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Abstract  

Hypertrophic Cardiomyopathy (HCM) is a common genetic disorder that typically 

involves left ventricular hypertrophy and abnormal cardiac contractility. Mutations in β-

MyHC are a major cause of HCM and are typically characterized with cardiac 

hypercontractility, but the specific mechanistic changes to myosin function that lead to the 

disease remain incompletely understood. Predicting the severity of any single β-MyHC 

mutation is hindered by a lack of detailed evaluation at the molecular level. In addition, 

since the cardiomyopathy can take 20 - 40 years to develop, the severity of the mutations 

must be somewhat subtle. We hypothesized that mutations which result in childhood 

cardiomyopathies may show a more severe indication of molecular changes in myosin 

and be therefore easier to identify. In this work, we performed steady-state and transient 

kinetics analysis of the myosin carrying one of eight miss sense mutations in the motor 

domain. Five of these have been identified in childhood cardiomyopathies. The derived 

parameters were used to model the ATP driven cross bridge. Contrary to our hypothesis, 

the results show no clear differences between early and late onset HCM mutations. 

Despite the lack of distinction between early and late onset HCM, the predicted A·M·D 

occupancy for [A] = 3 Kapp along with the closely related Duty Ratio (DR) and the 

measured ATPases all change in parallel (in both sign and degree of change) compared 

to the WT values. Six of the eight HCM mutations are clearly distinct from a set of DCM 

mutations previously characterized. 

 

 

 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 30, 2019. ; https://doi.org/10.1101/622738doi: bioRxiv preprint 

https://doi.org/10.1101/622738
http://creativecommons.org/licenses/by-nd/4.0/


3 
 

The most common inherited cardiomyopathy is Hypertrophic CardioMyopathy 

(HCM) with a disease-prevalence of 1:250-500 (Harris et al., 2006; Hershberger, Hedges, 

& Morales, 2013). Excluding those with a history of hypertension, aortic stenosis, other 

pre-existing systemic diseases, or being a world-class athlete, HCM is diagnosed as 

unexplained left ventricular hypertrophy and is typically accompanied by diastolic 

dysfunction (Stewart, Mason, & Braunwald, 1968). The first mutated gene causing HCM, 

MYH7 or β-cardiac myosin heavy chain, was reported almost 30 years ago (Geisterfer-

Lowrance et al., 1990; Jarcho et al., 1989). There are now thousands of mutations in 

proteins of the sarcomere that account for 60-70% of HCM cases (Teekakirikul, Kelly, 

Rehm, Lakdawala, & Funke, 2013). There are eight major sarcomeric proteins that are 

implicated in the majority of HCM index cases and their families, with 60-70% found in 

either β-cardiac myosin or myosin-binding-protein C (MyBPC). This suggests that myosin 

is an important target for therapeutic intervention (Ashrafian, McKenna, & Watkins, 2011; 

Green et al., 2016).  

We consider here the difference between myosin mutations causing early-onset 

versus adult-onset HCM. We hypothesized that β myosin mutations associated with early-

onset HCM would be more severe than those mutations seen in individuals who are 

diagnosed later in life. Analysis of the biochemical and biophysical properties of these 2 

classes of myosin’s should reveal the severity of the mutational changes. We compared 

the properties of known adult pathogenic mutations (R719W, R723G, & G741R) with 

novel sporadic mutations that had appeared in recent cardiomyopathy screens as unique 

to pediatric patients (H251N, D382Y, F540L, P710R and V763M) (Cuenca et al., 2016; 

Kaski et al., 2009a; Morita et al., 2008). We produced recombinant mutant and wild type 
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human myosin motors in differentiated C2C12 muscle cells, performed extensive kinetic 

analysis, and evaluated the severity of these mutations based on alterations to the cross-

bridge cycle. 

The location of eight residues in the MYH7 gene under consideration here is shown 

in Fig. 1A. The high degree of conversation underscores the importance of these sites 

(Fig. 1B). Myosin is very vulnerable to mutations and there are now >400 different 

mutations described in MYH7 (Colegrave & Peckham, 2014; Hamady, Buvoli, Leinwand, 

& Knight, 2010). A number of disease-causing MYH7 mutations have been studied in the 

context of recombinant human β-MyHC motors (Adhikari et al., 2016; Bloemink et al., 

2014; Kawana, Sarkar, Sutton, Ruppel, & Spudich, 2016; Nag et al., 2015; Palmer et al., 

2004; Seebohm et al., 2009; Sommese et al., 2013). R403Q, R453C, R719W, R723G, 

G741R, and D239N are mutations that are widely recognized as pathogenic and have 

been seen in multiple families (ClinVar). The pediatric H251N, D382Y, F540L, P710R, 

and V763M mutations are less prevalent and their pathogenicity has not yet been clearly 

established (ClinVar). 

H251 is in the central β-sheet (Fig.1A) that undergoes strain-induced twisting upon 

ATP-binding and communicates to the 50K domain to open and release actin. H251N 

was identified in a screen of 79 preadolescent children and later characterized 

biophysically (Adhikari et al., 2016; Kaski et al., 2009a). Adhikari et al found that this early-

onset mutation resulted in higher kcat, actin-gliding velocity, and intrinsic force (Adhikari 

et al., 2016). Located close to the cardiomyopathy loop of the actin binding domain, 

D382Y has been categorized as a variant of unknown (or uncertain) significance (VUS) 

(Kaski et al., 2009, ClinVar). Close to this residue is the well-studied pathogenic R403Q 
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mutation which had subtle biophysical changes compared to WT (Nag et al., 2015). 

F540L is found on a helix-loop-helix motif on the lower 50kDa domain (L50) and was re-

classified in recent years from VUS to pathogenic, and from Dilated CardioMyopathy 

(DCM) to HCM (Cuenca et al., 2016, ClinVar). On the L50 there is an α-helix that is a “hot 

spot” of cardiomyopathy-related mutations, namely: I524V, E525K, M531R, S532P, 

I533V, and our residue of interest, F540L (J. A. Spudich, 2015). M531R and S532P are 

mutants linked to Left Ventricular Non-Compaction (LVNC) and DCM respectively, and 

even though these residues are right next to each other, they displayed opposite 

biophysical properties (Aksel, ChoeYu, Sutton, Ruppel, & Spudich, 2015). P710, a 

residue on the border of the relay/converter junction site, has been reported to be mutated 

to an arginine or a histidine (Kaski et al., 2009a; Kindel et al., 2013). P710H is considered 

pathogenic, while P710R has been reported once, making it a rare mutation (Kaski et al., 

2009a; Kindel et al., 2013). 

The myosin converter is well-known to be enriched for HCM-causing mutations 

with a range of adverse effects (García-Giustiniani et al., 2015; Homburger et al., 2016). 

Converter mutations studied here include the adult onset mutations R719W, R723G, and 

G741R and the early-onset mutation V763M. Muscle biopsy and skinned fiber studies 

have shown the converter domain adult-onset mutations have increased fiber stiffness 

with subtle changes in cross-bridge kinetics analysis (Cuda, Fananapazir, Epstein, & 

Sellers, 1997; Fananapazir, Dalakast, Cyran, Cohn, & Epstein, 1993; Köhler et al., 2002; 

Lowey et al., 2008; Seebohm et al., 2009; Tyska et al., 2000). The steady-state kcat, the 

actin gliding velocities, and intrinsic force measurements of the myosin motor domain for 

these adult-onset pathogenic HCM mutations did not vary much when compared to WT 
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(Kawana et al., 2016). Although V763M has been seen in multiple people and multiple 

families with HCM (Kaski et al., 2009b; Mohiddin et al., 2003), it is also classified as both 

an early-onset mutation and a VUS (ClinVar). 

We previously performed kinetic analysis of five adult-onset DCM mutations in β-

MyHC (Ujfalusi, 2018). Overall, our analysis did not reveal a pattern of common defects 

in individual steps of the cycle, other than a few altered properties specific to the myosin 

subdomain where the mutation is localized. However, a pattern did emerge when the full 

cycle was modeled using all the data from ATPase and stopped-flow experiments 

(Srbolujub M. Mijailovich et al., 2017). Modeling predicted that the DCM mutations altered 

the steady-state motor function and the state occupancies in the minimal 8-step cross-

bridge cycle in a manner consistent with a loss of the ability to generate steady-state force 

(Ujfalusi et al. 2018). Here, for the early- and late-onset HCM mutations, we show that 

the kinetic parameters of mutations also do not have a “unifying” disruption of the cycle. 

However, the strongly attached actin-myosin states are significantly affected. Contrary to 

our hypothesis, we did not detect any strong differences between mutations seen in adult-

onset versus early-onset patients, or among mutations in the different structural-domains 

of the motor.  

Results 

ATPases 

Steady-state ATPase data for four of the mutations examined here have already 

been published these are listed in Table 1 together with the kcat values for the remaining 

four mutations. The error on these measurements is of the order of 10% and three of the 

mutations differ from WT by less than 5%; the early onset D382Y, and V763M and the 
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adult G741R. Two mutations, early onset H251N and adult R719W differ from WT by 24 

and 20% respectively which is significant while the remaining mutations, F540L, P710R 

and the adult R723G are more significant with 29-42% changes. Note that these five 

mutations show both increased and decreased kcat values. There is thus no common 

pattern of change in the kcat values for these HCM mutations and no difference in pattern 

between early and late onset groups. This lack of common patterns led us to focus on the 

transient kinetic analysis which can reveal more detail about how the mutations change 

the ATPase cycle. 

Transient kinetics data summary 

Considerable amounts of pre-steady state kinetic data have been collected for a 

number of DCM and HCM mutations in the β-MyHC motor domain. The descriptions of 

methods, analysis tools, model assumptions, data quality and details of the 

measurements have been set out in our earlier work (Bloemink et al., 2014; Deacon, 

Bloemink, Rezavandi, Geeves, & Leinwand, 2012; Srbolujub M. Mijailovich et al., 2017; 

Nag et al., 2015; Ujfalusi et al., 2018). We have taken the same approach to understand 

the impact of this set of HCM mutations and to compare to the results of previous studies. 

Details of individual measurements and the evaluation of data quality are presented in 

the Supplementary Information. Here we focus on what effect each mutation has on the 

behavior of the cycle. For every mutant, each measurement was made at least three 

times with a minimum of two independent protein preparations. In general, all parameters 

were measured to a precision of better than 20% and in most cases better than 10%. We 

assume any change of less than 20% is of little significance. 
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The data are interpreted in terms of the 8-step ATP driven cross bridge cycle that 

we have used previously (Fig. 2). Red shades indicate detached cross-bridges, yellow 

shades are weakly-attached, and blue shades represent strongly-attached force-holding 

cross bridges. Table 1 shows the mean values and errors of the actin and nucleotide 

binding experiments for the steps in the cycle that are accessible together with the 

ATPase parameters. There is a large amount of information in Table 1 and to make the 

overall pattern of the induced changes clearer, the percent changes relative to WT are 

color coded in the table. The data are also summarized in Fig. 3, where the percentage 

differences in each parameter relative to WT are plotted. 

Interaction of myosin with nucleotide in the absence of actin 

 Even though the reactions are not part of the normal cycle, nucleotide binding to 

the motor in the absence of actin is measured to understand how the nucleotide binding 

pocket and the weakly-attached actin states might be affected by the mutations. The 

affinity of ATP for sS1 (short S1) is weakened >1.7-2-fold for two mutations (D382Y, 

P710R and G741R). All other mutations were 20-30% weaker except R719W which was 

indistinguishable from WT. In contrast, most mutants bound ADP >2-fold tighter, with the 

exception of R723G (just less than 2-fold tighter) and P710R (6-fold weaker). Thus, no 

simple pattern of behavior was apparent for the sS1 in the absence of actin. 

Interaction of sS1 with nucleotide in the presence of actin 

 The darker color coding of the data in Table 1 shows the parameters that change 

>2-fold (dark blue decrease, dark orange increase) and indicate that a large number of 

parameters have been affected. Thus the changes observed are not minor, despite 

relatively small changes in the value of the steady-state kcat.   
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 Fig. 3A shows that in general, the value of 1/KT (the affinity of ATP for acto.sS1)  

KA and KDA (the affinity of actin for sS1 and sS1.ADP) has tighter binding (decrease in 

measured parameter) of > 20%, but none is as much as 2-fold tighter.  Within each set of 

measurements there are exceptions (1/KT for F540L, KA for R723G), but there is a pattern. 

In contrast, the affinity of ADP for acto.sS1 is >2-fold weaker in five cases, while F540L 

and R723G are not significantly different from WT. 

 Fig. 3B shows changes in measured rate constants and there is some consistent 

behavior but not uniform for all mutations. The maximum rate constant for sS1 

detachment from actin upon binding ATP (k+T) is generally slower (20-70%) with the 

exception of F540L which is increased by 30%), and the rate constant for of ADP binding 

to acto.S1 is also generally slower (30-70%) with the exception of R723G which is 

increased by 70%.  All other rate constants had variable changes or none at all. This 

highly variable pattern was also seen for the set of DCM mutations we previously reported 

(Ujfalusi et al., 2018).   

Modeling the ATPase cycle of HCM mutant motors 

We modeled the complete cycle using all of our kinetic data following the approach  

outlined in recent papers comparing different myosin isoforms and different DCM-causing 

mutations in MYH7 (Srbolujub M. Mijailovich et al., 2017; Ujfalusi et al., 2018). The 

transient kinetics data provides definition for six of the eight steps of the cycle with a 

precision generally of ±20%. When combined with ATPase data (kcat and Kapp), the full 

cycle allows us to predict acto·myosin occupancy of states (Fig. 4; Supp. Table 3), along 

with key properties of the cycle: duty ratio, shortening velocity, steady-state force (Fig. 5; 

Supp. Table 2), and ATP-economy (Fig. 7). Under isometric conditions in a muscle fiber, 
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because of the mismatch of the thick and thin filament helicity, some myosin heads have 

readily accessible actin while others do not. We therefore modeled a range of actin 

concentrations ([A] = Kapp, 3 Kapp, and 20 Kapp, where the ATPase rate is 50, 75, and 98% 

of kcat values, respectively) to facilitate comparison between the different mutant 

constructs under conditions that may match those of a contracting sarcomere. In addition, 

we modeled contraction under load as previously, by assuming both ADP and Pi release 

steps were inhibited 3-fold under a 5-pN load for all mutations (see Discussion). 

The predicted occupancies are shown in Fig. 4. Note that the color schemes are 

the same in both Fig. 2 and Fig. 4; red shades indicate detached cross-bridges, yellow 

shades are weakly-attached, and blue shades represent strongly-attached force-holding 

cross bridges. The numbers by each pie chart represent the percentage of the pale blue, 

force-holding A·M·D state. The WT data predict at low actin concentration ([A] = Kapp), 

almost 75% of cross-bridges are detached with just 5.2% in the force-holding blue states, 

dominated by the A·M·D state. As actin concentration increases, the detached-states 

(red) decrease, the weakly-attached states (yellow) increase, and the strongly-attached 

A·M·D state increases to 9.8% at 20 Kapp increases. The application of a 5-pN load at [A] 

= 3 Kapp increased the A·M·D state from 7.7 to 8.4% and increased the weakly-attached 

states (mainly A-M·D·P) at the expense of the detached M·T state.   Note the occupancy 

values here are slightly lower than in (Ujfalusi et al 2018) because of a slightly lower WT 

kcat value used within this consistent data set.   

 

.  
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Examining pie charts in Fig. 4 for the mutations shows that the general distribution 

of states is very similar between WT and H251N although the force-holding A·M·D state 

was higher (~25%) for H251N at all actin concentrations. Similarly, the distribution was 

similar for D382Y, V763M, R719W and G741R, but the force-holding A·M·D states were 

marginally smaller (by about 10%) while the detached M·T states (deep red) were larger. 

For F540L, the A·M·D state occupancies are significantly larger and much smaller for 

P710R and R723G, respectively, compared to WT. These comparisons are easier to 

assess in Fig. 5 where the predicted A·M·D occupancy for [A] = 3 Kapp with and without 

load are plotted along with the closely related Duty Ratio (DR) and the measured 

ATPases. All three parameters change in parallel (in both sign and degree of change) 

compared to the WT values.  

The predicted velocity of shortening was estimated from the equation Vo = 

d·ATPase/DR, where d is the step size (assumed to be invariant at 5 nm) and show little 

variation amongst the eight mutants. Only R719W and R723G are predicted to increase 

by more than 10% (Fig. 5). In vitro motility measurements have been published for several 

HCM mutations (Adhikari et al., 2016; Kawana et al., 2016). Unpublished data have been 

collected for the other HCM mutations studied here to consolidate with the kinetics data 

(Fig. 6) Fig. 6 shows the mean velocity of the top 5% of smoothly moving filaments, 

normalized to the WT values, compared with our predictions. The normalization to the 

WT values allows comparison between the two data sets despite the different constructs 

and different experimental conditions used. For five of the eight mutations, the predicted 

velocities are in good agreement with those measured. For the other three, there are large 

discrepancies. Our predictions were for little change in velocity for all mutations but 
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H251N and F540L; both of which moved much faster than WT while P710R was much 

slower than WT. We consider this discrepancy in the Discussion. 

The modeling data also allow an estimate of the economy of ATP usage, another 

parameter that could be involved in the development of HCM (Neubauer, 2007) if it results 

in a metabolic imbalance in the muscle. The predicted rates of ATP usage are shown in 

Fig. 7 for both a muscle fiber holding a 5 pN load (ATP used per pN) and when shortening 

at the maximum velocity and when ATP is being turned over at kcat (ATP/sec per µm 

moved).  Once more, the changes in economy for each mutation, under both conditions 

reflected the changes in the ATPase rates relative to WT.   

Discussion 

We have presented here a detailed evaluation of the human β myosin motor 

domain carrying eight different HCM missense mutations. Before considering the 

implications of our data it is pertinent to point out the precision with which we can evaluate 

the data. All measured constants are defined to within an error of at least 20%, and in 

many cases better than 10%, using independent preparations of protein. The fitting of the 

data to the model uses all of the data to define the five missing constant in the 8-state 

cross bridge cycle (Fig. 2). In our previous studies of DCM  mutations (Ujfalusi et al., 

2018) and the α & β cardiac isoforms (Mijailovich et al., 2017) we showed the fitting was 

quite robust and that a ±20% change in any of the constants had minimal effect of the 

overall balance of the cycle except for the intermediate most directly affected by the varied 

constant. A similar analysis was carried out here (Supp. Table S5) so we are confident in 

the analysis of the cross bridge cycles presented. 
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Of the eight mutations studied, five have been identified in children with HCM and 

three have only been reported in adults with HCM (Supp. Table S1).  We previously 

reported a similar characterization of two additional adult onset mutations, R403Q and 

R453C (Bloemink et al., 2014; Nag et al., 2015; Ujfalusi et al., 2018).  The majority of 

mutations in myosin have been identified in adults and despite the mutant myosin’s being 

present in the heart since birth, the cardiomyopathy can take 20-40 years to develop. We 

reasoned that early onset mutations may show more substantive changes in biophysical 

properties since they manifest earlier in life. The data presented here do not support this 

hypothesis. Each of the mutations (early-onset and adult-onset) exhibited a set of 

changes in the measured parameters by as much as 2-fold. However, no general pattern 

of change was apparent that identified either the early onset group or the group as a 

whole. This remained true when the data were used to model the cross bridge cycle (Figs. 

4, 5, 7 Supp. Tables S2-4)  

. We previously identified common traits amongst myosin’s carrying one of five 

mutations associated with DCM (Ujfalusi et al., 2018). Most of the mutations were found 

to have a reduced kcat  lower occupancy of the force holding AMD state, a lower DR, and 

these myosins were more economical in the use of ATP for both rapid movement and 

force generation. Collectively, the myosin’s had an impaired capacity to generate or 

maintain force when working as an ensemble. Curiously, two of the mutations examined 

here share these properties; the early onset P710R and the adult R723G, suggesting 

some overlap between the groupings. 

The remaining six mutations show mostly modest changes in properties as was 

previously observed for the R403Q and R453C HCM mutations. The kcat, economy of 
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ATP usage and DR’s were similar to WT for D382Y, V763M, R719W and G741R while 

all three parameters were increased for H251N and F540L. Thus, for six of the eight HCM 

mutations the distinctions between HCM & DCM mutations that we previously reported 

remain valid. Although how the HCM mutations lead to the cardiomyopathy, remains to 

be defined. 

The question of what distinguishes mutations associated with early onset of the 

myopathy remains a valid question but we need to address if the diagnosis of early onset 

is a distinct group. As shown in Table S1 each of these mutations, with the exception of 

F540L, has only been identified in a single patient with no other member of the family 

affected. Interestingly, F540L has been found to segregate in a family with DCM. It may 

be that factors in addition to the myosin mutation contribute to the disease. Alternatively, 

the assays performed here are purely in vitro with single motor domains and the mutant 

myosin’s may need a cellular or tissue environment to manifest the full pathological 

consequences. 

There is considerable interest in the role of the interactions between the two motors 

of myosin in forming a down-regulated form of the myosin the Interacting head motif, IHM 

(Alamo et al., 2017). Such motors are likely to be further stabilized by interactions with 

both the backbone of the thick filament and MyBPC (Alamo et al., 2017). Myosin 

mutations that destabilize the off-state would make more heads available and lead to a 

hyper-contractile state, thought by many to be the precursor to HCM (Alamo et al., 2017; 

Trivedi, Adhikari, Sarkar, Ruppel, & Spudich, 2017). The interaction between the off and 

on state of myosin is postulated to be regulated by phosphorylation of the RLC, or the 

MyBPC, mechanical strain on the thick filament, and possibly calcium (Linari et al., 2015; 
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Mohamed, Dignam, & Schlender, 1998; Previs et al., 2016; Toepfer et al., 2013) 

Destabilization of the off-state could occur by reducing motor-motor, motor-backbone or 

motor-MyBPC interactions. Any effect on the interacting heads could override the modest 

affects we report here, on the cross bridge cycle for most of the HCM mutations. This 

seems less likely to be the case for the two mutations that appear similar to the DCM 

mutations where the large reduction in kcat (30-40%) and DR (40-50%) will have a 

significant effect on the working cardiac muscle. Any effect on the interacting heads would 

need to be very large to over-compensate for the loss of force-holding cross bridges in 

the steady-state caused by these changes in the duty ratio. 

A recent study used the latest crystal structures docked into the lower resolution 

EM images of the interacting motors to identify regions of the motor directly involved with 

the interaction. This work was combined with a molecular dynamics study of 178 HCM 

mutations to suggest how mutations might affect myosin function (Robert-Paganin, 

Auguin, & Houdusse, 2018). HCM mutants were predicted to affect interacting heads, the 

stability of the M·D·Pi state required to form the interacting heads, the motor function or 

the stability of the motor or some combination of the effects. From the Robert-Paganin et 

al study our mutations H251N, R719W, R723G and G741R were predicted to affect motor 

function, and destabilize the sequestered state due to effects on IHM contacts, which is 

consistent with our results. P710R was predicted to alter motor function and destabilize 

the sequestered state by affecting the stability of the pre-power-stroke conformation, 

while V763M was predicted to affect mostly protein stability. 

At the outset of this series of studies, we began with the expectation that there 

would be common molecular pathways for HCM vs DCM mutations. The work has defined 
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more sharply the types of things mutations can do to the myosin motor and still have a 

functioning heart. To understand the way in which the mutations lead to myopathies there 

is a need for more complex assays that include cells and/or engineered 3D tissues to 

integrate the signals in the muscle and converge to cause the disease. This includes the 

role of a heterozygous mixture of WT and mutant myosin’s in tissue. 
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Methods 

Expression and purification of proteins – Producing recombinant β-cardiac myosin in 

C2C12 cells in several iterations, isoforms, and mutants has been described previously 

in (Bloemink et al., 2014; Deacon et al., 2012; Nag et al., 2015; Resnicow, Deacon, 

Warrick, Spudich, & Leinwand, 2010; Ujfalusi et al., 2018; Walklate, Vera, Bloemink, 

Geeves, & Leinwand, 2016). The sS1 (residues 1-808) was followed by a flexible GSG 

(Gly-Ser-Gly) linker and a C-terminal 8-residue (RGSIDTWV) PDZ-binding peptide. 

Human ventricular essential light chain (MYL3 or ELC) with either a 6X-His or a FLAG tag 

was co-expressed with the heavy chain. Over the course of the different experiments a 

combination of affinity and ionic exchange chromatography were used as in our previous 

studies (i.e. His or FLAG + Q column). The fast kinetics experiments in this study were 

done with protein purified with double affinity, a His-NTA resin and the PDZ-C-tag affinity 

system described in (Jin Huang, Nagy, Koide, Rock, & Koide, 2009). WT-erbin PDZ was 

prepared as described in (Huang et al. 2008, 2009) and crosslinked to the Sulfolink 

Coupling Resin (Thermo Fisher) using the manufacturer’s protocol. After the myosin was 

eluted from the His column, the sample was dialyzed into 1X TBS to remove the imidazole 

from the His column. The PDZ system uses 20-50 µM of “elution peptide” (NH2-WETWV-

COOH from GenScript). After the second column, the myosin samples were buffer 

exchanged and frozen in the proper assay buffer. Actin preparations were made from 

bovine left ventricle with protocols adapted from (J. a. Spudich & Watt, 1971; Zot & Potter, 

1981). The protocol for preparing pyrene-labelled actin is based on the methods 

described in (Criddle, Geeves, & Jeffries, 1985).  
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Steady-state actin-activated ATPase assays – All ATPase experiments were performed 

at 23 °C room temperature in a buffer containing 10 mM imidazole, 3 mM MgCl2, 5 mM 

KCl, and 1 mM DTT at pH 7.5. A colorimetric assay to measure inorganic phosphate 

production at various time points and actin concentrations ranging 0 – 100 µM. The rates 

of phosphate production were plotted and fitted to the Michaelis-Menten equation using 

Origin (OriginPro) and/or GraphPad Prism to obtain the kcat and Km. 

Transient kinetics – All stopped-flow measurements were performed at 20°C in 20 mM 

MOPS, 25 mM KCl, 5 mM MgCl2, 1 mM NaN3 at pH 7.0, unless indicated otherwise. 

Rapid-mixing experiments using 2-5 biological replicates, with 4-6 technical replicates, 

over a wide range of experimental substrates were performed in a High-Tec Scientific SF-

61 DX2 stopped-flow system. Transient kinetic traces were initially fitted with TgK 

Scientific (Kinetic Studios) and subsequently plotted with Origin (OriginPro). For 

experiments probing the actin-myosin interaction with ATP and ADP we utilized the 

fluorescence signal for the pyrene-labelled actin, which has an excitation wavelength at 

365-nm and the emission was detected after passing through KV389-nm cut-off filter. In 

the absence of actin, we relied on the intrinsic tryptophan fluorescence post-nucleotide 

binding where a tryptophan on the relay helix can be excited at 295-nm and the emission 

is detected with WG-320 filter.  

Modelling analysis - The parameters estimated experimentally by the transient kinetics 

analysis can be utilized to model the cross-bridge cycle by having a good estimate of the 

kcat and Km values obtained from the ATPase experiments and using the in-house 

MUSICO software (Srbolujub M. Mijailovich et al., 2017). We previously reported a kinetic 

modeling analysis of five DCM mutations using this approach (Ujfalusi et al., 2018).  This 
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can be employed to predict the transient occupancy of the states in the myosin ATPase 

cycle, across a wide range of actin concentrations assuming initially a state where [ADP] 

= [Pi] = 0, and the system proceeds to steady-state activity (Srbolujub M. Mijailovich et 

al., 2017). The different steps of the cycle have interdependence to each other, thus to 

properly fit the rate and equilibrium constants of the cycle, it is important that the 

experimental data provide a uniquely resolved set of modelling parameters (Fig 5.4) 

(Srboljub M Mijailovich et al., 2010). Consistent with our previous modeling work, the fitted 

parameters are defined to a precision of ~20%. Other well-defined assumptions and 

estimates applied to this mechano-chemical cycle model for β-MyHC are the isoform-

specific constraint effect and the effect of load on the motor (Greenberg, Shuman, & 

Ostap, 2014; D. A. Smith & Geeves, 1995). For a muscle fiber under isometric tension an 

approximate 5 pN of load with a 3-fold reduction in the ADP release rate constant are 

suggested as good estimates. This reduction of the ADP-release rate has little-effect on 

the ATP flux, because this step is significantly faster than the overall kcat. Additionally, the 

rate of entry into the force-generating state is expected to be inhibited by load via the 

Fenn effect (Fenn, 1923). Therefore, a 3-fold inhibition of the ATPase flux by reducing the 

entry into the force-holding state (A·M·D) which is kPi in our model (David A. Smith, 2014). 

This assumes that a load will impact the Pi and ADP release steps similarly. 

In vitro motility - All the experiments were performed at 23°C. Glass coverslips (VWR 

micro cover glass) were coated with a mixture of 0.2% nitrocellulose (Ernest Fullam Inc.) 

and 0.2% collodion (Electron Microscopy Sciences) dissolved in amyl acetate (Sigma) 

and air-dried before use. A permanent double-sided tape (Scotch) was used to construct 

four channels in each slide, and four different experiments were performed on the same 
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slide. Partially inactivated myosin heads in S1 preparations were removed by the ‘dead-

heading’ process before performing the motility assay. The process of ‘dead-heading’ had 

the following steps: A ten-fold molar excess of F-actin was added to myosin in the 

presence of 2 mM ATP; the mixture was incubated for 15 min in an ice bucket; 50 mM 

MgCl2 was added to form F-actin Mg2+-paracrystals and incubated for 5 min; the 

paracrystals were sedimented at 350,000g for 15 min; supernatant was collected, and the 

sS1concentration was measured using the Bradford reagent (Bio-Rad). Before any 

experiments, dead-headed sS1 was diluted in 10% ABBSA [assay buffer (AB; 25 mM 

imidazole, pH 7.5, 25 mM KCl, 4 mM MgCl2, 1 mM EGTA, and 1 mM DTT) with bovine 

serum albumin (BSA, 0.1 mg/ml) diluted in AB], unless otherwise stated. 

For motility experiments using pure actin, reagents were sequentially flowed through the 

channels in the following order: 10 μl of 4 µM SNAP-PDZ18 diluted in AB and incubated 

for 3 min; 20 ul of ABBSA to block the surface from nonspecific attachments and 

incubated for 2 min; 10 μl of a mixture of eight-residue (RGSIDTWV)-tagged human ß-

cardiac sS1 (~0.05 to 0.1 mg/ml ) and incubated for 3 min; 20 μl of AB to wash any 

unattached proteins; and finally, 10 μl of the GO solution [5 to 10 nM 

tetramethylrhodamine (TMR)-phalloidin (Invitrogen)- labeled bovine actin, 2 mM ATP 

(Calbiochem), an oxygen-scavenging system consisting of 0.2% glucose, glucose 

oxidase (0.11 mg/ml; Calbiochem), and catalase (0.018 mg/ml; Calbiochem)], and an 

ATP regeneration system consisting of 1 mM phosphocreatine (Calbiochem) and creatine 

phosphokinase (0.1 mg/ml; Calbiochem) in ABBSA]. 
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Table 1. Kinetic parameters for β-WT and 8 HCM 
mutations. The color code described in the smaller 
table to the right indicates degree of difference from 
WT. Experimental conditions for stopped-flow: 
25 mM KCl, 5 mM MgCl2, 20 mM MOPS, pH 7.0, 20 
°C. Data are the mean ± S.E. values from 3-5 
independent measurements with 4-6 technical 
replicates. Bottom of the table contains the ATPase 
values used for modeling: 
*ATPase values from Adhikari et al. 
**ATPase values from Kawana et al. 
***Unpublished ATPase values.  
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Figure 1. Structural location of HCM mutations. (A) Structural model of the catalytic 
domain of β-MyHC (based on PDB 4P7H). The heavy chain is shown as a ribbon diagram 
with the major subdomains and HCM mutations color-coded for the reader.  The mutations 
sites are shown in space filling form in individual colors. The same colors are used 
throughout the figures and tables. Color code: Red-H251N; Green-D382Y; Orange-F540L; 
Light blue-P710R; Purple-V763M; Pink-R719W; Yellow-R723G; Maroon-G741R. (B) 
Alignment of conserved MYH7 residues where mutations discussed throughout this study 
can be found. 
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Figure 2. Actin·myosin ATPase-driven cross-bridge cycle.  As discussed in 
(Mijailovich et al 2017) the basic ATPase cycle for myosin can be described in 8 steps: 
ATP binding to acto.myosin, ATP-induced conformational change that weakens actin 
affinity, ATP-induced dissociation from actin, ATP hydrolysis, actin re-attachment, Pi-
release + power stroke, conformational change in the transducer region coordinating 
ADP for release, and ending with ADP release. The myosin is a composite of a large 
ellipse (motor domain), a smaller ellipse (converter), and a small rectangle (lever arm) 
binding to an actin filament depicted as three black ellipses. A blue-shaded myosin is 
strongly-attached to actin (closed ellipse) and is progressively darker as it approaches 
the rigor state. The myosins with an open cleft are shown in yellow (weakly-attached) 
and red (detached). Nucleotide and Pi release are show in cerise. Equilibrium 
constants for each step are shown in green and defined in the clockwise direction. 
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Figure 3. Summary of percentage differences in kinetic 

parameters of HCM mutations relative to WT. (A) %-change 

for measured dissociation or equilibrium constants. Also included 

is the apparent Km from ATPase analysis. (B) %-change of 

several measured rate constants. Color-coded to match the 

parameter to each HCM mutation. The dashed line represents 

20% change in the parameter considered to be the precision of 

each measurement. 
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Figure 5. The calculated values for duty ratio, ATPase, 

maximum shortening velocity, and occupancy of the 

force-holding A·M·D state for each of the HCM-causing 

mutations studied. The dashed line indicates the WT protein 

value. The left bar charts show the values based on kinetic 

measurements at [A] = 3 Km. The right bar charts are the 

predicted results if the myosin additionally bears a 5-pN load. 
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Figure 6. Comparison of normalized in vitro motility values to the 

predicted velocity of shortening. The solid coloring depicts the top 5% 

mean velocity values measured experimentally through unloaded in vitro 

motility. The bars with hatched patterns are the values predicted for the 

kinetic model analysis as described in (Ujfalusi et al 2018). The dashed line 

indicates the normalized WT value of 1 for comparing the mutations. 
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Figure 7. Economy of force generation and velocity for HCM 

mutations. Top, ATP usage per second per pN of force while 

generating 5 pN of force at [A] = 3 Km, Bottom, ATP used per second 

at maximum shortening velocity (zero load). Because ATPase and 

DR have the same dependence on [A], this calculation is the same 

at all actin concentrations except very low values where the motor 

cannot maintain constant velocity. 
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