years, but this is not statistically significant with 357 
the small group size involved. Given this and the fact that it has previously been observed that severe 358 
circadian clock disruption, as caused by Cry1/Cry 2 double knock out, improved the efficacy of 359 
chemotherapy (50), we asked whether large values of the dysfunction metric might serve as a predictor 360 
for tumor sensitivity to chemotherapy. While the mean clock dysfunction metric showed an increase with 361 
grade and stage, we observed higher average Θ values (p = 0.0106; Fig. 5G) for tumours that best 362 
responded to neoadjuvant chemotherapy as indicated by reaching pathological complete response (pCR) 363 
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which is defined as absence of residual invasive cancer cells in the breast and axillary lymph nodes (grade 364 
1 and 2 of Chevallier's classification). Moreover, the rate of pCR was 35% among the WCF patients, as 365 
compared to 12% and 13.8% respectively for those cases with GCF and PCF (p < 0.015). In view of these 366 
observations, we hypothesise that the initial prolonged survival in the WCF subset is due to their 367 
heightened susceptibility to chemotherapy. 368 

Discussion 369 
Our study had two aims. Firstly, to provide a way of assessing from a single biological sample how 370 

well the circadian clock is working, and secondly, to highlight its relevance for circadian medicine 371 
through a stringent test. We applied TimeTeller to breast cancer and show that survival and clock 372 
functionality were linked. 373 

Assessing clock dysfunction. 374 

TimeTeller produces an estimate Θ of clock functionality that is based on the likelihood curve 375 
LX(t). The key to why this works so well is the correlation structure in the data points at a given time. The 376 
G clock genes in our training data are far from independent and although they are noisy and subject to 377 
measurement error, they have a clear correlation structure and their covariance matrix has rapidly 378 
decreasing eigenvalues. This means that, considered as a vector, they can have an accuracy in assessing 379 
time T that is much greater than any single gene. Thus our multi-dimensional approach studying the data 380 
in G-dimensional space and combining several dimension-reducing projections is crucial. 381 

In our discussion here we have restricted attention to the circadian clock but there is no reason in 382 
principle why this approach cannot be applied much more generally. For example, it would be of great 383 
interest to apply it to a coupled system such as that involving the circadian clock and cell cycle or to the 384 
clock and any representative set of rhythmic downstream genes. Indeed, it is worth noting that one of the 385 
genes identified in the mouse model is the gene Wee1 which provides a key connection between the clock 386 
and cell cycle (51).  387 

Further work is needed to try and understand what aspects of the cells and tissues give rise to the 388 
high Θ values we observe in diseased tissue. Since our metric Θ gives a stratification of clock function in 389 
cells and tissue we have a way of stratifying cells and using this for a more targeted search to uncover the 390 
links between the clock and the mechanisms leading to disease and cellular dysfunction. 391 

Breast cancer survival. 392 

We have shown a very clear link between Θ and 10-year breast cancer survival in the REMAGUS 393 
trial. Despite the large body of work showing that circadian disruption was associated with poor 394 
prognosis and that chemotherapy timing could make the difference between life or death in preclinical 395 
breast cancer (17-19, 52), there was previously no simple method which would allow its measurement in 396 
daily oncology practice. Our work has the potential to change this as the method we present only requires 397 
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a single sample and can be adapted to any gene expression technology. We envisage the use of this metric 398 
in conjunction with current prognostic factors to refine treatment management. The results should also 399 
open up new opportunities for research into the circadian clock as a target for treatment using the 400 
stratification by the dysfunction metric. The techniques developed here can potentially be applied to other 401 
diseases involving the circadian clock and other regulatory systems by extending the gene panel outside 402 
of the circadian clock in the way discussed above. 403 

About 85% of the patients we have studied have tumour samples that were either in the GCF or 404 
PCF strata and we saw that for these, disruption of the tumour circadian clock as indicated by PCF is 405 
associated with poor survival, suggesting that those patients might benefit from clock-targeted therapies. 406 
On the other hand, our work suggested the hypothesis that those patients with WCF samples had 407 
heightened susceptibility to chemotherapy. This might suggest that the clinical relevance of the tumour 408 
circadian clock function for possible treatment strategies is greatest for those with less agressive tumours. 409 
This is also supported by the highly advantageous HRs found in the patients with grade 1 or 2 tumours. 410 
However, although tumours that are PR- have a worse prognosis than those that are PR+, it is in the PR- 411 
stratum that in the univariate analysis GCF provided a very advantageous HR of 0.48 as compared to 412 
PCF, whereas there was no apparent advantage to GCF in the PR+ stratum. Overall, we have established 413 
a new model for tissue clock functionality and timing determination that could help refine treatment 414 
strategies for breast cancer. We expect that the clock model will further display broad implications for 415 
circadian medicine at large through enabling the integration of molecular clock determinations in diseased 416 
tissues, and the design of innovative clock-targeted therapies with measurable effects. 417 

Materials and Methods 418 

Analysis of rhythmicity and synchronicity 419 

For rhythmicity analysis of the training data we used JTK CYCLE and COSINOR (Fig. S1, Table 420 
S2, Note S3). To measure synchronicity amongst individuals we used an approach using Singular Value 421 
Decomposition (SVD) as explained in Note S2. Genes that performed well for both aspects were selected 422 
for the TimeTeller mouse and human panels (Fig. S1, Table S2). The number of genes in the panel is 423 
denoted by G. 424 

For all the work on mouse data, G = 11 and the genes are ARNTL (Bmal1), NPAS2, Clock, 425 
NR1D1 (REV-ERBα), NR1D2, PER2, PER3, CIART, DBP, TEF, and WEE1. For the work on human 426 
data the analysis identified G = 16 probes from 10 genes ARNTL, NPAS2, PER1, PER2, PER3, NR1D1, 427 
NR1D2, CIART, TEF, and DBP. These were used for the leave-one-out analyses but only G =15 of them 428 
were used in analysing the independent human datasets. The was because the Per1 probe 244677\_at was 429 
found to have significant signal issues in many of the independent datasets, i.e. the signals values were 430 
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very low. As there is another Per1 probe in this dataset that does not have this problem, we concluded that 431 
this is a probe issue, and not an issue with the Per1 gene expression. 432 

Construction of the likelihood  433 

For each observation j = 1,...,N and each time  where i = 1,...,T, the training data for each set of G 434 
expression levels is stored in vectors  in G-dimensional space. The observations j correspond to 435 
tissues for the mouse data and individuals for the human data. Each  is then normalised to have a 436 
mean of 0 and standard deviation of 1, resulting in the vector . These are the vectors that will be used 437 
to parameterise TimeTeller. 438 

As each sample is treated individually under both vector normalisation and the initial fRMA 439 
normalisation, there is no time-course batch bias in the TimeTeller method. As every vector  is 440 
independent and the shape information it contains (i.e. the normalised expression levels of the genes) is 441 
all that TimeTeller has to go on. However, this also means that the same transcriptome quantification 442 
technology for the training and test samples is crucial as illustrated in Fig. S2. 443 

To construct the probability model we firstly construct one for each timepoint by using the local 444 
statistical structure of the data at that timepoint and then we combine these. Fix a timepoint . Associated 445 
with this is the set of N points in G-dimensional space. The projection operator  described in 446 
Note S2 gives an optimal way to linearly project these points into d-dimensional space for all d < G. This 447 
produces a corresponding set of N d-dimensional points . We then fit a multivariate normal 448 
distribution (MVN) to the points . The dimensionality d is chosen so that there are enough vectors 449 

 to fit a d-dimensional multivariate Gaussian (using the MATLAB function fitgmdist) while ensuring 450 
that most of the variance in the data is captured by the d-dimensional projection. In our case we take d = 451 
3. A MVN distribution is defined by its mean and covariance matrix which we denote by  and 452 

respectively. 453 

Figure 6. This schematic outlines the 454 
construction of the likelihood  For each  , 455 
the set of vectors  are 456 
projected into d=3 dimensions using  to get 457 

. A MVN distribution is 458 
estimated for each  and 459 
then these distributions are interpolated using 460 
splines to all times t of the day. See Fig. S4 for the 461 
projections  for the Bjarnason et al. data. 462 

 463 

µi (ti )
Σ i (ti )

LX (t) ti
Xti ={Xi, j , j = 1,...,N}

Ud ,i

Qti ={Qi, j , j = 1,...,N}

Qti ={Qi, j , j = 1,...,N}

Ud ,i
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We fit a shape-preserving smoothing cubic periodic spline through the mean vectors  and 464 
each of the six entries that determine the 3 3 symmetric matrix  so as to extend  and 465 
to all times t between the time points  thus obtaining  and . A piecewise cubic Hermite 466 
interpolating polynomial spline is used in this case. This type of spline is shape preserving, i.e. continuity 467 
of the second derivative is not obligatory. This is suitable as, for example, if two covariance matrix entries 468 
were identical for two consecutive time Gaussians, the Hermite spline allows the value of the joining 469 
spline to stay the same in the space between, while a standard spline would enforce some change. This 470 
spline also interpolates so that it passes through all points. The calculations were carried out using the 471 
MATLAB function pchip. Using this approach, for this value of i, we have determined a family of MVN 472 
distributions for all times t between the first and last data times. 473 

Now we define the likelihood curve  where X is a G-dimensional normalised expression 474 
vector using the same genes as the TimeTeller panel. This is given by firstly defining the likelihood 475 

 associated with the ith timepoint using the probability given by the MVN i.e. 476 

   477 

and then combining them as follows 478 

  . 479 

In Fig. S3 we explain why we use this local approach, using projections calculated locally and then 480 
combining them, rather than using a single projection of all the training data. 481 

Construction of the clock dysfunction metric Θ 482 

We characterise precision using ideas from statistics and information theory. If T is the time at 483 
which  is maximal (Fig. 1C,D), and we wish to consider the hypothesis that the time t of the sample 484 
is different from T then the Neyman-Pearson lemma tells us how to proceed. According to it, for a given 485 
significance level (i.e. probability of a false positive), the most powerful test uses the size of the 486 
likelihood ratio and is a test of the form  where  is chosen so as to obtain a 487 
given false-positive error rate. We choose a value of  and then define the clock dysfunction metric Θ to 488 
be the relative fraction of the times t for which  once we have chosen . If Θ is small then  489 
determines the time T with high certainty and we interpret this as the clock working well, but if it is large 490 
then  does not determine the time well and we interpret this as showing a dysfunctional clock.  491 

However, the following considerations lead us to use a slightly more complicated approach. We 492 
explain in Fig. S4 that the likelihood often has two peaks with another high peak roughly 12 hours 493 
away from the MLE. This is because of the elliptic form of our probability distribution in G-dimensional 494 

×

µi (t) Σ i (t)

LX ,i (t)

LX ,i (t) =
1

(2π )d /2 |Σ i (t) |
1/2 exp − 1

2
(Ud ,i X − µi(t ) )

T Σ i (t)
−1(Ud ,i X − µi(t ) )

⎛
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⎞
⎠⎟
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T
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space (Fig. S4). In this case we would want the metric to penalise the lesser peak, but if the two peaks are 495 
close then we would not want this penalty because that is compatible with reasonably good clock function 496 
(see Fig. S6). As it stands, the metric would not distinguish between these two cases. 497 

In view of this, rather than using a constant threshold  we use one that is a function of time t, 498 
namely, we multiply  by  where . This is a simple cosine 499 
curve transformed so that ,  and . We define  so 500 
that C > 0. The larger  is, the less anti-phase peaks impact the final confidence metric. The values of 501 
and used are explained in the Note S4. 502 

The clock dysfunction metric Θ is defined to be the proportion of times t which satisfy  503 

 504 

Some examples of likelihoods and how we would want them to be classified are shown in Fig. S6.  505 

Finally, we note that the above definition does not use the value of the likelihood at its maximum. 506 
To ensure that the maximum value achieved is not too small and that exceptionally small values are 507 
discounted, we set a minimum value  for the likelihoods and we reset  to  whenever 508 

. The parameter  reflects the perceived signal-to-noise ratio. It means that the value of the 509 
likelihood curve at the MLE must be far greater than this limit for it to be significant, i.e. . A 510 
typical value used for  is  and this value was chosen manually, by observation of the log-511 
likelihood curves. 512 
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