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Abstract 25 

 26 

Individuals vary in their immune response and, as a result, some are more susceptible to 27 

infectious disease than others. Little is known about which components of immune pathways 28 

are responsible for this variation, but understanding these underlying processes could allow 29 

us to predict the outcome of infection for an individual, and to manage their health more 30 

effectively. In this study, we describe transcriptome-wide variation in immune response (to a 31 

standardised challenge) in a wild population of field voles (Microtus agrestis). We find that 32 

this variation can be categorised into three main types. We also identify markers, across these 33 

three categories, which display particularly strong individual variation in response. This work 34 

shows how a simple standardised challenge performed on a natural population can reveal 35 

complex patterns of natural variation in immune response.   36 

 37 

Introduction 38 

 39 

Individuals vary in their immune response. Within a population, some individuals may fail to 40 

make protective immune responses following either natural infection or vaccination and so 41 

are especially vulnerable to infectious disease1–4. Defining the patterns of such variability will 42 

enhance our ability to manage the health of individuals – especially those that are most 43 

susceptible to infectious disease in human, livestock or wildlife populations.  44 

 45 

Studies in laboratory mice are the cornerstone of immunology and have provided a detailed 46 

understanding of the molecular and cellular pathways by which immune responses are 47 

effected. This impressive mechanistic understanding, however, has only been achieved by 48 

minimising genetic and environmental variation within a laboratory setting. Where laboratory 49 
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studies have examined the effects of variability – in genetics, microbiota or diet – both 50 

qualitative and quantitative differences in immune responses have been observed, with 51 

consequent effects on infection5–7. Nevertheless, natural variability cannot be fully 52 

reproduced in the laboratory, which has led to a recent effort to characterise the immune 53 

response in wild populations of mice or other rodents. Recent work in mice from agricultural 54 

and other anthropogenic settings is consistent with the expectation that exposure to complex 55 

environments greatly alters immune function8. New populations of memory T cells, present 56 

only in non-laboratory mice, have also been identified9.    57 

 58 

One commonly used measure of an immune response is to assess the amount of one or more 59 

markers (e.g. transcripts or proteins) produced by a population of cells following stimulation 60 

by an immune agonist. From this ex vivo assay, one can gain insight into the types of immune 61 

response that could be made to a pathogen in vivo. Such responses depend on the cell types, 62 

the time points and the immune agonist used. Nevertheless, for any molecular marker with 63 

such a response, individuals, in natural populations especially, could exhibit different marker 64 

abundances prior to and/or following stimulation, leading to differences in their response to 65 

stimulation (here defined as the difference between marker abundances prior to and following 66 

stimulation). Furthermore, the most useful (and interesting) markers, in terms of 67 

understanding why individuals vary in their ability to mount a successful immune response, 68 

will be those for which response is most variable among individuals. In the laboratory, cell 69 

populations are usually controlled, or at least well defined, so a difference in the abundance 70 

of a particular marker can be attributed to differences in the activity of a particular cell type. 71 

However, natural variability in the abundance of a marker, and by extension in the response 72 

of individuals in the wild, could result from (i) differences in the composition of cell 73 

populations, and/or (ii) differences in the activity levels of particular cell types. Both of these 74 
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components have the potential to shape the way an individual responds to immune challenge 75 

in the wild. Our intention here is not to distinguish between the two, but rather to propose a 76 

categorisation of responses, however generated. 77 

 78 

We use a wild population of field voles (Microtus agrestis) to examine naturally occurring 79 

patterns of individual variation in immune response, across the transcriptome, as a first step 80 

towards furthering our understanding of the processes driving these patterns. The field 81 

population we study, in Kielder Forest Northumberland, has been the subject of extensive 82 

previous study on population ecology and pathogen dynamics10–13. Therefore, it allows us to 83 

place our existing understanding of more established immunological mechanisms (largely 84 

derived from the closely related laboratory mouse, Mus musculus) into a well-described, real-85 

world context.  86 

 87 

We describe three main categories of immune response: (i) uncorrelated response, (ii) 88 

constant response and (iii) baseline-dependent response (depicted in Fig. 1). We also identify 89 

markers, across these categories, which show particularly high inter-individual variability in 90 

response. We suggest that such categorisation is useful in organising natural immune 91 

variation, since little is known about which components of immune pathways are responsible 92 

for natural variability in immune response, or about the nature and possible causes of such 93 

variability. Indeed, this categorisation is not limited to the components of conventional 94 

immune pathways. The ability of an immune response to effect protection against infection, 95 

for example, will be supported by a variety of non-immune functions, that will also be 96 

activated following stimulation by an agonist, and vary to a greater or lesser extent among 97 

individuals within a natural population. By identifying the components (whether 98 

conventionally immunological or not) that are likely to be responsible for natural variability 99 
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in immune response, and by describing the nature of their variability, we are laying the 100 

groundwork for exploring the processes, whether genetic or environmental, which drive inter-101 

individual variation in immune response.  102 

 103 

Results 104 

 105 

Stimulation with an immune agonist causes a widespread response 106 

Spleen cells from sixty-two field voles were split into two populations per individual vole. 107 

One population was stimulated with anti-CD3 and anti-CD28 antibodies, while the other was 108 

kept as an unstimulated control (hereafter referred to as the baseline). 1150 transcripts (5% of 109 

all genes in the field vole genome and 85% of informative genes, those genes which were 110 

more strongly expressed; see Methods) fell into one or more of the response categories set 111 

out in Fig. 1. As expected, given that these antibodies are known to stimulate T-cell 112 

proliferation14, they were enriched with transcripts (hereafter markers) associated with the T-113 

cell receptor (TCR) signalling pathway (n = 27; p < 0.001; Functional Enrichment Analysis 114 

performed in DAVID; see Methods) and other T cell-related terms: positive regulation of T-115 

cell proliferation (n = 12; p < 0.03), TCR complex (n = 7; p < 0.001), positive thymic T-cell 116 

selection (n = 7; p < 0.01), negative thymic T-cell selection (n = 6; p = 0.03) and alpha-beta 117 

TCR complex (n = 5; p < 0.001). For the majority of these markers, a significant positive 118 

linear relationship was found between baseline and stimulated abundance (n = 844). Only a 119 

single marker, Fam193b, demonstrated a significant negative linear relationship between 120 

baseline and stimulated abundance.  121 

 122 

 123 

 124 
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There are three main categories of immune response 125 

Three main categories of immune response were identified based on the dependence of an 126 

individual’s response on its baseline abundance. Each of these categories demonstrates a 127 

unique pattern (Fig. 1): 128 

 129 

Uncorrelated response: markers for which individuals taken from the wild differ in their 130 

baseline abundance, but the responses of different individuals are variable and independent of 131 

their baseline, such that the slope of the relationship between baseline and stimulated 132 

abundance is not significantly different from zero. 133 

 134 

Constant response: markers for which individuals taken from the wild also differ in their 135 

baseline abundance, but the responses of different individuals are (approximately) constant 136 

and independent of their baseline, such that the slope of the relationship between baseline and 137 

stimulated abundance is not significantly different from one and the intercept (indicating the 138 

level of response) is significantly greater than zero. 139 

 140 

Baseline-dependent response: markers for which individuals taken from the wild again 141 

differ in their baseline abundance, but the responses of different individuals vary as a 142 

function of their baseline level, either as a linear function of their baseline level (slope 143 

significantly different from one), or as a quadratic function of their baseline level, where 144 

stimulated levels either increase exponentially as a function of baseline levels or become 145 

saturated at some upper limit. 146 

 147 
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We also identified markers, across these three categories, for which variability in baseline 148 

and stimulated samples was significantly different, leading to high inter-individual variability 149 

in response (see Methods). These can be divided into two categories (Fig. 1): 150 

 151 

Convergent response: markers for which variability in baseline abundance is significantly 152 

greater than variability in stimulated abundance. 153 

 154 

Divergent response: markers for which variability in stimulated abundance is significantly 155 

greater than variability in baseline abundance. 156 

 157 

The baseline-dependent response category is most common and is significantly enriched 158 

in components of conventional immune pathways  159 

The baseline-dependent response category was the most common (Table 1), and included a 160 

majority of markers for which stimulated levels were a linear function of baseline levels (n = 161 

539), and a remainder for which they were a quadratic function (n = 160). The majority of 162 

quadratic response markers showed evidence for saturation (n = 138), indicating some upper 163 

limit on stimulated abundance. The general ontology term for immunity was enriched in the 164 

linear response category of markers (n = 20; p < 0.01). The TCR signaling pathway was 165 

enriched in the quadratic response category (n = 7; p = 0.01; Fig. 2). 166 

 167 

The uncorrelated response category is least common and lacks enrichment in 168 

components of conventional immune pathways 169 

A number of markers showed no evidence for a relationship between baseline and stimulated 170 

abundance (n = 47; Table 1). For the majority of these, mean abundance was significantly 171 

greater for stimulated than for baseline samples (n = 39), suggesting that these markers were 172 
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(on average) responding to stimulation, but to an individually variable degree, independent of 173 

baseline levels. These markers lacked any enrichment for immune-related terms (Fig. 2). 174 

 175 

A number of markers, including Zap70, show particularly high inter-individual 176 

variability in response  177 

For a number of markers, variability in baseline and stimulated abundance was significantly 178 

different, leading to high inter-individual variability in response (n =  244). The vast majority 179 

of these markers showed a divergent (n = 237), rather than a convergent (n = 7) response 180 

(Table 1). Within the (stimulated) TCR signalling pathway, the highest level of variability in 181 

individual response, and the highest level of divergence, was demonstrated by Zap70 (Fig. 3). 182 

All convergent markers fell into one of the three main immune response categories. However, 183 

over a third of divergent markers (n = 98), did not fall into any of these categories, appearing 184 

instead as markers which (on average) did not respond to stimulation (Table 1). Mean 185 

abundances for these markers were also not significantly different between stimulated and 186 

baseline samples.  187 

 188 

Juveniles show more inter-individual variability in response than adults 189 

An age-specific analysis, run separately on samples from mature (n = 43) and juvenile (n = 190 

19) field voles, showed that higher inter-individual variability in immune response (whether 191 

divergent or convergent) was more common among juvenile voles (no. divergent markers = 192 

108; no. convergent markers = 6) than mature voles (randomly sampled 1000 times as more 193 

samples available; mean no. divergent markers = 50, empirical 95% interval = 0–338.2; mean 194 

no. of convergent markers = 0.11, empirical 95% interval = 0–1).  195 

 196 

 197 
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Response to stimulation is not limited to components of conventional immune pathways 198 

Non-immune related terms were enriched in the baseline-dependent response category, 199 

including: insulin signalling pathway (n = 9; p = 0.05) and thyroid hormone signalling 200 

pathway (n = 8; p = 0.05). The top convergent response marker, Pdk1, is also a component of 201 

the insulin signalling pathway (Fig. 2).  202 

 203 

Discussion 204 

 205 

The need to better understand variation in immune response in natural populations is now 206 

widely accepted15–18. Our understanding of immune responses in laboratory settings comes 207 

from animals that vary little either genetically or in prior experience. By contrast, animals in 208 

natural populations vary (perhaps extensively) in both of these. In this study, we describe 209 

natural variation in immune response in a wild population of rodents, and find that it can be 210 

categorised into a limited number of types. We identify three main categories of immune 211 

response: uncorrelated response, constant response and baseline-dependent response. We also 212 

identify markers, across these categories, which show particularly high inter-individual 213 

variability in response. Our work shows how a simple stimulatory assay performed on a 214 

natural population can reveal underlying patterns of natural variation among individuals in 215 

immune response. 216 

 217 

The baseline-dependent response category is the largest. Markers in this category show a 218 

relationship between baseline and stimulated abundance across individuals, and their 219 

response to stimulation is (to a lesser or a greater extent) dependent on their baseline level. In 220 

some cases, individuals already expressing the greatest abundance of a marker in their natural 221 

setting went on to exhibit the greatest response to stimulation by an agonist. In others, the 222 
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opposite was true, and these individuals exhibited the smallest response to stimulation. 223 

Similarly, previous work on humans has identified baseline (transcriptional) predictors of 224 

influenza vaccination response19,20. These differences in baseline level could be driven by 225 

either genetic variation or individual differences in past experience. In humans, genetic 226 

determinants of baseline immune cell population frequencies have been identified21. Even 227 

though the stimulation we describe here was not antigen specific, previous challenge by a 228 

parasite might also lead to changes in the baseline T-cell population within an individual’s 229 

spleen, affecting its response to any subsequent challenge. In fact, we find that voles infected 230 

with Babesia microti (a blood parasite, common in our population22) have larger spleens than 231 

uninfected voles13. This prior experience may prime an individual, enabling a greater 232 

response to subsequent challenge (e.g. slope greater than one; Fig. 1). However, individuals 233 

may also have an upper limit on the number of immue cells they have available23,24. An 234 

individual that is already mounting an immune response to a parasite, and has a large number 235 

of activated T cells, could therefore respond less to a similar challenge than an 236 

‘immunologically naïve’ individual (slope less than one; Fig. 1). Membership of the baseline-237 

dependent response category recapitulates the known biology of the immune response (being 238 

highly enriched for immune ontogeny terms). In doing so, it validates the approach we use 239 

here, as a way of identifying markers of immune significance.  240 

 241 

In some cases, individuals varied in their natural abundance of a marker but their response 242 

was unrelated to this. They did nevertheless respond to stimulation, with the majority of these 243 

markers occurring at a significantly higher mean abundance in stimulated samples than in 244 

baseline samples. This uncorrelated response category, which contains a moderate number of 245 

markers, also lacks any enrichment for immune-related ontology terms. This suggests that 246 

markers in this category are not conventional immune markers but could be of immune 247 
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significance. We warn against omitting such markers from studies of immune response in the 248 

laboratory. They could play an important part in our understanding of the immune response, 249 

indicating for example, genetic variation in response among individuals, which is 250 

independent of baseline level.  251 

 252 

Cutting across this categorisation, a large number of markers displayed a pattern in which 253 

variation between individuals was particularly strong. We describe two types of such 254 

markers, both of which could be used in future studies as indicators of natural variability in 255 

immune response. Markers in the less common, convergent, response category showed much 256 

greater variation naturally than following stimulation. This pattern may be characteristic of 257 

markers showing variable levels of prior activation, coupled with some maximum or 258 

optimum abundance, and resulting in a stabilisation of the immune response across the 259 

population following stimulation. We found that convergent patterns were more common 260 

among juvenile voles. This could suggest that they are more constrained in the energy they 261 

have available (as a result of the competing energetic demands of growth and development) 262 

or the number of immune cells they have available (as a result of a developing immune 263 

system). Either resource constraint could result in a maximum abundance, making them more 264 

inclined to converge. Due to the costly nature of the immune response, individuals often 265 

trade-off their investment in different arms of the immune system25,26. Different types of 266 

immune response are therefore likely to be associated with different optimum abundances (or 267 

regions) and an individual already mounting an immune response, but to a different type of 268 

challenge (associated with different cell types), may respond by down-regulating expression. 269 

 270 

Divergent markers, which were more common, showed much greater variation following 271 

stimulation than there was naturally. This pattern may be characteristic of (but not limited to) 272 
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markers showing genetic variation in response to the agonist, independent of baseline levels 273 

e.g. subsets of animals that appear similar but respond more strongly to stimulation than 274 

others. Our own recent work, where we found an association between polymorphism in a 275 

single gene and a marker of a more tolerant immune response27, is an example of such 276 

genetic variation in immune response. Further supporting this hypothesis, here, we found 277 

more divergent markers among juvenile voles than mature voles. Younger voles are expected 278 

to have less variable exposure histories, as a result of their shorter life spans, making it easier 279 

to detect genetic effects. Equally, though, divergent patterns could be the result of differences 280 

in early life experiences. One would also expect these to be more easily detectable in 281 

juveniles.  282 

 283 

The divergent category (predominantly) included markers for which individuals made (on 284 

average) the same response to stimulation and markers that did not respond (on average) to 285 

stimulation. Standard differential expression analysis would miss the individual variation 286 

present in the former group, and would fail to pick up the latter group of markers altogether. 287 

Both warn against looking at average (population-level) response, and point instead, to the 288 

value of looking at individual-level differences in immune response. This is particularly 289 

important because divergent markers may act as critical regulators of pathways. For example, 290 

Zap70, which demonstrates particularly high levels of variability in individual response and 291 

is centrally located in the TCR signalling pathway, interacts with many other markers (Fig. 292 

3). We suggest that Zap70 expression could be used as a marker of response in larger studies. 293 

Indeed, it is already linked to major seasonal immune variation in wild fish28 and is being 294 

used as a prognostic marker for B-cell chronic lymphocytic leukemia in humans, with 295 

potential implications for determining a patient’s treatment path (recently reviewed in Liu et 296 

al.29). Other potential prognostic (or diagnostic) factors which may have been missed using 297 
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standard differential expression analyses may be present in this category and warrant further 298 

investigation.  299 

 300 

The immune response categories we describe here are based on spleen cells stimulated with 301 

anti-CD28 and anti-CD3 antibodies and sampled at 24 hours. However, the relative 302 

frequency of the response categories reported here may vary depending on the choice of 303 

agonist and/or time point. For example, markers are known to follow different response 304 

trajectories, with some immediately responding and reaching peak activation, and others 305 

taking longer to reach this point30. Sampling at a later time point, then, when the ‘slower’ 306 

markers have reached peak activation, may lead to more convergence than reported here. In 307 

order to fully account for this temporal variation, multiple time points need to be averaged 308 

across. We argue that both time-specific and averaged responses are of functional 309 

significance, but hope others will extend our work. We use RNASeq here in order to give a 310 

broad view of the immune response. Single-cell RNASeq could be used to quantify 311 

differences in individual response resulting solely from differences in cell-specific activity. 312 

Previous work has shown that transcript levels generally correlate with protein levels across 313 

genes31. However, more work is needed to confirm these response categories at the functional 314 

level32. In future, Q-PCR or protein-level data could be used in order to include weakly 315 

expressed markers, which were excluded here as a result of the heteroscedasticity inherent in 316 

RNASeq data.  317 

 318 

Markers that responded to stimulation were not limited to immune pathways as 319 

conventionally defined. They included, for example, markers involved in the insulin 320 

signalling pathway. This is in line with previous studies, which suggest that insulin plays a 321 

key role in coordinating an organism’s response to infection, influencing, in particular, the 322 
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allocation of resources33,34. One of these markers, Pdk1, was also among the top convergent 323 

markers. This could be representative of the high levels of variability in the (baseline) 324 

nutritional status of individuals in a natural population, coupled with an upper limit on the 325 

processes involved in glucose metabolism.  326 

 327 

The immune categories we presented here, therefore, highlight markers not traditionally 328 

associated with immune functions, and offer a promising avenue for identifying potential 329 

prognostic (or diagnostic) factors for disease, like Zap70. They also point to both genetics 330 

and prior experience as drivers of natural variation in immune response. Our future work will 331 

further decompose this natural variation into that driven by these two components.  332 

 333 

Methods  334 

 335 

Field methods  336 

Sixty-two field voles were collected between July and October 2015 to assay expression by 337 

RNASeq. These voles came from four sites in Kielder Forest, Northumberland (55°130N, 338 

2°330W). Each site contained a trapping grid of regularly spaced traps (at approx. 5 m 339 

intervals) and was also used for other components of a larger field study (for more details see 340 

Wanelik et al.27).  341 

 342 

Ethics statement 343 

All animal procedures, carried out as part of this field study, were performed with approval 344 

from the University of Liverpool Welfare Committee and under the authority of the UK 345 

Home Office (Animals (Scientific Procedures) Act 1986) project licence number PPL 346 
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70/8210 to SP. Voles were killed by a rising concentration of CO2 followed by 347 

exsanguination. 348 

 349 

Cell culture methods 350 

Splenocyte cultures from each vole were split into two populations, one of which was 351 

stimulated with anti-CD3 antibodies (Hamster Anti-Mouse CD3e, Clone 500A2 from BD 352 

Pharmingen) and anti-CD28 antibodies (Hamster Anti-Mouse CD28, Clone 37.51 from BD 353 

Tombo Biosciences) at concentrations of 2 μg/ml and of 1 μg/ml respectively for 24hr, and 354 

the other was left as an unstimulated control to act as a reference level. We refer to this 355 

reference level as the baseline, and control samples as baseline samples. However, it is 356 

important to note that this level will vary for an individual, not only on a day to day basis, but 357 

throughout its life. Culture conditions were otherwise equivalent to those used in Jackson et 358 

al. (2011)35. Costimulation with anti-CD3 and anti-CD28 antibodies was used to selectively 359 

promote the proliferation of T cells14, our assumption being that this would reflect the 360 

potential response of T-cell populations in vivo. Cell populations within splenocyte cultures 361 

were variable but left undefined.  362 

 363 

RNASeq preparation and mapping 364 

RNA was extracted using Invitrogen PureLink kits. Following extraction, cDNA libraries 365 

were prepared using Illumina RiboZero kits and libraries were constructed with NEBNext 366 

Ultra directional RNA library prep kit according to the manufacturers protocols. Samples 367 

were sequenced to produce 2 x 75 bp paired-end reads on an Illumina HiSeq4000 platform. 368 

Adaptor sequences were removed with CUTADAPT version 1.2. and further trimmed with 369 

SICKLE version 1.200 (minimum window quality score of 20). This resulted in a mean 370 

library size of 18 million (range = 5–50 million) paired-end reads. 371 
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 372 

High-quality reads were mapped against a draft genome for M. agrestis (GenBank Accession 373 

no. LIQJ00000000) using TOPHAT version 2.1.0, and a set of predicted gene models was 374 

generated using BRAKER. Mapped reads were counted using FEATURECOUNTS. Further 375 

analysis was performed on counts of mapped reads for each gene in R version 3.4.236. These 376 

count data were initially filtered to remove unexpressed genes (those genes with fewer than 377 

three counts per million across all samples; n = 13). Following filtering, library sizes were 378 

recalculated and data were normalised to represent counts per million (cpm). These data were 379 

found to be correlated with quantitative PCR (Q-PCR) data (see Supplementary Fig. 1). No 380 

correction for gene length was necessary as all analyses were based on comparisons across 381 

(rather than within) samples. Transcript abundance for a particular gene here represents a 382 

single, functional measure of its activity across some, undefined, cell population. In order to 383 

maximise the power of our analysis to identify biologically relevant patterns, we focussed on 384 

those genes which were expressed at an informative level in the spleen prior to and/or 385 

following stimulation (n = 1350 or 6%). Genes expressed at a mean level greater than 200 386 

cpm were considered informative. As weakly expressed genes were removed (minimising 387 

heteroscedasticity), log-transformation of data was unnecessary (Supplementary Fig. 2).  388 

 389 

Statistical analysis 390 

Genes for which a response to stimulation was observed across individuals were identified, 391 

and, as elaborated in the Results, categorised on the basis of (i) the dependence of an 392 

individual’s response on its baseline level, and (ii) the degree of inter-individual variability in 393 

response across individuals. 394 

 395 
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Baseline-dependence of response. The dependence of an individual’s response on its 396 

baseline level was quantified by testing the relationship between that individual’s baseline 397 

abundance (cpmbase) and its stimulated abundance (cpmstim) using a linear regression, taking 398 

the form 399 

 400 

cpm���� ~ cpm����                    401 

 402 

as well as a quadratic regression, taking the form 403 

 404 

cpm���� ~ cpm���� �  cpm����
� 

 405 

For approximately one third of genes (n = 466), the residuals from both of these regressions 406 

deviated significantly from the assumptions of normality and/or homoscedasticity, and a non-407 

parametric Kendall–Theil linear regression was fitted instead. Regression fits varied from 408 

gene to gene (R2 ranging from <0.001 to 0.85).  409 

 410 

Inter-individual variability in response. Inter-individual variability in response was 411 

quantified by comparing the coefficient of variation (CV) for baseline abundances across 412 

individuals (CVbase) and the CV for stimulated abundances across individuals (CVstim). As 413 

response is defined as the difference between baseline and stimulated abundance, a large 414 

difference in their CVs, either 415 

 416 

CV���� 	  CV���� 

 417 

or 418 
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CV���� 	 CV���� 

 419 

indicates a high level of variability in response. A relationship between gene-wise mean 420 

expression levels and CV is typically found in RNASeq data, with low mean transcript 421 

abundance being strongly associated with high variability37. As we restricted our analysis to 422 

informative genes only, excluding those genes with low mean abundance, it was not 423 

necessary to account for this relationship (Supplementary Fig. 2). Asymptotic tests for the 424 

equality of CVs were run using the cvequality package. All p-values were corrected for 425 

multiple testing using the Benjamini-Hochberg method38.  426 

 427 

Functional annotation. Functional enrichment analyses were run using The Database for 428 

Annotation, Visualization and Integrated Discovery (DAVID) version 6.839,40. Benjamini-429 

Hochberg corrected p-values and gene counts are reported alongside ontology terms, 430 

including Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways to indicate their 431 

level of enrichment41–43.  432 

 433 

Age-specific analysis. In order to begin to investigate the relative importance of genetic 434 

variation versus prior stimulation for shaping patterns of variation in immune response, the 435 

same analysis was performed separately on juvenile and mature voles. As we had more 436 

samples from mature voles (n = 43) than juvenile voles (n = 19), we randomly sampled the 437 

mature population (with replacement) 1000 times and averaged across these samples. The 438 

number (juveniles) or mean number (matures) of genes in each of these age classes is 439 

presented in the text.  440 

 441 

 442 
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 557 

Figure captions 558 

 559 

Fig. 1 Different categories of immune response. These are based on two overlapping sets 560 

of criteria, baseline-dependence of response (blue) and inter-individual variability in response 561 

(yellow background). Arrows represent individual immune responses. No response (for 562 

reference): markers for which individuals (on average) show no response to stimulation 563 

(intercept not significantly different from zero; slope not significantly different from one). 564 

Uncorrelated response: markers for which responses of different individuals are variable and 565 

independent of their baseline level (slope not significantly different from zero). Constant 566 
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response: markers for which the responses of different individuals response are 567 

(approximately) constant and independent of their baseline (intercept significantly greater 568 

than zero; slope not significantly different from one). Baseline-dependent response: markers 569 

for which responses of different individuals vary as a function of their baseline level, either 570 

as a linear function of their baseline (slope significantly different from one; slope greater than 571 

one is depicted but could equally be less than one), or as a quadratic function of their baseline 572 

(a saturating function is depicted but could equally be exponential). Convergent response: 573 

markers for which the coefficient of variation (CV) for baseline abundances is significantly 574 

greater than the CV for stimulated abundances across individuals (CVbase > CVstim). 575 

Divergent response: markers for which CV for stimulated abundances is significantly greater 576 

than CV for baseline abundances across individuals (CVstim > CVbase). Both convergent and 577 

divergent markers depicted as, but not limited to, markers for which response is uncorrelated. 578 

 579 

Fig. 2 Top 10 markers and enriched ontology terms in each immune response category.  580 

Each box represents a category of immune response (as in Fig. 1). For each category,  581 

top 10 annotated markers for which we had the most confidence in their categorisation  582 

(markers were ranked on R2 and p-values) are listed, one or two of these are represented in  583 

plots showing stimulated versus baseline abundances across individuals (solid line indicates  584 

significant relationship between baseline and stimulated abundance; dashed line indicates  585 

slope equal to one for reference). In the case of the convergent category, which only included  586 

a total of six annotated markers, all markers are listed. Ontology terms of interest, from an  587 

enrichment analysis preformed on all markers within a category (where possible), are also  588 

included (immune-related terms in black). 589 

 590 
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Fig. 3 Map of the T-cell receptor signalling KEGG pathway for Mus musculus, with the 591 

colour of nodes representing level of inter-individual variability in response to 592 

stimulation with anti-CD3 and anti-CD28 antibodies in Microtus agrestis. Namely the p-593 

value from an asymptotic test for the equality of variance in gene expression levels for 594 

baseline and stimulated samples (range = < 0.001–0.97). Dark blue indicates high inter-595 

individual variability in response, whereas light blue or white indicates low inter-individual 596 

variability in response. Grey nodes represent genes for which no information is available, 597 

either because they are unannotated in the M. agrestis genome, or because they are weakly 598 

expressed in the spleen. 599 

 600 
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Tables 616 

 617 

Table 1 Table summarising the number of markers found in each of the three main 618 

categories of immune response. For each of these categories, the number of convergent 619 

and divergent markers is shown.  620 

 621 

Immune response 
category 

Total no. 
markers 

No. 
convergent  

No. 
divergent 

Uncorrelated 47 2 1 

Constant  306 0  91 

Baseline-dependent  699 5 47 

 622 

 623 

 624 

 625 

 626 

 627 

 628 

 629 

 630 

 631 

 632 

 633 

 634 

 635 

 636 

 637 
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