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Summary 

It is widely accepted that beta-band oscillations play a role in sensorimotor behavior. To further 

explore this role, we developed a novel hybrid platform to combine operant conditioning and phase-

specific intracortical microstimulation (ICMS). We trained monkeys, implanted with 96 electrodes 

arrays in motor cortex, to volitionally enhance local field potential (LFP) beta-band (20-30Hz) 

activity at selected sites using a brain-machine interface (BMI). We demonstrate that beta 

oscillations of LFP and single-unit spiking activity increased dramatically with BMI training, and 

that pre-movement Beta-power was anti-correlated with task performance. We also show that 

phase-specific ICMS modulated the power and phase of oscillations, shifting local networks 

between oscillatory and non-oscillatory states. Furthermore, ICMS induced phase-dependent effects 

in animal reaction times and success rates. These findings contribute to unraveling of the functional 

role of cortical oscillations, and to future development of clinical tools for ameliorating abnormal 

neuronal activities in brain diseases. 
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Introduction 

Oscillatory activity, in a variety of frequency bands, is considered, by both theoretical and 

experimental neuroscientists, as a possible mechanism for the generation of assemblies of neurons 

that contribute to various functions from sensation to action and cognition (Gray et al., 1989; 

Hernandez-Gonzalez et al., 2017; Murthy and Fetz, 1996). Furthermore, these oscillations are also 
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implicated in brain diseases (Brown et al., 2001; Raz et al., 2000; Uhlhaas and Singer, 2010), 

suggesting that they may reflect system abnormalities. 

In this study, we focused on oscillatory activity in the beta frequency band of 20-30Hz (termed 

below as Beta) in motor cortex. Beta has been hypothesized to support synchronization over large 

distances (Kopell et al., 2000) and has been linked to different cognitive functions such as attention 

(Buschman and Miller, 2007) and working memory (Lundqvist et al., 2016). In motor cortex it has 

been demonstrated that Beta increases during hold periods, attenuates during movement initiation, 

and re-emerges thereafter (Baker et al., 1997; Pfurtscheller et al., 1996; Sanes and Donoghue, 1993; 

Tan et al., 2016). Engel and Fries suggested that Beta is related to preservation of the current 

sensorimotor or cognitive state (“status quo hypothesis”) (Engel and Fries, 2010). However, the 

functional relations between Beta, neuronal computation and behavior remain unclear. 

There is also increasing evidence that patients suffering from neurological and psychiatric diseases 

exhibit abnormal oscillatory activity that may reflect impairment in neural dynamics. For instance, 

it has been established that Beta is greatly enhanced in Parkinson’s disease (Brown et al., 2001; 

Little and Brown, 2014; Raz et al., 2000), whereas a reduction in Beta and gamma oscillatory 

activity has been observed in schizophrenic patients during the execution of a wide range of 

cognitive tasks (Uhlhaas and Singer, 2010).  

The lack of understanding of the role of Beta in health and disease has led to a growing interest in 

this frequency range and to increasing attempts to manipulate these oscillations and the neuronal 

activity that underlies them. 

One approach is to exploit the plasticity of neuronal circuits – training the brain to modulate 

endogenously-generated oscillations by neural operant conditioning (biofeedback) (Fetz, 1969). 

Combining brain machine interfaces (BMI) with neural conditioning led to experiments in which 

subjects were trained to modify their brain activity in order to initiate actions and receive rewards. 

In a previous study conducted in our lab, it has been demonstrated that the power of local field 
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potential (LFP) in the gamma band (30-43Hz) can be enhanced using this paradigm (Engelhard et 

al., 2013). Recently, Beta has also been the target of similar operant conditioning schemes, which 

demonstrated positive correlation between the volitionally induced Beta-power and the reaction 

time (RT) (Khanna and Carmena, 2017; Peles et al., 2016). 

An additional classic intervention tool, is the intracortical microstimulation (ICMS) (Stoney et al., 

1968), which has been used extensively to modulate neuronal activity. In motor cortex, ICMS can 

evoke movements (Graziano et al., 2002), affect functional connectivity (Jackson et al., 2006), and 

disrupt or delay voluntary movements (Churchland and Shenoy, 2007; Griffin et al., 2011). In most 

studies, the ICMS has been used in open-loop conditions that did not depend on the ongoing 

activity.  

Here, we use a closed-loop system, by detecting oscillations and examining the effects of ICMS on 

the detected pattern. The system is based on well-established evidence that during oscillations, 

some neuronal ensembles increase or decrease their firing rate at specific phases of the oscillation 

(Martin and Schroder, 2016; Murthy and Fetz, 1992). We assumed that stimulating at one of these 

preferred or non-preferred phases might change the balance between depolarization and 

hyperpolarization of neurons near the stimulation site. Careful choice of a specific stimulation phase 

could therefore induce opposite perturbations, enhancing an existing oscillation or alternatively, 

suppressing the oscillation. This notion is supported by recent computational (Holt et al., 2016), 

experimental (optogenetic stimulation (Siegle and Wilson, 2014) and transcranial magnetic 

stimulation (Guerra et al., 2016; Schilberg et al., 2018)) and clinical studies (deep brain stimulation 

(DBS) locked to the patient’s tremor (Cagnan et al., 2017)). A recent study conducted on 

Parkinson’s disease patients used open-loop deep brain stimulation, and applied offline analysis to 

demonstrate that the suppression of Beta was dependent on the phase relations between the 

electrical pulse and the neuronal oscillations (Holt et al., 2019). This promising result emphasizes 

the need for advanced methodologies for modulation of spatiotemporal patterns of brain activity. In 
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particular, real-time detection of targeted neuronal patterns and closed-loop stimulation is one of the 

main challenges of translational, state-of-the-art studies (Holt et al., 2019; Holt et al., 2016; Moll 

and Engel, 2017; Zanos et al., 2018). In addition, advances in these methodologies will facilitate 

deeper understanding of the relation between experimental modulation, neuronal state, and 

behavior.  

Here, we employed a novel technique, which combined operant conditioning and ICMS as 

synergistic approaches for manipulating cortical oscillations. We used a real-time BMI platform to 

induce volitional increase of Beta oscillatory activity, by reinforcing emergence of these patterns. 

Then while Beta was increased, we applied phase-specific ICMS at local sites in the primary motor 

cortex to explore the effects on the local network dynamics and the animal’s behavior.  

 

Results 

Details of the experimental design are described in the Methods section. Briefly, two macaque 

monkeys were chronically implanted with arrays of 96 recording and stimulating microelectrodes 

(Blackrock Microsystems, Salt Lake City, UT, USA) in the hand area of motor cortex (see Figure 

S1). Data for this report include 2790 well-isolated single-units recorded in 80 daily sessions and 

LFP from 149 sessions. During each session, monkeys performed a visuomotor task while they 

volitionally controlled the Beta by means of neural operant conditioning. 

Figure 1A shows the trial sequence. The monkey initiated a trial by moving its hand in response to a 

visual cue (orange circle, stage 0). LFP signals recorded by 2-3 conditioning electrodes in the array 

were used as a real-time input to the BMI algorithm. A visual signal in the form of a green ring 

(stage 1) was presented to the monkey, with its radius proportional to the Beta-power (20-30Hz). 

The Beta had to reach a minimal level (threshold-reach) before proceeding to the next stage of the 

trial, at which a visual cue (yellow or red circle) was presented to the monkey (stage 2).  
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To explore how perturbations of a local network in an oscillatory state modulate the network 

dynamics, we applied ICMS to a single electrode located in the vicinity of the conditioned site of 

the array. ICMS was applied in randomly selected trials after threshold-reach (stage 2) and 

consisted of a train of 5 to 8 balanced bi-phasic pulses, termed as an ICMS-train (Figure 1B). An 

ICMS-train was precisely timed at the rising or falling phase of the LFP oscillation (hereafter 

 

Figure 1. Trial scheme: behavior, recording and stimulation 

(A) Trial scheme. Stage 0: The monkey responds to a cue (orange) to express alertness (“ready”). Stage 1: 

Beta enhancement conditioning. Stage 2: Visual cue (red or yellow), with or without ICMS (lightning 

symbol). Stage 3: Go-signal followed by key press.  

(B) ICMS properties with UP/DN stimulation illustration. 

(C) typical examples of NS, UP, and DN trials. Top panel: raw LFP signal averaged over the conditioning 

electrodes. In cyan, the epoch during which the Beta-power threshold was crossed. Vertical green and red 

lines mark the UP and DN ICMS-trains respectively. Middle panel: filtered LFP signal (20-30Hz). Bottom 

panel: Beta-power normalized by the power at threshold-reach. Threshold crossing point is at the 

intersection of the dashed black lines. 
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referred to as “UP” and “DN” trials, respectively). Trials with no stimulation are referred to as "NS" 

trials. In all trials, to obtain a reward, oscillations had to be maintained until the Go-signal (circle 

turned green) and the monkey had to correctly respond to the visual cue by pressing the right or left 

key (stage 3). 

Figure 1C shows single-trial examples of the LFP input to the BMI in NS, UP and DN trials. The 

top panel shows the raw LFP with the segment that reached the threshold marked in cyan. Vertical 

green and red lines mark the ICMS-train for UP and DN trials respectively. The middle panel shows 

the same trace filtered between 20-30Hz. The bottom panel shows the Beta-power with the desired 

threshold and the crossing point (cyan dot).  

 

Enhancing Beta by neural operant conditioning  

The experiments began with a learning period (first 26 and 19 recording sessions for monkeys C 

and A respectively) during which the monkeys acquired and gradually improved volitional control 

of Beta oscillations. Figure 2 presents data from the learning period to illustrate this improvement of 

monkey C (left column) and monkey A (right column). All other analyses in this report are based on 

data from the rest of the sessions, after the monkeys reached stable volitional control of Beta. 

Figure 2A shows the normalized power spectrum at the beginning (blue) and end (green) of the 

learning period, for on-going activity (dashed line, starting 1 second before trial start) and for the 

conditioning period (solid line, before threshold-reach). Figure 2B shows the ratio between the 

Beta-power during the conditioning period and during the on-going epoch, across daily sessions. 

The figure clearly demonstrates that the two monkeys learned to increase the Beta-power during the 

neural operant conditioning. 

The color scaled matrices in Figure 2C display the power-ratios across the entire array at the 

beginning (small blue matrix) and at the end (large matrix) of the learning period. The figure shows  
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Figure 2. Enhancing Beta by neural operant conditioning  

(A) Mean normalized power spectrum for monkey C (left) and A (right) at single recording days from early 

(blue) and late (green) sessions of the learning-period (first 26 and 19 sessions for monkeys C and A, 

respectively). The LFP power at the conditioning electrodes was computed over a 350ms epoch, for on-

going activity (dashed line, starting 1s before trial-start), and for the conditioning (solid line, at threshold-

reach). Red bar marks the conditioned frequency band. 

(B) Red dots denote the ratios between mean Beta-power during the conditioning and during on-going 

activity, across the learning period. Blue and green arrows and dots mark the early and late sessions (shown 

in (A)), respectively. Correlation coefficient (CC) between the variables was 0.82 for monkey C and 0.86 

for monkey A. 

(C) Color-coded matrix showing Beta-power ratios (calculated as in (B)) for each of the 96 electrodes 

across the array at the end of the learning period. Conditioning electrodes are marked by cyan frames. 

Black squares represent noisy or non-functional electrodes. Bottom left: A graph showing sorted Beta-

power ratios for all electrodes, with the conditioning electrodes marked in cyan. Bottom right: Beta-power 

ratios for the beginning of the learning period (small blue matrix). 
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that while there was little or no Beta on all electrodes at the beginning of learning, it increased 

dramatically by the end of learning around the conditioning electrodes (marked in cyan frames), and  

to some extent on all electrodes. This is also shown in the graph at the bottom left of the large 

matrix, where all electrodes are sorted by their post-learning power-ratios (conditioning electrodes 

marked in cyan). 

 

Beta oscillations of single-units exhibit phase locking to the LFP 

During LFP Beta-conditioning epoch of each trial (Figure 1A, stage 1), we observed increased Beta 

in spiking activity, phase locked to the LFP Beta (Figure 3). Figure 3A presents examples of typical 

locking of spikes to the LFP oscillations. The top panel shows LFP from three electrodes averaged 

over one third of the trials with the highest Beta-power, and triggered on the last peak of the 

oscillation before threshold-reach (time=0). The three raster displays and peri-stimulus time 

histograms (PSTHs) of the lower panels show spiking activity of three neurons, recorded by the 

same electrodes and locked to the same time. 

To assess the LFP and spike synchrony, we calculated for each neuron a Phase-Locking Index, 

termed PLI, (ranging from 0 for no locking to 1 for perfect locking) and the preferred phase (see 

Methods). More than half of the sampled neurons (1740 of 2790) had statistically significant PLIs 

(p<0.01, bootstrapping, see Methods). For many of these neurons, the PLIs, while significant, were 

quite small (51% had PLI < 0.1) reflecting the variable nature of the relation between LFP and 

spikes firing. Figure 3B shows the distribution of significant PLI values. The three arrows on the x-

axis mark the PLIs (0.1, 0.22 and 0.35) of the neurons in 3A. 

Next, we explored the distribution of the preferred phases of neurons with significant PLI (Figure 

3C). Note that only 10.2% of the neurons had their preferred phase during the half cycle around the  
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positive peak of the oscillation, while almost 90% lie around the trough (90° to 270°, marked in red 

in the inset cycle plot of 3C). The figure also shows that the majority of neurons (60%) tend to 

synchronize their firing to the falling phase (0° to 180°) of the LFP Beta with the mean preferred  

 

Figure 3. Beta Oscillations of single-units exhibit phase locking to the LFP 

(A) Phase locking examples of three units. The top panel shows the mean LFP of three electrodes during 

conditioning, and the bottom panels, examples of three units recorded by the same electrodes. The raster 

displays and PSTHs for the three units depict varied degrees of phase locking. Time zero is the last positive 

LFP peak before threshold-reach. Right: 100 overlaid shapes of randomly selected spikes, of each unit. 

(B) PLI distribution of 1740 neurons having significant PLIs (p<0.01, bootstrapping, see Methods). Arrows 

mark the three units presented in (A). 

(C) Preferred-phase distribution for the significant-PLI neurons. Almost 90% of the neurons preferred the 

half cycle around the negative peak of the oscillation (marked in red in the inset cycle plot). Red arrow 

denotes the mean preferred phase. Data in (B) and (C) are based on 80 sessions. 
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phase being 168°. 

To sum up, in spite of the low PLI value of each neuron, their tendency to fire in a limited phase-

regime (mainly around the LFP trough) results in synchronous state of the network, as demonstrated 

in Figure 6A below (especially the epoch before time zero). 

 

LFP Beta-power before movement is anti-correlated with task performance 

In order to explore how the monkey’s behavior is influenced by the volitionally enhanced Beta, we 

examined the monkey’s reaction time (RT, from Go-signal to movement initiation), movement time 

(MT, from movement initiation to key press), and success rate (correct key presses). 

RT and MT were computed based on the signal of an accelerometer attached to the monkey’s hand 

and the key press time. Figure 4A shows two trial examples, depicting the accelerometer signal 

(blue) and the normalized Beta-power (red). Figure 4B shows that the RT+MT epoch and success 

rate were correlated with Beta-power, with a significant increase of the period from Go-signal to 

key press (RT+MT), and decrease of success-rate as Beta-power rises. The power was measured in 

a segment of 350ms around the Go-signal. These results, showing that Beta interferes with motor 

execution, are consistent with the results of previous studies (Joundi et al., 2012; Khanna and 

Carmena, 2017; Pogosyan et al., 2009) and the “status quo hypothesis” (Engel and Fries, 2010). 

It has been debatable whether the Beta-related slower response is due to a longer reaction time (RT) 

or a slower movement. Pogosyan et al. reported that when Beta was induced by transcranial 

alternating current stimulation (tACS), the movement time increased, but RT was unaffected. 

Khanna et al., on the other hand, showed that following volitionally induced Beta, the RT 

decreased, but movement velocity-parameters were not correlated with the Beta-power. Here we 

found that both RT and MT were longer in high Beta-power trials (Figure 4C), but partial- 

correlation analysis reveals that the statistically significant partial correlation is that of Beta-power  
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and RT (Beta-RT: CC=0.247, p<0.0001, Beta-MT: CC=0.027, p=0.025) in accordance with Khanna  

et al. We therefore use only RT hereafter to evaluate the relations between Beta and motor behavior.  

 

Figure 4. LFP Beta-power before movement is anti-correlated with task performance 

(A) Examples of two single trials with shorter (~400ms) and longer (~650ms) RTs, showing the 

accelerometer signal (blue graph, used to compute the RT) and the normalized Beta-power (red graph). 

Dashed vertical lines mark (from left to right) the Go-signal, the movement onset and the key press. 

“Ready” marks the monkey’s initial movement to express alertness. Accelerometer signal is magnified and 

truncated to highlight movement initiation after Go-signal. Time zero is the beginning of the trial. 

(B) Success rate (orange) and RT+MT (blue) vs. Beta-power, normalized by the power at threshold-reach. 

(C) Change in RT (dark-blue) and MT (light-blue) vs. the normalized Beta-power. The change is relative to 

the RT and MT at the lowest Beta point (at ~0.1). Mean RT and MT are 507ms and 276ms respectively. 

The graphs show moving average with SEM. Significance was tested between the first (lowest Beta) and 

last (highest Beta) points of the graphs (p<0.001, Fisher’s test for success rate and Wilcoxon signed-rank 

test for RT, MT and RT+MT). Data are based on NS (no stimulation) trials from 30 sessions. 
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Differential effect of stimulation phase on LFP Beta 

Once the monkeys learned to volitionally enhance Beta-power, we explored how perturbations of a 

local network in an oscillatory state modulate the network dynamics. To do this, we applied ICMS 

to a single electrode located in the vicinity of the conditioned site of the array. Figures 5A-F 

describe the effect of ICMS on the LFP at the conditioning electrodes. The plots show that 

stimulating at the rising phase of the oscillation (UP, green) increased the Beta while stimulating at 

the falling phase (DN, red) decreased or did not affect the oscillations as compared to the oscillatory 

activity in trials with no stimulation (NS, blue). The difference can be seen at the single-trial level  

for UP (Figure 5A) and DN (Figure 5B) trials, as well as at the average activity (Figure 5C). Note 

that the ICMS pulses in UP and DN trials fall on opposite phases of the LFP, indicating accurate 

phase detection. The plots in Figure 5D display histograms of the Beta-power ratio between the 

Beta during stimulation and the Beta before threshold-reach. While the oscillations tend to decrease 

in NS trials (power ratio<1 in 77.4% of the trials, median ratio of 0.52), they significantly increase 

in UP trials (power ratio>1 in 70.6%, median ratio of 1.53). In contrast, during DN stimuli the Beta-

power decreased even below the NS trials (power ratio<1 in 87.6%, median ratio of 0.34). 

Figure 5E depicts the Beta-power as a function of time around the onset of the ICMS-train, 

normalized by the mean Beta-power at threshold-reach. Monkey C showed a high increase in Beta-

power for UP trials relative to the NS trials, while in DN trials there was a more moderate, but 

significant, decrease of Beta. The effects observed in monkey A show a significant, but weaker 

increase for UP trials with no significant change for DN trials as compared to NS. Note that, for the 

two monkeys, the oscillatory activity during the UP trials persisted for a longer period after the 

onset of the ICMS-train, relative to the NS and DN trials.  

In addition to the decrease in Beta-power in the DN trials, Figure 5C also suggests a phase shift in 

the oscillatory wave following the ICMS-train, as the first positive peak of the average DN LFP 

trace lags the NS trace by almost half the oscillatory cycle. This phase shift can also lead to a drop 
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of the oscillation frequency. To explore this possibility, we computed the mean spectrograms of NS, 

UP, and DN trials, and found that DN stimulation indeed induce a decrease in Beta-power, 

accompanied by an increase in lower frequencies power, under 20Hz (Figure 5F). 

 

Figure 5. Differential effect of stimulation phase on LFP Beta 

(A,B) Single trial examples during UP (green) and DN (red) stimulation. ICMS pulses are marked by 

vertical black lines. 

(C) Averaged LFP for UP (top) and DN (bottom) trials. The averaged NS LFP is marked in blue. 

(D) Histograms of the ratio between Beta-power (20-30Hz) during stimulation and Beta-power at 

threshold-reach for NS, UP and DN trials. Red and green arrows point to the trials shown in (A) and (B). 

(E) Average Beta-power during stimulation (normalized by the Beta-power at threshold-reach) in monkey 

C (top) and A (bottom). Dashed lines denote the period of significant UP vs. NS (green) and DN vs. NS 

(red) power differences (p<0.01, Wilcoxon signed-rank test). 

(F) Spectrograms of the average Beta-power for NS, UP and DN trials. Note the clear increase of Beta by 

UP stimulation and decrease by DN stimulation as compared to NS. See also Figure S2. 
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Differential effect of stimulation phase on spiking activity 

The average spiking activity (Figure 6A, top plot) was affected differentially by the ICMS-train like 

the LFP (Figure 6A, bottom plot): the oscillatory spiking increased and prolonged following the UP 

stimuli (green), as compared to the DN stimuli (red). Additionally, DN stimuli resulted in a 

frequency decrease of the spiking activity (Figure 6B) like the LFP (Figure 5F). The data of Figure 

6 include 340 well-isolated neurons with PLI>0.1, recorded by electrodes across the whole array. 

We next used principal components analysis to quantify the difference between UP and DN effects 

on the ongoing oscillatory pattern of spiking activity (see Methods for details). Briefly, we defined 

a short interval of 30ms after the first (UP or DN) stimulus of each ICMS-train as the Stimulus 

evoked pattern and compared it to the expected patterns in the same interval, in the absence of a 

stimulus, defined here as the expected firing pattern. We then calculated the principal components 

(PCs) that optimally represent the expected firing pattern using a sample of 59 neurons exhibiting 

prominent pre-stimulus Beta activity in 30ms intervals before the first ICMS pulse. Figure 6C 

shows the mean firing patterns of these 59 neurons before and after UP (green) and DN (red) 

stimulation and the mean expected firing patterns in solid and dashed lines respectively. Note (in 

the shaded 30ms post-stimulus interval) that for the UP trials, the stimulus evoked pattern (solid 

green) is in phase with the expected (dashed green) but stronger, and the response to DN 

stimulation (solid red) is also stronger than expected (dashed red), but phase reversed.  

Next, we examined how the stimulus evoked patterns of all 340 neurons are represented in the PC-

basis. We found that the two first PCs explain over 93% of the variance in these patterns (for details 

see Figure S3). Interestingly, the representation of UP vs. DN patterns by the two-dimensional PC 

space is markedly different, as shown by Figure 6D. To create this figure, we defined: 

∆𝑠𝑐𝑜𝑟𝑒𝑖 = 𝑃𝑃𝐶𝑖(𝑠) −  𝑃𝑃𝐶𝑖(𝑒) 
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Figure 6. Differential effect of stimulation phase on spiking activity 

(A) Mean and SEM of firing rate (top) and LFP signal (bottom) around the first ICMS pulse (time zero) for 

UP (green) and DN (red) trials. Spike data are based on 340 well-isolated (see Methods) neurons with 

significant PLI above 0.1. LFP is averaged over the conditioned electrodes. 

(B) Mean normalized firing rate power-spectrum of the same neurons, computed over 250ms after the first 

ICMS pulse (UP and DN) and before the ICMS-train. 

(C) Mean UP and DN firing rate around the first ICMS pulse at time zero, calculated for 59 well-isolated 

neurons having significant PLI>0.1 and exhibiting prominent pre-stimulus Beta oscillatory activity (see 

Methods). Solid lines mark the mean UP and DN firing rate, while dashed lines mark the expected firing 

pattern, had there been no stimulation. Shaded gray area marks the 30ms epoch used for the PCA analysis. 

(D) Comparison of UP ∆𝑠𝑐𝑜𝑟𝑒𝑖 (green) vs. DN ∆𝑠𝑐𝑜𝑟𝑒𝑖 (red) for neurons recorded within 2mm of the 

stimulating electrode. 𝑠𝑐𝑜𝑟𝑒𝑖 is the length of the projection on PCi (i=1,2) and ∆𝑠𝑐𝑜𝑟𝑒 is the difference 

between UP or DN score and the projection of the expected firing pattern. The distributions of UP and DN 

∆𝑠𝑐𝑜𝑟𝑒𝑠 for all neurons are shown in the top (PC1) and right (PC2) histograms. Data are based on 37 

sessions. Note that ∆𝑠𝑐𝑜𝑟𝑒1 of UP trials are skewed towards positive values, while the values for DN trials 

tend to be negative. Notation: N - number of neurons; Ntr – number of trials. See also Figures S2, S3 and S4. 
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where s is the stimulus evoked pattern (either UP or DN), e is the expected firing pattern and 𝑃𝑃𝐶𝑖 is 

the projection score of the ith principal component (i=1,2). Figure 6D shows a scatter plot of 

∆𝑠𝑐𝑜𝑟𝑒1 and ∆𝑠𝑐𝑜𝑟𝑒2 for the UP response (green) and DN response (red) for the 166 neurons, 

which were less than 2mm away from the stimulating electrode (see Supplementary Figure 3 for the 

rest of the neurons). The top and right histograms in the figure present the distributions of ∆𝑠𝑐𝑜𝑟𝑒1 

and ∆𝑠𝑐𝑜𝑟𝑒2. The figure shows that 85.5% of the neurons increased their PC1 score following UP 

stimulation (green dots), implying a strengthening of the expected firing pattern, while at the same 

time DN stimulation caused a decrease in PC1 score in 75.7% of the neurons (red dots), suggesting 

an interference with the expected oscillatory pattern. Thus, while UP stimulation enhanced the trend 

of the volitional oscillations, the DN stimulation interfered with this trend. 

 

The differential effects of stimulation phase decay with distance 

Previous studies demonstrated that ICMS at similar currents and higher frequency (200Hz) affect 

neuronal elements in a radius of 500µm around the stimulation site, and may spread up to 1-2mm 

depending on the ICMS parameters (Mitz and Wise, 1987; Roe et al., 2015). To evaluate how the 

stimulation-effects propagate across the array and how they modify LFP signals and single neuron 

firing patterns, we again used the PCA and applied it to spiking activity and LFP signals recorded 

by all electrodes of the array (see Methods).  

Figure 7 shows spatial maps of ∆𝑠𝑐𝑜𝑟𝑒1 of LFP (top row) and spikes (bottom row) in UP (7A and 

7D) vs. DN trials (7B and 7E). The plots show that near the stimulation site there is a significant UP 

vs. DN differential effect. Namely, the response patterns (of LFP and spikes) follow the general 

shape of the expected pattern during UP stimulation (red zones of the map), while during DN 

stimulation, the pattern is anti-correlated (blue zones) with the expected pattern. Moreover, these 

plots demonstrate that the effect decays with distance, leaving around half of the array with little or 

no difference between UP and DN ∆𝑠𝑐𝑜𝑟𝑒. The differential LFP and spiking activity during UP vs. 
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DN responses and their decay with distance are summarized in Figures 7C and 7F respectively. 

 

Differential effect of stimulation phase on behavior  

So far, we have shown a significant correlation between pre-movement Beta-power and the 

behavioral indicators (Figure 4). We have also demonstrated that ICMS modulates Beta 

differentially depending on the phase (UP/DN) of the stimulation (Figures 5, 6 and 7).  

 

Figure 7. The differential effects of stimulation phase decay with distance 

(A,B) Color-coded matrix of LFP ∆𝑠𝑐𝑜𝑟𝑒1 values across the array for UP and DN trials. The stimulation 

site is marked by an asterisk. White squares denote sites where the recording was occluded by a stimulus-

artifact. In black, electrodes that are not connected. 

(C) Summary of the UP (green) and DN (red) LFP ∆𝑠𝑐𝑜𝑟𝑒1 values vs. distance from the stimulation site. 

(D-F) same as (A-C) for spiking activity. Data are based on 37 sessions. Note the opposite effects of UP vs. 

DN stimulation on both LFP and spiking activity: UP stimulus increases the projection on PC1, while DN 

stimulation decreases it. See also Figures S3 and S4. 
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We next examined the differential effect of the stimulation phase on RT and success rate. Given the 

positive correlation between Beta-power and RT, we analyzed each of the trial-types (UP/DN/NS) 

in three regimes of short, medium and long RT, where each regime includes 25% of the trials. 

Examining RT in these regimes (Figure 8A) revealed that in the trials with long RT, the difference 

between UP and DN stimulation was statistically significant, exposing a differential effect of ICMS  

 

Figure 8. Differential effect of stimulation phase on behavior  

(A) RT (mean and SEM) in UP, DN, and NS trials calculated for three regimes of short, medium, and long 

RT, where each regime includes 25% of the trials. 

(B,C) Success rate and normalized Beta-power for the same three regimes as in (A). Note that in long RT 

trials (right column) there is a significant differential effect of UP vs. DN stimulation on RT, success rate 

and Beta-power. Significance is assessed using Fisher’s test for success rate and Wilcoxon signed-rank 

test for RT and Beta. Data are based on 30 sessions. 
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on RT. However, the RTs of the medium and short regimes were not affected by the stimulation. 

The same phenomenon was observed for the success rate (Figure 8B), namely, only in long-RT 

trials, the success rate was differentially affected by UP vs. DN stimulation.  

Validating the link between ICMS, Beta and behavior, Figure 8C shows that the Beta-power in 

these trials was indeed higher in UP trials than in DN trials. Note that the Beta-power was similarly 

affected by ICMS in all three groups, with a tendency for stronger differential effect in the long RT 

regime. These results suggest that the effects of ICMS via Beta-power modulation is limited to 

behaviors that deviate from the normal, expected regime. 

 

Discussion 

This study examines volitional control of LFP and single-unit activity in local cortical circuits, 

combined with real-time, phase-specific microstimulation as a way to understand the cortical 

dynamics and its relation to behavior. 

Our findings confirm previous work (Khanna and Carmena, 2017; Pogosyan et al., 2009) by 

showing that increasing Beta disrupts movement initiation and execution. Extending these findings, 

the study shows that Beta-power is anti-correlated with success rate, suggesting that increased Beta-

power also interferes with higher aspects of task performance, including perception and/or decision-

making. 

We developed a real-time phase-detection algorithm and applied it in our microstimulation 

procedure. We found that phase-specific ICMS has differential and even opposite effects on 

volitionally enhanced neuronal oscillations and on spiking activity of single neurons, depending on 

its precise timing. These effects are site-specific, decaying rapidly with distance from the 

stimulation site. Lastly, we show that ICMS has phase-specific differential effects on task 

performance (RT and success rate) in some regimes of behavior. 
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Volitional control of Beta Oscillations 

Studies of neural conditioning in BMI settings demonstrated in recent years that subjects can 

volitionally modulate spatiotemporal patterns of activity in local cortical circuits. We confirm 

previous work (Engelhard et al., 2013; Khanna and Carmena, 2017) by showing that monkeys learn 

within 2-4 weeks to modulate Beta oscillations. After the initial learning period, their performance 

reached a new stable state where the Beta oscillations were dramatically higher as compared to the 

pre-learning state (Figure 2). The high Beta oscillations evolved in each session for several months 

of recordings in the two monkeys. These learning-induced changes of the local circuit suggest that 

the BMI conditioning was effective in forming long-term plasticity in the conditioned site. 

 

Differential effects of UP/DN stimulation on LFP and spikes 

The results show that the LFP Beta signal is accompanied by a similar pattern in the firing rate of 

many neurons, reflecting an oscillatory state of the underlying network. During this state, neurons 

tend to fire together, expressing synchronized Beta rhythm. Namely, these neurons increase their 

firing rate at specific phases of the LFP oscillation, while other phases have sparser neuronal firing. 

Since LFPs are extracellular recordings that reflect mainly averaged subthreshold (e.g., synaptic) 

activities (Buzsaki et al., 2012), we associate the LFP’s DN and UP phases with “depolarizing” and 

“hyperpolarizing” phases of the membranes currents respectively. 

In our experiment, the main initial effect on LFP in the vicinity of the stimulating electrode was 

“upward”, towards the hyperpolarization, inhibitory regime, with a net suppression effect of spiking 

activity. This result is in line with Jackson et al. who demonstrated that antidromic stimulation in 

the pyramidal tract induces an inhibitory effect that resets the phase of LFP and spiking activity 

(Jackson et al., 2002). We found the same reset-effect in electrodes that were near the stimulating 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 30, 2019. ; https://doi.org/10.1101/622787doi: bioRxiv preprint 

https://doi.org/10.1101/622787
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 
 

site (see Figure S4). This stimulus-induced inhibition may explain the differential effects of UP vs. 

DN stimulation on the oscillatory activity: During UP trials, it increases the hyperpolarizing trend 

and during DN trials it reduces the depolarizing trend. A possible mechanism to support this 

explanation is based on the likely assumption that ICMS recruits mainly inhibitory interneurons, 

due to their higher input resistance and lower threshold. Under this assumption, UP stimulation 

increases the activity of inhibitory neurons during averaged hyperpolarization of the overall 

population (80% excitatory neurons), increasing the inhibition and enhancing the oscillatory trend. 

The opposite happens in DN stimulation, where the inhibitory neurons (which are activated by the 

stimulus) induce hyperpolarization currents on the population. This effect acts against the overall 

depolarization of the LFP (DN slope) and reduces the oscillatory trend.  

 

Effects on behavior  

We show that the choice of the stimulation phase had a dramatic differential effect on the neuronal 

state as portrayed by the LFP and spiking activity in the vicinity of the stimulating site. However, 

the effects on behavior (RT and success rate) were exposed only in a limited regime: the regime of 

longest RTs. This apparent discrepancy may be resolved by the hypothesis that the ICMS effects are 

reflected in behavior only when the circuit loses stability and produces high RT values. In this 

regime, the stimulation effects on the circuit are indeed reflected in the behavior (Figure 8): UP 

stimulation enhances the current trend (maintains the phase, increases Beta and increases RT) while 

DN stimulation disrupts the oscillatory trend (inverses the phase, decreases beta and decreases RT). 

The explanation of this hypothesis could be based on the balance between the local activity, which 

we monitor and affect by the local ICMS, and the activity in wider (remote) circuitry of motor-

control, which is predominantly resistant to the local perturbations in our experiment. It is possible 

that only when the total activity (local + remote) is unstable (producing higher RT and lower 

success rate) the phase of stimulation (UP/DN) is sufficient to affect behavior differentially. Future 
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experiments are necessary to test this interpretation and extend this line of research, using larger 

samples of neurons from wider cortical and subcortical brain regions. 

 

Translational aspects 

Following previous studies of volitional neuronal control (biofeedback), we present here a scientific 

tool, which uses volitional control to harness the inherent brain plasticity, to modulate neuronal 

state, and affect behavior. Extending these studies, we combine volitional control with fine-tuned 

electrical stimulation into a hybrid platform that can facilitate restoration of normal activity 

whenever abnormal patterns are identified. 

This hybrid system can be highly beneficial for treating undesired brain oscillations at different 

frequency bands, which have been evidenced in brain diseases, including Parkinson’s, 

schizophrenia and others (Brown et al., 2001; Little and Brown, 2014; Raz et al., 2000; Uhlhaas and 

Singer, 2010). For instance, it could serve as a future closed-loop, deep brain stimulation (DBS) 

(Little et al., 2013; Priori et al., 2013; Rosin et al., 2011) tool, detecting deviations from normal 

functioning, inducing volitional control of neuronal activity and injecting phase-locked stimuli, 

thereby placing the neural activity back on track. 
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Methods 

Animals and electrode implantation: Two female monkeys (Macaca fascicularis, weight 4 kg) 

were chronically implanted with 10x10 microelectrode-arrays (Blackrock Microsystems) with 400 

µm inter-electrode distance in the arm area of M1 of the Left hemisphere (see Figure S1 for array 

location). Electrodes were coated with iridium oxide and 1.5mm in length. Animal care and surgical 

procedures were in accordance with the National Institutes of Health Guide for the Care and Use of 

Laboratory Animals and supervised by the Hebrew University Ethics Committee for the Care and 

Use of Laboratory Animals. 

 

Experimental setup: Monkey sat in a behavioral setup, awake and performing a BMI and 

sensorimotor combined task. A data acquisition and neural stimulation system (AlphaLab SnR, 

AlphaOmega, Nazareth, Israel) was used for recording LFP and spikes from 96 microelectrodes and 

applying ICMS to a selected electrode.  
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The closed loop BMI analyzed the neural data in real time and decided when to reinforce desired 

pattern of activity. The BMI was embedded in custom-made software for behavioral-control, 

providing visual and auditory feedback as well as the food reward. 

 

Behavioral task: Each trial began with a visual cue (orange circle) instructing the monkey to make 

a small extension of the right (contralateral) palm to express alertness (Figure 1A, stage 0). Next, 

the monkey was conditioned to enhance the LFP Beta-power in 2-3 adjacent electrodes at a pre-

selected location of the array, receiving a visual feedback (green ring of a radius proportional to the 

Beta-power, around the orange circle) from the BMI algorithm (Figure 1A, stage 1). When a 

required Beta threshold has been reached, the monkey received a cue (green ring disappeared) and a 

period of 400-600ms began during which the orange circle turned either lighter or darker (Figure 

1A, stage 2). We refer to these colors as “yellow” or “red” respectively. The “yellow” and “red” 

colors were very similar (RGBs of (255, 136, 0) and (255, 130, 0)), respectively), imposing fixation 

and attention in order to discriminate between the colors. At this epoch an ICMS burst of around 

300ms was delivered in 80% of the trials through the selected electrode. During each session, the 

threshold could be manually adjusted so as to maintain a success rate of around 75-80%. 

Upon receiving a visual Go-signal (circle turned green), the monkey had to decide if the circle is 

yellow or red and report by pressing one of two keys with the contralateral hand (Figure 1A, stage 

3). Food reward and auditory positive-feedback were delivered based on the monkey’s report and 

the Beta-power after threshold had been reached. If the power remained above a threshold ß1, 

correct responses were always rewarded, and if the power was below ß1 and above ß2, correct trials 

were randomly rewarded with probability proportional to the Beta-power. Wrong key press trials or 

trials with beta below ß2 were not rewarded and an auditory negative-feedback was delivered.  

The monkey’s hand movements were monitored via an accelerometer attached to the middle finger. 

This was used both for measuring reaction time and for automatically failing the trial when a 
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movement occurred during the conditioning or stimulation epochs of the trial (Figure 1A, stages 1 

and 2). 

 

Session structure and data acquisition:  

Each recording session was composed of 12-24 alternating blocks of behavioral trials (~150±34) 

and control trials (46±10). In the latter, no behavior was required (Figure S2) and rewards were 

solely dependent on the Beta-power. LFP signals were sampled at ~1.4 KHz and filtered using a 

0.1–250 Hz band-pass filter. Spiking activity was sampled at ~22.3 KHz, filtered using a 0.25-8 

KHz band-pass filter and sorted online by the SNR recording system.  

 

Conditioning algorithm:  

The conditioning data were based on the LFP signal of 2-3 adjacent electrodes in a selected location 

where Beta was evidently observed before we started the conditioning sessions. The location of the 

conditioning electrodes was slightly adjusted during the first 26 and 19 sessions of the learning 

period for monkeys C and A, respectively.  

The BMI algorithm calculated for each conditioning electrode the mean power in a band between 

20-30Hz (“Beta”), using the average of the discrete Fourier transform (DFT) coefficients in that 

frequency band. This value was computed every 50ms on a 333ms window. The mean power of the 

2-3 electrodes was used for displaying the visual feedback (green ring), and for detecting Beta-

threshold crossings (like threshold-reach in Figure 1). 

To achieve a smoother, more natural motion of the green ring, a smoothing window was applied 

over every 3 consecutive Beta-calculations. In addition, a maximal step size was set to prevent jitter 

of the display. To impose volitional control of Beta without increase in the lower frequencies, an 

upper limit was set over a band between 8-16Hz. Once this limit was reached, the movement of the 

ring temporarily froze.  
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Electrical stimulation and real-time phase detection: ICMS-trains were applied through one 

electrode, selected to be in close proximity to the conditioning electrodes. In each trial, stimulations 

began after reaching the desired threshold (Figure 1A, end of stage 1). The timing of each pulse was 

determined as follows: the LFP data from a single conditioning electrode were filtered by a 

Savitzky-Golay smoothing and differentiation filter (Savitzky and Golay, 1964), and a zero-

crossing detector was applied to the derivative to reveal the signal's peaks. If the detected peaks 

matched the required Beta frequency (20-30Hz), ICMS was applied on either the rising phase (UP 

trials) or falling phase (DN trials) of the oscillation, aiming at about one-third of the rise or fall, 

respectively. The peak detection algorithm continued after each pulse, applying the next pulse no 

less than 25ms and no more than 120ms after the previous one. The time between the first and the 

last pulses was limited to 400ms, hence each burst consisted of 4 to 8 pulses (5 or more pulses in 

99.95% of the trials). The pulses were cathodic-phase-first with a phase of 100µs and intensity of 

80µA (with some controls at 40, 60 and 120µA). Each ICMS-pulse induced an artifact of around 

12msec, during which we could not detect spikes activity or LFP. For the LFP we estimated the 

voltage by spline interpolation. 

During some sessions, the control trials consisted of a single ICMS pulse. This pulse was applied at 

a random phase of the beta oscillation (Figure S2).  

 

Data Analysis: All post-processing was performed in MATLAB (MathWorks). The power 

spectrum was calculated using the DFT coefficients in segments of 350ms (Figure 2). For Beta-

power calculation, only those coefficients between 20 and 30Hz were used (Figures 1,2,4,5, and 8). 

For Figures 5E and 5F, we used somewhat shorter segments of 250ms with an overlap of 215ms to 

illustrate the evolvement of Beta as a function of time.  
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Single-units were sorted online by AlphaLab SnR. For some analyses, all neurons were used, while 

for others, only neurons with isolation scores above 0.74, and a signal to noise ratio (SNR) above 7 

were selected (well-isolated neurons). Isolation score was determined by a modified version of an 

isolation quality assessment procedure (Joshua et al., 2007). 

 

Behavioral indicators: Success rate was defined as the percent of trials, which ended in a correct 

key press. Note that this is different from the rewarded trials as the monkey did not receive reward 

for trials in which the Beta-power was too low after threshold-reach. Wrong key press was the 

predominant cause of trial failure (99%). The reaction time (RT, from Go-signal to movement 

initiation) was determined based on the signal of the accelerometer. In the behavioral analysis, only 

trials in which the monkeys pressed the left key were considered. To calculate the movement time 

(MT, from movement initiation to key press), RT was subtracted from the total time, from Go-

signal to key press. For the computation of behavioral indicators as a function of Beta (Figure 4), 

the Beta-power of each trial was normalized by the mean daily Beta-power calculated over the 

350ms prior to threshold-reach. The normalized power values were then sorted and filtered by a 

moving average procedure using a Gaussian window (length: 25% of the number of power values, 

σ: 8%, window-overlap: 96%) producing a Beta-power vector. The mean and SEM of the 

behavioral time indicators (RT, MT, RT+MT) were then computed for every element in this vector, 

based on the data of the corresponding trials. The mean success rate was computed in the same way 

as the behavioral time indicators. SEM of the success rate was calculated by bootstrapping (1000 

random sampling of the original set size, with replacements).  

 

Phase locking index (PLI) and preferred phase: We used a phase locking index (Lachaux et al., 

1999) to quantify the level of synchrony between the firing of each neuron and the Beta. To do that, 

we used the LFP of each electrode during the 200ms preceding threshold-reach (which presumably 
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consist of high Beta-power) and selected the third of the trials with the highest Beta-power. We then 

filtered the LFP signal in the Beta range (20-30Hz) and applied the Hilbert transform to the filtered 

signal. The phase of the Hilbert transform was used as the instantaneous phase of the LFP signal at 

the Beta frequency. Next, each spike was assigned a phase corresponding to the instantaneous phase 

of the LFP recorded from the same electrode during the time of the spike. Finally, we performed 

vector-averaging of each neuron’s phases to get its mean phase vector. The PLI is the size of this 

vector and the preferred phase of the neuron is the vector’s phase. Mathematically the PLI of a 

specific neuron can be computed as follows: 

𝑃𝐿𝐼 =
1

𝑁
|∑ exp(𝑖𝜃𝑗)𝑁

𝑗=1  |  

Where 𝜃𝑗  is the instantaneous phase of the jth spike and N is the number of spikes of the neuron. 

In our analysis, we’ve only used those neurons having statistically significant PLIs. For neuron X 

having 𝑃𝐿𝐼𝑥 and N spikes we randomly generated 1000 vectors of N phases and calculated the PLI 

of each vector. A neuron was considered to have a statistically significant PLI if the probability of a 

PLI above 𝑃𝐿𝐼𝑥 was less than 0.01. 

 

PSTH: PSTHs of spiking activity were calculated for all neurons, around the time of the first ICMS 

pulse, with 2ms bin-size. The PSTHs were then passed through a Gaussian filter of length 7 (14ms) 

and σ =2 and averaged over all relevant neurons (Figures 6, S2, S3 and S4). 

 

PCA: To study the differential response to UP and DN stimuli of spiking activity and LFP, we 

explored the 30ms intervals, starting 15ms after the first ICMS pulse, using PCA. For the spiking 

activity, we analyzed 340 well-isolated neurons with PLI>0.1. We chose 59 neurons exhibiting 

prominent pre-stimulus Beta activity, namely, at least 60% of their PSTH variance, during 60ms 

before stimulation, could be explained by a sine wave of 18 to 30Hz. We used the PSTHs of these 
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neurons to calculate the PCA of the expected firing pattern, under the assumption that without 

stimulation the oscillatory activity persists for another 50ms. We then projected the PSTHs of all 

340 neurons after the first ICMS pulse on the expected firing pattern PCs to get the UP and DN 

𝑠𝑐𝑜𝑟𝑒 in PC-space, subtracted the expected pattern of each neuron and compared the results of UP 

vs. DN ∆𝑠𝑐𝑜𝑟𝑒 (Figure 6D and S3). For the spatial maps (Figures 7D and 7E) we used a larger pool 

of neurons (N=2885) without restricting the isolation score or the PLI, thus enabling better statistics 

for all electrodes across the array. For each electrode, the final ∆𝑠𝑐𝑜𝑟𝑒 was the median of the 

∆𝑠𝑐𝑜𝑟𝑒𝑠 of all neurons recorded from that electrode. In the summary graph (Figure 7F) all neurons 

were divided into 5 equal-size groups based on their distance from the stimulating electrode. 

For the PCA of the LFP, expected pattern and ∆𝑠𝑐𝑜𝑟𝑒𝑠 for UP and DN were similarly calculated, 

based on the LFP activity in NS trials (Figures 7A-C). 
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