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ABSTRACT In developing countries, the sweetpotato, Ipomoea batatas (L.) Lam. (2n = 6x = 90), is an important autopolyploid
species, both socially and economically. However, quantitative trait loci (QTL) mapping has remained limited due to its genetic
complexity. Current fixed-effect models can only fit a single QTL and are generally hard to interpret. Here we report the use
of a random-effect model approach to map multiple QTL based on score statistics in a sweetpotato bi-parental population
(‘Beauregard’× ‘Tanzania’) with 315 full-sibs. Phenotypic data were collected for eight yield component traits in six environments
in Peru, and jointly predicted means were obtained using mixed-effect models. An integrated linkage map consisting of 30,684
markers distributed along 15 linkage groups (LGs) was used to obtain the genotype conditional probabilities of putative QTL at
every cM position. Multiple interval mapping was performed using our R package QTLPOLY and detected a total of 41 QTL,
ranging from one to ten QTL per trait. Some regions, such as those on LGs 3 and 15, were consistently detected among root
number and yield traits and provided basis for candidate gene search. In addition, some QTL were found to affect commercial
and noncommercial root traits distinctly. Further best linear unbiased predictions allowed us to characterize additive allele
effects as well as to compute QTL-based breeding values for selection. Together with quantitative genotyping and its appropriate
usage in linkage analyses, this QTL mapping methodology will facilitate the use of genomic tools in sweetpotato breeding as
well as in other autopolyploids.
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16 Genetic analyses in polyploid species pose extra challenges in17

comparison to diploid species, in spite of the evolutionary18

benefits that duplication of whole sets of chromosomes may19

have brought (Comai 2005; Van De Peer et al. 2009). When it20

comes to molecular markers, a co-dominant, biallelic single nu-21

cleotide polymorphism (SNP) directly informs on the genotypes22

of a diploid locus, but the best it can do alone in a polyploid lo-23

cus is to inform on its allele dosage. In diploid species, molecular24
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markers are usually qualitatively scored, and there are several25

methodologies and tools for performing analysis on genetic link-26

age (e.g., Stam 1993; Margarido et al. 2007) and quantitative trait27

loci (QTL) mapping (e.g., Broman et al. 2003; Da Costa E Silva28

et al. 2012a). In allopolyploid species, such as cotton (Wu et al.29

2015) and wheat (Hulse-Kemp et al. 2015), where preferential par-30

ing dictates meiotic chromosome behavior much like diploids,31

existing approaches can be readily applied. However, despite32

many successful studies in diploids and allopolyploids, QTL33

mapping in autopolyploids remains difficult. In fact, unlike34

diploid mapping populations, which can have two to four seg-35

regating QTL genotypes (in case of inbred or outbred species,36

respectively), autopolyploid mapping populations can have a37
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much wider range of possible genotypes per locus. For exam-38

ple, there are up to 36, 400 or 4,900 possible genotypes from39

crosses between two tetra-, hexa- or octoploid outbred parents,40

respectively.41

Single-dose markers, segregating in 1:1, 3:1 or 1:2:1 fashion,42

have limited information for building integrated genetic maps43

in autopolyploids, and can only be used for developing sep-44

arate parental maps (Shirasawa et al. 2017) or rather than the45

desired integrated linkage groups (Balsalobre et al. 2017). In46

order to make use of multiple-dose markers, the first step is to47

perform dosage or quantitative SNP calling. Although most48

methods were designed for tetraploid species (e.g., Voorrips et al.49

2011; Schmitz Carley et al. 2017), additional studies have tack-50

led this problem, and methods including higher ploidy levels51

are now available (Serang et al. 2012; Gerard et al. 2018). For52

building integrated genetic maps, tetraploid species can use the53

well-established TETRAPLOIDSNPMAP (Hackett et al. 2016). For54

higher ploidy species, MAPPOLY (Mollinari and Garcia 2018)55

is a better option than POLYMAPR (Bourke et al. 2018), because56

the latter is limited to tetra- and hexaploid species, and lacks the57

ability to robustly map all multiple-dose markers based on hid-58

den Markov models (HMM). With an integrated map, one can59

calculate the putative QTL genotype conditional probabilities,60

ideally using appropriate HMM (Hackett et al. 2016; Mollinari61

and Garcia 2018). Based on a model in Kempthorne (1955), an62

interval mapping (IM) method has been proposed as a first ap-63

proach to map QTL in autotetraploids in a form of a regression64

weighted by the conditional probabilities (Hackett et al. 2001),65

which also turned out to be expanded for an autohexaploid66

species (van Geest et al. 2017).67

For a general ploidy level m, this single-QTL model can be
written as

yi = µ +
m

∑
j=2

αjXij +
2m

∑
j=m+2

αjXij + εi (1)

where yi is the phenotypic value of individual i, µ is the intercept,68

αj is the additive effect of allele j, Xij is the conditional proba-69

bility of allele j in individual i, and εi is the residual error. The70

constraints α1 = 0 and αm+1 = 0 are naturally imposed to satisfy71

the conditions ∑m
j=1 Xj = 2 and ∑2m

j=m+1 Xj = 2, so that µ is a72

constant hard to interpret due to these constraints (Hackett et al.73

2001). Notice that 2m− 2 effects need to be estimated, i.e. tetra-,74

hexa- or octoploid models will have six, ten or 14 main effects,75

respectively. In order to answer the key question of whether the76

additive allele effects are different from zero (the null hypothe-77

sis), likelihood-ratio tests (LRT) are performed along positions78

on a genetic map. Commonly, the tests are presented as “log-79

arithm of the odds” (LOD scores), where LOD = LRT
2×ln(10) . In80

order to declare a QTL, empirical LOD thresholds are computed81

for each trait using permutations (Churchill and Doerge 1994).82

As the only current solution, this approach has been widely83

used so far (e.g., van Geest et al. 2017; Schumann et al. 2017;84

Massa et al. 2018). However, limitations in fitting multiple-QTL85

models have been presented mostly due to the possibility of86

over-parameterization or the lack of optimized algorithms for87

model selection (Mengist et al. 2018; Klaassen et al. 2019).88

Variance component methods have been used for perform-89

ing QTL mapping in related individuals of complex population90

structures or families in humans (Lippert et al. 2014), animals91

(Druet et al. 2008) and plants (Crepieux et al. 2005). In com-92

mon, these approaches take into account the flexibility of mixed93

models in dealing with the correlated QTL effects among in-94

dividuals due to shared alleles identical-by-descent (IBD) by95

each relative pair at a particular location in the genome. For96

bi-parental populations of autopolyploids, although allele ef-97

fects are usually regarded as fixed, the QTL genotype effects98

can be treated as random. Since a higher ploidy level leads to99

a much larger number of allele combinations, genotypic effects100

may be very hard to assess from the small population sample101

sizes usually available. In this case, the integrated genetic map102

provides key information on the inheritance of chromosomal103

segments from parents to progeny (Mollinari and Garcia 2018),104

making up the basis for IBD allele sharing estimations. If a105

locus is linked to a region underlying the variation of a trait106

of interest, higher IBD allele sharing for that locus is expected107

among individuals with similar phenotypic values (Almasy and108

Blangero 2010). Thus, the key parameter in this model are the109

variance components attributable to putative QTL, that deter-110

mines the presence of linkage. Because only one parameter per111

QTL (the variance component) needs to be estimated, one could112

try to build a multiple-QTL model for polyploids, inspired by113

the corresponding multiple interval mapping (MIM) for diploid114

mapping populations (Kao et al. 1999), without the risk of model115

over-parameterization.116

A multiple-QTL mapping approach may benefit several au-117

topolyploid horticultural (e.g, potato, blueberry, kiwifruit, straw-118

berry), ornamental (e.g., rose, chrysanthemum), forage (e.g., al-119

falfa, guinea grass) and field (e.g., sugarcane) crops. The sweet-120

potato [Ipomoea batatas (L.) Lam. (2n = 6x = 90)] is a staple121

food in several developing countries, with a production of 112122

million tons worldwide in 2017 (FAO 2019). Particularly, it has123

attracted growing interest due to its characteristics for food and124

nutrition security (Mwanga et al. 2017). In addition to carbo-125

hydrates, dietary fiber, vitamins and minerals, orange-fleshed126

sweetpotatoes provide high levels of β-carotene to fight vita-127

min A deficiency in vulnerable populations, such as those in128

sub-Saharan Africa (Low et al. 2017). In order to increase pro-129

duction and meet farmer’s and market needs, it is imperative130

to make molecular-assisted selection an effective part of sweet-131

potato breeding programs. Toward this end, one of the first steps132

is characterizing the genetic architecture of traits of interest, such133

as those related to storage root yield and quality, and resistance134

to biotic and abiotic stresses (Khan et al. 2016). In spite of being135

considered an “orphan” crop, there have been recent advances136

in building genome references from its wild diploid relatives137

(Wu et al. 2018), optimizing a genotyping-by-sequencing proto-138

col (GBSpoly) for high-throughput SNP genotyping (Wadl et al.139

2018), and building a high-density integrated genetic map (Mol-140

linari et al. 2019, in preparation). In this paper, we introduce a141

random-effect multiple interval mapping (REMIM) model for142

autopolyploids. Using a genome-assisted, GBSpoly-based inte-143

grated genetic map from a sweetpotato bi-parental population,144

we map QTL for yield-related traits with our open-source soft-145

ware, QTLPOLY.146

Materials and Methods147

Full-sib Population148

A bi-parental mapping population (named BT) comprising 315149

individuals was developed by crossing an orange-fleshed Ameri-150

can variety, ’Beauregard’ (CIP440132), and a non-orange-fleshed151

African landrace, ’Tanzania’ (CIP440166), as male and female152

parents, respectively. The parents show contrasting phenotypes153

for several traits such as dry matter, β-carotene and sugar con-154
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tent, and susceptibility to biotic (e.g., virus disease) and abiotic155

(e.g., drought) stresses. ’Beauregard’ is known as to have higher156

yield than ’Tanzania’, and the current QTL mapping study will157

focus on the yield components.158

Phenotypic Analyses159

Field trials: In addition to the 315 full-sibs, parents (each repli-160

cated twice) and another variety, ’Daga’ (CIP199062.1), were161

used as checks in order to make up a total of 320 individuals162

per replication in an 80× 4 alpha-lattice design. Virus-free plant-163

ing material derived from tissue culture was obtained from the164

CIP-Peru Genebank in La Molina. The clones were grown in a165

screen house in CIP sub-station San Ramon, and the planting166

material multiplied under low-disease pressure field conditions167

in Satipo, where cuttings for the six experiments were obtained.168

Four experiments were conducted in Ica (14°01’ S and 75°44’ W,169

420 m), with two independent trials over two seasons, and one170

experiment each was conducted in San Ramon (11°07’ S and171

75°21’ W, 828 m) and Pucallpa (8°23’ S and 74°31’ W, 154 m). The172

number of replications were two at Ica and three at San Ramon173

and Pucallpa. In all trials, 1 m and 0.3 m of inter- and intra-row174

spacing was used, respectively. In the first season at Ica (from175

February 25 to June 29, 2016), the plot size was 6 m2 of 16 plants176

arranged in four rows (four plants per row) with one empty row177

between plots. In the second season at Ica (from November 15178

2016 to March 17, 2017), the plot size was 4.8 m2 of 16 plants179

arranged in two rows (eight plants per row) with no empty row180

between plots. In San Ramon (from May 14 to September 15,181

2016) and Pucallpa (from July 1 to November 4, 2016), the plot182

size was 9 m2 of 30 plants arranged in three rows (ten plants per183

row) with no empty row between plots.184

Phenotypic data: Eight yield-related phenotypes were collected185

per plot at harvest, ∼120 days after transplanting (see File S1).186

For analysis purposes, foliage and root yield data were standard-187

ized by plot size (relative to the largest) and converted to tons188

per hectare (t · ha−1) to allow comparisons across trials. Number189

of roots was divided by the number of plants in the plot. The190

total number of storage roots per plant (TNR) and total root191

yield (RYTHA) considered all storage roots from the whole plot192

regardless of their individual weight. Number of commercial193

roots per plant (NOCR) and commercial root yield (CYTHA) con-194

sidered only storage roots of marketable size (≥100 g for African195

market). Number of noncommercial roots per plant (NONC)196

and noncommercial root weight (NCYTHA) were obtained from197

the difference between total and commercial roots. Foliage yield198

(FYTHA) was measured by weighing all above-ground biomass199

per plot. Finally, commercial index (CI) was calculated as the200

ratio between CYTHA and total biomass (i.e. the sum of RYTHA201

and FYTHA).202

Multi-environment phenotypic model: We considered each one
of the six field trials as an environment. Jointly predicted means
for each full-sib were obtained by using the following mixed-
effect model

yijkl = µ + el + rk(l) + bj(kl) + ti + teil + εijkl

where yijkl is the phenotype of the ith treatment in the jth block
within the kth replicate at the lth environment, µ is the overall
mean, el is the fixed effect of the lth environment (l = 1, . . . , L;
L = 6), rk(l) is the fixed effect of the kth replicate (k = 1, . . . , K;

K = 2 or 3 depending on the environment) at the lth environ-
ment, bj(kl) is the random effect of the jth block (j = 1, . . . , J;
J = 80) within the kth replicate at the lth environment with
bj(kl) ∼ N (0, σ2

b ), ti is the effect of the ith treatment (i = 1, . . . , I;
I = 318), teil is the effect of treatment by environment interac-
tion, and εijkl is the random residual error with εijkl ∼ N (0, σ2).
The treatment effect (ti) was separated into two groups, in which
gi is the random effect of the ith genotype (i = 1, . . . , Ig; Ig = 315)
with gi ∼ N (0, σ2

g), and ci is the fixed effect of the ith check
(i = Ig + 1, . . . , Ig + Ic; Ic = 3). Similarly, treatment by environ-
ment interaction (teil) was separated into the random effect of
genotype by environment interaction (geil) with geil ∼ N (0, σ2

ge),
and the fixed effect of check by environment interaction (ceil).
We removed the check by environment interaction effect (ceil)
from the model if Wald’s test was not significant (p < 0.01). Vari-
ance components were estimated by restricted maximum like-
lihood (REML) using GENSTAT (v16; VSN International 2014).
Mean-basis broad-sense heritabilities (H2) were calculated as
the ratio between genotypic and phenotypic variances as

H2 =
σ2

g

σ2
g +

σ2
ge

K
+ σ2

KL

where K = 2.25 is the harmonic mean of the number of replicates203

across environments. The R package PSYCH (v1.8.10; Revelle204

2018) was used to calculate and plot Pearson’s correlations (sig-205

nificance *p < 0.05, **p < 0.01 and ***p < 0.001) among the206

individual predicted means.207

Genotypic Analyses208

GBSpoly and dosage calling: A modified GBS protocol called209

GBSpoly was carried out according to Wadl et al. (2018) and210

described in detail for BT population by (Mollinari et al. 2019,211

in preparation). In brief, total DNA was extracted and double212

restricted using CviAII-TseI enzyme combination for all full-213

sibs and parents (each parent replicated 10 times). Restriction214

fragments were ligated to adapters, size selected and ampli-215

fied. Adapters contained an 8-bp buffer sequence in addition to216

sample-specific variable length barcodes (6-9 bp). Each 64-plex217

library was sequenced using eight lanes of Illumina HiSeq 2500218

system in order to ensure optimal read depth for dosage calling.219

We trimmed the 8-bp buffer sequence from the reads using the220

FASTX-TOOLKIT (available at hannonlab.cshl.edu/fastx_toolkit/).221

A modified version of TASSEL-GBS pipeline (v4.3.8), called222

TASSEL4-POLY (Pereira et al. 2018, available at https://github.com/223

gramarga/tassel4-poly) was used to demultiplex and to count224

and store the actual read depth for all loci in variant call for-225

mat (VCF) files (see File S2). We used BOWTIE2 (Langmead and226

Salzberg 2013) to align 64-bp tags against the I. trifida and I. triloba227

genomes, two sweetpotato wild relative diploid species (Wu228

et al. 2018, available at http://sweetpotato.plantbiology.msu.edu).229

Finally, the software SUPERMASSA (Serang et al. 2012, avail-230

able at https://bitbucket.org/orserang/supermassa) was used to231

perform multi-threading dosage call through a wrapper func-232

tion named VCF2SM (Pereira et al. 2018, available at https:233

//github.com/gramarga/vcf2sm).234

Linkage mapping: A linkage map was constructed by (Mollinari235

et al. 2019, in preparation) using the R package MAPPOLY (Mol-236

linari and Garcia 2018, available at https://github.com/mmollina/237

mappoly) (see File S3). In brief, we computed two-point recom-238

bination fractions between all 38,701 non-redundant, high qual-239

ity GBSpoly-based markers, and sorted the most likely linkage240
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phase between each marker pair. Markers were then grouped241

into 15 linkage groups (LGs) by using the Unweighted Pair242

Group Method with Arithmetic Mean (UPGMA) hierarchical243

clustering method. For each LG, markers were first ordered us-244

ing multidimensional scaling as implemented in the R package245

MDSMAP (Preedy and Hackett 2016), and then local order was246

refined based on the reference genomes (Wu et al. 2018). Finally,247

map distances were re-estimate individual posterior probabil-248

ities from SUPERMASSA dosage calls. The final integrated,249

completely phased map was composed of 30,684 markers dis-250

tributed along 15 LGs with a total length of 2,708.4 centiMorgans251

(cM) and no major gaps between markers (11.35 markers every252

cM, on average). Multi-point genotype conditional probabilities253

of putative QTL were estimated for every individual given the254

final map using an HMM algorithm (Lander and Green 1987;255

Jiang and Zeng 1997) adapted for polyploids (Mollinari et al.256

2019, in preparation) as implemented in MAPPOLY. Since 17257

full-sibs were filtered out along the map construction (Mollinari258

et al. 2019, in preparation), only the remaining 298 individuals259

were ultimately used for QTL mapping.260

QTL Mapping Analyses261

Under some fairly conventional assumptions (exclusive bivalent262

formation, no preferential pairing, and no double reduction),263

an autopolyploid individual of a species with an even ploidy264

level m can produce up to ( m
m/2) or “m choose m/2” different265

gametes with the same probability. As an example, consider two266

contrasting parents, A and B, of a hexaploid species (such as267

sweetpotato) and their respective genotypes for a QTL as abcde f268

and ghijkl, each one with potentially six different alleles. Under269

the previous assumptions, each parent can produce up to 20270

different gametes. Therefore, the cross A × B would generate up271

to 400 possible different genotypes. We will use the number of272

gametes and genotypes of a hexaploid species to define vector273

and matrix dimensions in the QTL mapping model from now274

on. Obviously, the model can be easily adapted to any polyploid275

species with an even ploidy level by simply changing these276

dimensions accordingly.277

REMIM model and hypothesis testing: Taking a full-sib popu-
lation with n individuals derived from a cross between two
hexaploid parents, A and B, the multiple-QTL mapping model
is expressed by

y = 1µ +
Q

∑
q=1

Zqγq + ε (2)

where y is the n× 1 vector of phenotypic values, µ is the fixed ef-278

fect of population mean, γq is the 400× 1 random vector of geno-279

type effects of QTL q (q = 1, . . . , Q) with γq ∼ N (0, Πσ2
q ), and ε280

is the n× 1 random vector of residual error with ε ∼ N (0, Iσ2).281

1 and I are an n× 1 vector of 1’s and an n× n identity matrix,282

respectively, Zq is the n× 400 incidence matrix of genotype con-283

ditional probabilities of QTL q, and Π is a 400× 400 matrix of284

proportion of shared alleles IBD between the 400 possible geno-285

types. These IBD allele sharing proportions range from zero286

(no shared alleles) to one (six shared alleles) and relate to the287

additive effects of within-parent alleles. For a full-sib progeny,288

the IBD expected value is 0.5.289

Assuming that the random-effect QTL are uncorrelated, each
with expectation zero, the expectation of the vector of pheno-
typic values y is

E(y) = 1µ

and its variance-covariance matrix is

Var(y) =
Q

∑
q=1

Gqσ2
q + Iσ2

where Gq = ZqΠZ′q is the n × n additive relationship matrix
between all n full-sibs on the putative QTL q. Here, our interest
is in testing

H0 : σ2
q = 0 vs. Ha : σ2

q > 0

i.e., whether QTL q contributes to the variation in y or not, so
that several tests have to be performed along the genome. As
part of the algorithm described next, we test for the presence of
multiple QTL in consecutive rounds. In practice, we compute
and store a Gq matrix for every putative QTL q, representing
genomic positions at a certain step size (e.g., every 1 cM). In this
case, the Model 2 can be rewritten as

y = 1µ +
Q

∑
q=1

gq + ε (3)

where gq is an n× 1 random vector of the individual effects for290

the QTL q with gq ∼ N (0, Gqσ2
q ).291

We compute linear score statistics according to Qu et al. (2013)292

at every position and compare its p-value to a prescribed critical293

value. The p-values are continuous over the unit interval as a294

result of weighted sums of the scores from the profiled likelihood.295

The test is exact (nonasymptotic) when there is only one QTL,296

while a moment-based approximation to the null distribution297

is used when two or more QTL are present in the model (Qu298

et al. 2013). Herein, we conveniently take the ”logarithm of p”299

as LOP = − log10(p) for graphic representation and supporting300

interval calculation purposes. Support intervals are defined as301

the QTL peak neighboring region with LOP greater than or equal302

LOP− d, where d is a constant which subtracts the highest LOP303

(thus from the QTL peak) in that region, as similarly proposed304

for the statistic LOD scores (Lander and Green 1987) .305

QTL detection and characterization: In order to select QTL, we306

adapted the MIM methodology described by Kao et al. (1999) to307

a random-effect model framework as follows:308

1. Forward search adds one QTL at a time to the model at the309

position with the highest score statistic if the p-value is310

smaller than a pointwise significance threshold level (e.g.,311

p < 0.01), and fits it into the model. Consecutive rounds312

are carried out conditioning the search of a new QTL to the313

one(s) in the model until no more positions can reach the314

threshold. A window size (e.g., of 15 cM) is avoided on315

either side of QTL already in the model when searching for316

a new QTL;317

2. Model optimization follows rounds of position refinement318

and backward elimination when no more QTL can be added319

in the forward search step. In turns, a QTL position is up-320

dated conditional to all the other QTL in the model, and its321

score statistic is reevaluated at a more stringent significance322

threshold level (e.g., p < 10−3 or 10−4), when the QTL may323

be dropped. The final set of QTL is defined when all se-324

lected positions are significant and, thus, no more positions325

change or QTL are dropped;326

3. Forward search (now with a threshold value as stringent327

as the one used for backward elimination, e.g., p < 10−3
328
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or 10−4) as well as model optimization procedures are re-329

peated until no more QTL are added (via forward search) or330

dropped (via backward elimination). Finally, QTL profiling331

is performed with the remaining significant QTL after the332

last round of model optimization has been carried out. The333

score statistics and their associated p-values are computed334

for all genomic positions conditional to the final set of QTL.335

Notice that, as part of the strategy for selecting QTL, we were336

less stringent during the first step of forward search, so that we337

were able to allow more positions to be tested again during model338

optimization. In fact, power for detecting significant positions is339

expected to increase when conditioning the forward search as340

well as the backward elimination to other QTL already in the341

model (Da Costa E Silva et al. 2012a). For the forward search342

performed after the first backward elimination, we used the last343

threshold set from the backward elimination in order to avoid344

false positives.345

Once the QTL were selected, we were able to estimate their346

variance components and compute QTL heritabilities, h2
q , as the347

ratio between the QTL variance component and total variance.348

Given the parameter estimates, QTL-based breeding values are349

directly obtained as the best linear unbiased predictions (BLUPs)350

of the QTL genotypes (i.e., γ̂q) from Model 2. BLUPs of the 400351

possible genotypes were further decomposed in order to esti-352

mate the additive allele effects (i.e., 6 for each parent as {a, . . . , f }353

and {g, . . . , l}) as well as the additive allele combination effects354

among two (i.e., 15 combinations for each parent as {ab, . . . , cd}355

and {e f , . . . , kl}), and three (i.e., 20 combinations for each parent356

as {abc, . . . , de f } and {ghi, . . . , jkl}) alleles (Kempthorne 1955).357

Notice that in an F1 population, we can only study QTL that358

are different in alleles within the parents, not between. Also,359

due to the model assumptions of zero mean for random effects,360

allele and allele combination effects sum up to zero. These ef-361

fects should be interpreted as the heritable contributions from362

parent to offspring, hence providing straightforward estimation363

of QTL-based breeding values to be used for selection.364

Simulations365

We examined the performance of REMIM with 1,000 simulated366

quantitative traits with three QTL each. The QTL heritabili-367

ties were simulated as h2
1 = 0.27, h2

2 = 0.18 and h2
3 = 0.09368

following their respective QTL genotype effect distributions as369

g1 ∼ N (0, G10.6), g2 ∼ N (0, G20.4) and g3 ∼ N (0, G30.2).370

The environmental error was simulated from a standard normal371

distribution, i.e. ε ∼ N (0, I1), while the population mean was372

simulated as zero, i.e. µ = 0. The QTL were randomly assigned373

to the BT population linkage map (n = 298), but no closer than374

15 cM (our window size) from each other. One round of forward375

search followed by model optimization (steps 1 and 2 from the algo-376

rithm described above) was carried out for each simulated trait377

with combinations of different forward (0.01, 0.02 and 0.05) and378

backward (10−2, 10−3, 10−4 and 10−5) pointwise significance379

p-value thresholds. For comparison, we ran the fixed-effect in-380

terval mapping (FEIM, Model 1) with the same simulated traits381

using different genome-wide significance levels of (0.20, 0.15,382

0.10 and 0.05) based on 1,000 permutations as LOD thresholds383

to declare significant QTLs (Churchill and Doerge 1994). The384

same step size of 2 cM was used in both approaches. LOP− d385

(from REMIM) and LOD− d (from FEIM) support intervals were386

calculated for three different d values (1.0, 1.5 and 2.0).387

Following the definitions and summary statistics from388

Da Costa E Silva et al. (2012b), all QTL kept after the model389

optimization were considered ”mapped”. A mapped QTL was390

considered ”paired” (true QTL) if less than 15 cM apart from the391

simulated position, and a paired QTL was considered ”matched”392

if included within a support interval of a mapped QTL. Finally,393

a mapped QTL was considered ”mismatched” (false QTL) if it394

was not matched. We summarized detection power as the ratio395

between the number of paired QTL over the total number of396

simulated QTL, and the absolute distance differences between397

simulated and mapped positions were averaged out. Genome-398

wide type I error or false discovery rate (FDR) was estimated399

for each support interval as the ratio between the number of400

mismatched QTL over the total number of mapped QTL. Finally,401

the proportion of matched QTL (coverage) as an approximation402

of support intervals was provided for each d value.403

Software implementation404

We implemented the algorithm for detection and charac-405

terization of multiple QTL based on REMIM model in an406

R package called QTLPOLY (available at https://github.com/407

guilherme-pereira/qtlpoly). We integrated functions from the R408

package VARCOMP (v0.2-0; Qu et al. 2013) to compute the score409

statistics. The rounds of QTL search and model optimization410

use the variance components estimated in the previous round,411

so that the new estimates iterate faster. In addition, calcula-412

tions for different genomic positions were paralleled in order413

to speed up the process by using the R base package PARALLEL414

(v3.5.2; R Core Team 2018). Final models were fitted using the R415

package SOMMER (v3.6; Covarrubias-Pazaran 2016), from which416

BLUPs were extracted and used for estimation of allele effects417

and QTL-based breeding values. Both VARCOMP and SOMMER418

packages use REML estimation to compute the variance compo-419

nents from the random-effect QTL model. Functions for plotting420

QTL profiles, effects and support intervals were based on GG-421

PLOT2 (v3.1.0; Wickham 2016). Additional functions for running422

FEIM model and multi-threaded permutations were included423

in QTLPOLY and were based on the lm() function from R base424

package STATS (v3.5.2; R Core Team 2018).425

Gene expression profiling426

A developmental time-course of expression profiling data of427

‘Beauregard’ was reported previously (Wu et al. 2018) and used428

with a parallel time-series of development with ‘Tanzania’ roots429

(Gemenet et al. 2019, submitted). In brief, ‘Beauregard’ and ‘Tan-430

zania’ roots were harvested from four biological replicates at 10,431

20, 30, 40 and 50 days after transplanting (DAT), and classified at432

30, 40, and 50 DAT into fibrous and storage roots based on diam-433

eter as described by Wu et al. (2018). RNA and RNA-sequencing434

(RNA-seq) from ‘Tanzania’ were generated in parallel with the435

‘Beauregard’ samples as described in Wu et al. (2018). All reads436

were cleaned, aligned to the I. trifida genome (Wu et al. 2018),437

and fragments per kilobase exon model per million mapped438

reads (FPKM) determined as described previously in Lau et al.439

(2018) with the one exception that the ‘Tanzania’ 30 DAT storage440

root sample was sub-sampled for 30 million reads. To provide441

a comparison of expression abundances in the roots to leaves,442

‘Beauregard’ and ‘Tanzania’ plants were grown as described in443

Lau et al. (2018) for control conditions and RNA-seq libraries444

from leaves processed as described above. For the final FPKM445

matrix, genes encoded by the chloroplast were removed.446

Data Availability447

Raw sequence reads are available at NCBI, under BioProject448

numbers PRJNAXXXXXX (DNA), and PRJNA491292 and PRJ-449
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NAXXXXXX (RNA) [to be released upon publication]. The expres-450

sion abundance matrix is available at Dryad Digital Repository451

[to be released upon publication]. Remaining supplemental files452

are available at FigShare [to be released upon publication]. File S1453

contains phenotypic data. File S2 contains VCF files. File S3454

contains genetic map information. QTLPOLY software used for455

QTL mapping analyses and simulations is available at GitHub456

(https://github.com/guilherme-pereira/qtlpoly).457

Results458

Trait heritabilities and correlations459

Each one of the eight yield-related traits from six environments460

were analyzed using a multi-environment mixed-effect model,461

from which we were able to obtain jointly predicted means for462

each full-sib and variance component estimates (Table 1). Par-463

ents showed contrasting means for all traits, with ’Beauregard’464

presenting higher means for number of roots and root yield465

(both commercial and non-commercial) and commercial index466

when compared to ’Tanzania’, which surpassed ’Beauregard’467

only for foliage yield. Interestingly, transgressive segregation468

was observed among the full-sibs for all traits, with emphasis on469

several individuals with CYTHA higher than the most produc-470

tive parent. Broad-sense heritabilities ranged from intermediate471

(55.01% for FYTHA) to high values (80.50% for CI). Correla-472

tions between the predicted means were estimated (Figure 1).473

Low correlations (from 0.18** to 0.22***) were observed between474

FYTHA and root yield traits. The highest correlation (0.99***)475

was between CYTHA and RYTHA, which was expected, since476

most RYTHA is derived from CYTHA. Among the traits used477

for CI calculation, CYTHA also had the highest correlation with478

CI (0.79***), likely because it is its main component. TNR com-479

ponents were also highly correlated with TNR, namely NOCR480

(0.90***) and NONC (0.86***). Finally, NOCR and NONC turned481

out to be highly correlated with CYTHA (0.80***) and NCYTHA482

(0.84***), respectively.483

Mapping QTL in BT population484

Simulations: The BT linkage map based on 298 F1 progenies485

was used to simulate 1,000 quantitative traits with three QTL486

each. We ran FEIM (Model 1) and REMIM (Model 3) for each487

simulated trait in order to assess their detection power and FDR488

in such scenario (see Tables S1 and S2). For REMIM, different489

forward p-value thresholds did not impact power or FDR (re-490

sults not shown), but backward thresholds were critical. Figure491

2 compares different threshold criteria for declaring a QTL dur-492

ing FEIM and REMIM (for p < 0.01 forward threshold). From493

both approaches, FDR greater than 20% were found when us-494

ing less conservative criteria of genome-wide significance LOD495

threshold of 0.20 for FEIM and p < 10−3 backward threshold496

for REMIM. However, detection power was higher with REMIM497

(75.2%, on average) than with FEIM (65.6%, on average). Taking498

more conservative criteria such as genome-wide significance499

LOD threshold of 0.05 for FEIM and p < 10−4 backward thresh-500

old for REMIM, FDR decreased to 14.3% and 13.0%, respectively,501

whereas power was still higher with REMIM (67.3%, on average)502

than with FEIM (59.9%, on average). In fact, although the QTL503

with the highest heritability (h2
1 = 0.27) was similarly detected504

regardless of the method and criterion, a higher proportion of505

QTL with intermediate and low heritabilities were mapped un-506

der the multiple-QTL mapping approach. Interestingly, even507

with the most stringent criteria of p < 10−5 backward threshold508

for REMIM, we were able to map as many QTL as using genome-509

wide significance LOD threshold of 0.05 for FEIM, but with a510

better FDR control (∼10%). In general, the average absolute dif-511

ference between the simulated and mapped QTL peak location512

did not differ when comparing models or thresholds whatsoever513

(see Table S1). From testing different d values for LOD− d and514

LOP− d, we learned that d = 1.5 was a good approximation of515

95% support interval for both FEIM and REMIM (see Table S2).516

Yield-related traits: We adopted 0.01 and 10−3 as the respec-517

tive forward and backward p-value thresholds for detecting518

QTL in eight yield-related traits in the BT population using519

REMIM (Model 3; Figure 3, Table 2). In total, 41 QTL were iden-520

tified, with p-values ranging from 1.64×10−9 (QTL 2 for TNR)521

to 7.20×10−4 (QTL 1 for RYTHA). The number of QTL per trait522

ranged from one (CYTHA and CI each) to ten (TNR). NOCR,523

NONC, NCYTHA, RYTHA and FYTHA had seven, nine, five,524

three and five QTL, respectively. All LGs except LG 5 harboured525

QTL regions. LGs 4 and 15 harboured six QTL each, and LGs526

10 and 13 harboured four QTL each. Approximate 95% support527

intervals computed as LOP− 1.5 (see Figure S1) showed that528

QTL hotspots may be found on LGs 1, 3, 4 and 15 as several529

QTL regions seemed to be co-localized. On LG 1, QTL peaks for530

NOCR, TNR and NCYTHA can be found between 131.50 and531

140.03 cM. On LG 3, QTL peaks for NONC, NOCR and TNR532

were localized either at 12.36 or 20.18 cM. LG 4 seemed to have533

a second QTL hotspot: a first region with QTL peaks between534

32.06 and 76.48 cM for NONC, NOCR, TNR and FYTHA, in535
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Figure 1 Pearson’s correlations (**p < 0.01, ***p < 0.001)
among predicted means of eight yield-related traits from
‘Beauregard’ × ‘Tanzania’ (BT) full-sib family. Parental
means are represented by red (B) and blue (T) dots. Trait ab-
breviations: number of commercial (NOCR), noncommer-
cial (NONC) and total (TNR) roots per plant, commercial
(CYTHA), noncommercial (NCYTHA) and total (RYTHA)
root yield in t · ha−1, foliage yield (FYTHA) in t · ha−1, and
commercial index (CI).
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Table 1 Phenotypic analysis summary of eight yield-related traits from ’Beauregard’ × ’Tanzania’ (BT) full-sib family. Parental
(B and T) and progeny (F1) means, minimum and maximum F1 means, and genetic (σ2

g ), genotype-by-environment interaction
(σ2

ge) and residual (σ2) variance components and heritability (H2) estimates are shown for eight traits: number of commercial
(NOCR), noncommercial (NONC) and total (TNR) roots per plant, commercial (CYTHA), noncommercial (NCYTHA) and total
(RYTHA) root yield in t · ha−1, foliage yield (FYTHA) in t · ha−1, and commercial index (CI).

NOCR NONC TNR CYTHA NCYTHA RYTHA FYTHA CI

B 2.751 1.876 4.622 12.230 2.384 15.070 11.270 0.478

T 0.697 0.796 1.448 3.720 0.971 4.680 50.240 0.108

F1 2.121 1.577 3.624 13.201 2.006 15.275 30.204 0.350

min(F1) 0.421 0.292 0.850 0.780 0.613 1.430 17.070 0.083

max(F1) 3.786 3.619 6.730 30.480 4.155 33.130 46.810 0.523

σ2
g 0.387 0.277 1.117 27.620 0.313 31.580 23.940 5.880×10−3

σ2
ge 0.277 0.215 0.581 17.330 0.317 18.870 36.040 2.352×10−3

σ2 0.678 0.552 1.446 31.640 1.064 34.420 48.090 5.120×10−3

H2 (%) 69.05 67.00 75.35 73.33 58.76 74.28 55.01 80.50

− − − −
− − − −

FEIM REMIM
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Figure 2 Detection power and false discovery rate (FDR)
from QTL mapping analyses of 1,000 simulated traits in
‘Beauregard’ × ‘Tanzania’ (BT) full-sib family. Each trait
was simulated with three QTL with different heritabilities
(h2

q = {0.27, 0.18, 0.09}), randomly positioned on the BT link-
age map (n = 298). Fixed-effect interval mapping (FEIM) used
different genome-wide significance LOD thresholds (0.20, 0.15,
0.10, 0.05) based on 1,000 permutation tests. Random-effect
multiple interval mapping (REMIM) was performed using dif-
ferent score-based p-value thresholds during backward elim-
ination (p < {10−2, 10−3, 10−4, 10−5}) after forward search
using p < 0.01. Power (vertical lines, right axis) represents
the proportion of true QTL over the total number of simulated
QTL. FDR (bars, left axis) depicts the proportion of false QTL
over the total number of mapped QTL for a ∼95% support
interval (SI) coverage.

addition to a second region with another QTL for TNR and one536

for NCYTHA at 200.09 and 180.36 cM, respectively. Similarly,537

on LG 15, a first hotspot had QTL peaks either at 4.19 or 5.27538

cM for CYTHA, RYTHA and CI, whereas a second hotspot had539

QTL peaks at 109.10 and 105.02 cM for TNR and NCYTHA,540

respectively.541

QTL variances (σ2
q ) and heritabilities (h2

q) estimates from542

Model 2 are shown in Table 2, where the subscript q denotes the543

QTL number for a specific trait. QTL heritabilities ranged from544

3.68 (QTL 4 for TNR) to 22.69% (QTL 2 for TNR), representing545

the proportion of the total variance explained by that QTL, condi-546

tional to all the other QTL in the model. Out of 41 QTL, 14 were547

considered major QTL (h2
q > 10%), with one major QTL for TNR548

(h2
2 = 22.69%), CYTHA (h2

1 = 15.53%), and CI (h2
1 = 20.65%),549

two major QTL for NONC (h2
2 = 10.22% and h2

5 = 10.47%),550

NOCR (h2
1 = 10.84% and h2

3 = 16.53%), NCYTHA (h2
1 = 10.28%551

and h2
5 = 12.97%), and RYTHA (h2

2 = 10.80% and h2
3 = 20.13%),552

and three major QTL for FYTHA (h2
1 = 10.65%, h2

4 = 13.48%553

and h2
5 = 10.40%). Altogether, mapped QTL explained as much554

as 76.64%, 68.49% and 78.66% of the total variance for NONC,555

NOCR and TNR, respectively. As less QTL were identified for556

root yield traits, a relatively smaller portion of the total variance557

was explained for NCYTHA (48.99%), RYTHA (38.77%) and558

FYTHA (51.22%). Interestingly, most of the major QTL lies on559

hotspots, such as those on the beginning of LGs 3 and 15 (see560

Figure S2). In order to compare QTL detection results, we used a561

rather relaxed genome-wide significance of 0.20 for FEIM, whose562

permutation-based LOD score thresholds ranged from 6.81 to563

6.89 depending on the trait (LOD ≈ 6.85, on average) (see Figure564

S4). A total of 17 QTL were mapped (see Table S3): one for each565

CYTHA, RYTHA and CI, two for each NOCR, NCYTHA and566

FYTHA, and four for each NONC and TNR. Six LGs harboured567

QTL: LGs 15 and 3 had six and four QTL, respectively, LG 1568

had three QTL, LG 10 had two QTL each, and LGs 4 and 9 had569

only one QTL each. In fact, the most significant QTL (LOD > 9)570

were found on LGs 1, 3 and 15, similar to REMIM results. In571

addition to QTL not detected on several other LGs, FEIM did572

not detect any QTL for number of roots on LG 4, identified as a573

QTL hotspot by REMIM, although for FYTHA a QTL reached574

the threshold at 95.01 cM (LOD = 6.91). On the other hand,575

REMIM missed a QTL for NCYTHA on LG 3 at 32.56 cM, which576

was detected using FEIM. LOD thresholds for a genome-wide577

significance of 0.05 ranged from 7.68 to 7.98 (LOD ≈ 7.77, on578

average), and one would have mapped 11 QTL, instead. One579

QTL of each NONC (LG 1), TNR (LG 9), NCYTHA (LG 3) and580

RYTHA (LG 15), and both QTL for FYTHA (LGs 4 and 10) would581
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Table 2 Random-effect multiple interval mapping (REMIM) of yield-related traits from ’Beauregard’×’Tanzania’ (BT) full-sib
family. Linkage group (LG), map position (in centiMorgans) and its ∼95% support interval (SI), score statistic and its corre-
sponding p-value, variance (σ2

q ) and heritability (h2
q, in percentage) of mapped QTL.

Traita QTL LG Position (SI) Score p-value σ2
q h2

q (%)

NOCR 1 1 139.24 (99.06-152.48) 229.86 7.40×10−7 0.0696 10.84

2 2 139.30 (98.83-152.50) 162.91 1.52×10−4 0.0620 9.65

3 3 20.18 (0.00-37.44) 164.37 5.27×10−5 0.1061 16.53

4 4 76.48 (57.01-100.14) 161.69 5.67×10−5 0.0437 6.80

5 7 38.27 (2.18-99.12) 161.55 7.40×10−5 0.0578 9.00

6 9 31.15 (22.24-73.45) 177.01 2.65×10−5 0.0497 7.74

7 11 98.39 (83.07-123.22) 177.88 3.40×10−5 0.0508 7.92

NONC 1 2 88.62 (72.44-95.72) 144.97 1.73×10−4 0.0353 7.56

2 3 12.36 (0.00-21.01) 247.82 5.06×10−8 0.0477 10.22

3 4 65.09 (54.35-70.05) 172.49 1.16×10−5 0.0379 8.11

4 6 3.12 (0.00-25.13) 156.65 4.30×10−5 0.0333 7.14

5 9 15.11 (13.48-51.17) 229.78 2.85×10−7 0.0489 10.47

6 10 145.40 (137.16-164.81) 226.77 3.86×10−7 0.0420 9.01

7 12 137.16 (125.03-147.31) 152.11 4.71×10−5 0.0349 7.47

8 13 65.36 (50.68-98.41) 183.08 1.10×10−5 0.0408 8.74

9 15 46.19 (32.15-119.04) 207.76 3.26×10−6 0.0368 7.90

TNR 1 1 140.03 (130.13-148.23) 258.64 2.72×10−8 0.1769 8.88

2 3 20.18 (18.43-25.28) 295.97 1.64×10−9 0.4520 22.69

3 4 62.03 (43.43-86.11) 165.39 1.98×10−5 0.1507 7.57

4 4 200.09 (164.01-205.15) 128.48 2.85×10−4 0.0733 3.68

5 6 3.12 (0.00-14.33) 134.07 1.85×10−4 0.0919 4.61

6 9 73.45 (13.48-82.1) 170.46 2.01×10−5 0.1298 6.52

7 10 149.31 (144.46-185.31) 164.53 1.98×10−5 0.1250 6.27

8 13 71.22 (44.23-120.57) 133.47 2.34×10−4 0.1140 5.72

9 14 66.19 (59.27-79.27) 137.79 1.45×10−4 0.1164 5.84

10 15 109.10 (65.09-118) 237.56 2.29×10−7 0.1370 6.88

CYTHA 1 15 5.27 (0.00-32.15) 258.61 2.26×10−6 6.7290 20.65

NCYTHA 1 1 131.5 (113.05-152.48) 166.05 1.09×10−4 0.0399 10.28

2 4 180.36 (43.43-215.18) 137.92 5.43×10−4 0.0310 8.00

3 8 0.00 (0.00-76.43) 156.90 2.07×10−4 0.0304 7.83

4 10 60.24 (35.15-114.14) 148.63 3.30×10−4 0.0385 9.92

5 15 105.02 (75.28-125.30) 161.27 1.77×10−4 0.0503 12.97

RYTHA 1 8 115.54 (40.19-115.54) 140.37 7.20×10−4 3.3344 7.84

2 13 128.02 (90.20-145.54) 141.40 6.98×10−4 4.5906 10.80

3 15 4.19 (0.00-8.02) 275.67 4.53×10−7 8.5576 20.13

FYTHA 1 4 63.08 (0.00-112.02) 164.77 1.14×10−4 3.9400 10.65

2 7 56.40 (34.12-109.48) 159.38 1.94×10−4 3.4774 9.40

3 8 43.00 (27.20-54.33) 159.45 2.27×10−4 2.6997 7.29

4 10 29.09 (18.40-37.32) 249.37 9.15×10−7 4.9884 13.48

5 13 42.60 (31.67-68.18) 140.27 5.41×10−4 3.8502 10.40

CI 1 15 5.27 (0.00-36.02) 182.71 1.36×10−4 0.0010 15.53

a Trait abbreviations: number of commercial (NOCR), noncommercial (NONC) and total (TNR) roots per plant, commercial (CYTHA), noncommercial (NCYTHA) and total
(RYTHA) root yield in t · ha−1, foliage yield (FYTHA) in t · ha−1, and commercial index (CI).
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Figure 3 Logarithm of p-value (LOP) profiles from random-
effect multiple interval mapping (REMIM) of eight yield-
related traits from ‘Beauregard’ × ‘Tanzania’ (BT) full-sib fam-
ily. Triangles show the QTL peak location. Trait abbreviations:
number of commercial (NOCR), noncommercial (NONC) and
total (TNR) roots per plant, commercial (CYTHA), noncom-
mercial (NCYTHA) and total (RYTHA) root yield in t · ha−1,
foliage yield (FYTHA) in t · ha−1, and commercial index (CI).

have been missed under this more conservative criterion.582

From REMIM, allele and allele combination additive effects583

of each QTL (see Table S4) were derived from the QTL geno-584

type BLUPs for each trait (Model 2). These effects represent the585

parental contribution to the population mean, i.e. how much586

one adds to or subtracts from the mean given one of the 400 pos-587

sible genotypes. For instance, Figure 4 shows the allele-specific588

and allele combination additive effects of QTL 1 for CYTHA.589

Inferences on which alleles contribute more to the mean as well590

as which ones ought to be selected for breeding purposes are591

straightforward. For example, individuals with the haplotypes592

b from ’Beauregard’ and i from ’Tanzania’, and without the hap-593

lotypes c and j through l from the respective parents will have594

the highest QTL-based breeding value estimates for CYTHA.595

In order to allow comparison among the allele effects from 41596

QTL, proportional contribution of a specific allele was calcu-597

lated as the ratio between its absolute effect and the sum of all598

12 absolute effects for each QTL, so that effects would range599

within the unit interval. Out of 492 effects, 75 (15.24%) showed600

a contribution of at least 15% (almost double of the average).601

Among these most important effects, ‘Beauregard’ provided 34602

effects, with 15 negative and 19 positive effects summing up603

to −2.833 and +3.908, while ‘Tanzania’ contributed with 41 ef-604

fects, with 22 negative and 19 positive effects summing up to605

−4.308 and +3.594. Although most QTL had approximately606

50%:50% allele effect contribution from each respective parent,607

we observed skewed contributions towards ‘Beauregard’ (from608

61%:39% to 72%:28%) for seven QTL, all related with number609

of roots, and towards ‘Tanzania’ (from 40%:60% to 30%:70%)610

for eight QTL, with four related to number of roots and four611

to yield traits. By computing QTL-based breeding values we612

could hypothesize on the genetic basis of trait correlation. For613

example, the single locus (QTL 1) detected for CI has shown ad-614

ditive effects in the same direction as those of QTL 1 for CYTHA.615

Therefore, correlation between QTL-based breeding values from616

these two traits were indeed as high as 0.97*** (see Figure S3).617

In addition, other important breeding lessons may be learned618

from these correlations. For instance, very low, non-significant619

correlation between CYTHA and NCYTHA (0.11) indicates that620

improving the former will not affect the latter. An increase of621

NOCR would bring a relative increase of NONC, though, as622

their QTL-based breeding values showed higher, significant cor-623

relation (0.46***). More interestingly, QTL-based breeding values624

for FYTHA did not seem to correlate to any other root-related625

trait. Finally, the absolute positive correlation of 1.00*** between626

predicted means from CYTHA and RYTHA (Figure 1) could627

be only partially explained by a single co-localized QTL, since628

the correlation between QTL-based breeding values was smaller629

(0.73***), although still high.630

Candidate genes underlying QTL hotspots631

This study identified numerous QTL corresponding to yield-632

related traits and identification of causal genes within all QTL633

will require further research efforts due to the large number634

of genes that are involved in storage root formation and yield635

underlying these QTL. As we have access to an expression pro-636

filing dataset for ‘Beauregard’ and ‘Tanzania’ roots, we elected637

to examine putative candidate genes under two QTL that had638

high heritability and effect sizes: the QTL for TNR on LG 3 (co-639

localized for NOCR and NONC) and the QTL for CYTHA on640

LG 15 (co-localized for RYTHA and CI).641

The QTL peak for TNR on LG 3 was at 1,591,872 bp with a SI642
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Figure 4 Allele and allele combination additive effects from
the decomposed best linear unbiased predictions (BLUPs) for
the QTL 1 (on linkage group 15 at 5.27 cM) of commercial root
yield in t · ha−1 (CYTHA) in a hexaploid sweetpotato full-sib
family (‘Beauregard’ × ‘Tanzania’). Marker-assisted selection
for increasing CYTHA would have to focus on selection for
alleles b and i, and against alleles c and j through l from the
respective parents.

between 1,428,660 and 1,971,958 bp (see Table S5) that contains643

75 genes. Examination of functional annotation of these 75 genes,644

coupled with expression profiles in leaves as well as a time645

course of developing roots in both ‘Beauregard’ and ‘Tanzania’646

(Gemenet et al. 2019, submitted) revealed three candidate genes647

of interest (see Figure S5). The I. trifida itf03g02930 gene encodes648

a homolog of SKU5, a glycosyl phosphatidylinositol modified649

protein in Arabidopsis thaliana with similarity to multiple-copper650

oxidases that are localized to the plasma membrane and cell651

wall. In sweetpotato, the itf03g02930 homolog was expressed652

in leaves and roots, although the expression in roots is substan-653

tially higher than that in leaves. A second candidate gene is654

itf03g03280 which encodes a protein with sequence similarity655

to annexin. The itf03g03280 homolog shares 71% identity (85%656

similarity) with 99% coverage with ANN2 (AT5G65020) and657

66% identity (81% similarity) over 100% coverage with ANN1658

(AT1G35720). itf03g03280 was expressed in both leaves and roots659

(total roots, fibrous roots, and storage roots) although expression660

in roots is nearly twice that of leaves. The last candidate gene,661

itf03g03460, encodes a protein with 51% identity (62% similar-662

ity) to the WUSCHEL homeobox family protein (AtWOX13).663

While itf03g03460 was lowly expressed in leaves, it was highly664

expressed in roots of both ‘Beauregard’ and ‘Tanzania’.665

On LG 15, a major QTL for CYTHA with the peak at 477,772666

bp spanned positions from 21,822 to 1,939,509 bp (see Table S5)667

and 310 genes. As this was too large of a distance to manually668

curate candidate genes responsible for the trait, we restricted669

our query to 25 genes distal and proximal to the most signifi-670

cant marker. Within this region, two genes encoded functions671

that may be associated with storage root development and had672

expression profiles that supported a role in storage root devel-673

opment (see Figure S5). The hormone ethylene has diverse roles674

in cell proliferation and elongation, and the I. trifida itf15g01020675

gene encodes a protein with similarity to the A. thaliana CON-676

STITUTIVE TRIPLE RESPONSE 1 gene (CTR1) with functions in677

the ethylene signaling pathway. In sweetpotato, the itf15g01020678

homolog was expressed in leaves but expressed at twice the679

levels in developing roots. Storage roots are grown for their high680

starch content, and itf15g01120 encodes a protein with similarity681

to starch branching enzyme 2.2, involved in starch biosynthesis.682

itf15g01120 was expressed in leaves and roots with the highest683

expression levels detected in storage, not fibrous or developing684

roots.685

Discussion686

Most of the linkage and QTL mapping work done for sweet-687

potato so far has relied on strategies based on a double pseudo-688

testcross approach for diploid species (Grattapaglia and Sederoff689

1994). For example, separate parental maps have been built690

based on this diploid-based simplification, using qualitative691

marker systems such as randomly amplified polymorphic DNA692

(RAPD; Ukoskit and Thompson 1997), amplified fragment693

length polymorphism (AFLP; Kriegner et al. 2003; Cervantes-694

Flores et al. 2008a; Nakayama et al. 2012), retrotransposon inser-695

tion polymorphisms (Monden et al. 2015) and simple sequence696

repeats (SSR; Kim et al. 2017). A recent map was developed from697

a selfing population and used only single-dose SNPs, resulting698

in higher marker saturation in comparison to the previous maps699

(Shirasawa et al. 2017), though the map was still not integrated.700

In some of these cases, QTL mapping analyses were performed701

for several traits, mostly related to quality (Cervantes-Flores702

et al. 2011; Zhao et al. 2013; Yu et al. 2014; Kim et al. 2017) and703

resistance to biotic stresses (Cervantes-Flores et al. 2008b; Yada704

et al. 2017a). For yield-related traits, only two studies have been705

reported to date (Chang et al. 2009; Li et al. 2014). The use of706

DNA markers with unknown DNA sequence limited our ability707

to compare their results with I. trifida and I. triloba genomes (Wu708

et al. 2018), and ultimately with our present QTL study (see Table709

S5). Moreover, although these diploid-based strategies were the710

state-of-the-art at that time for qualitative marker-based, low711

density genetic maps, they imposed significant restrictions on712

statistical power for QTL detection and its genetic interpretation.713

Recently, more improved methods and computational tools that714

take into account autopolyploid complexity for dosage SNP call-715

ing (Voorrips et al. 2011; Serang et al. 2012; Schmitz Carley et al.716

2017; Gerard et al. 2018) and integrated linkage map construc-717

tion (Hackett et al. 2016; Bourke et al. 2018; Mollinari and Garcia718

2018) have become available, mostly dedicated to tetraploids.719

Taking advantage of the newly developed MAPPOLY package,720

(Mollinari et al. 2019, in preparation) built the first integrated721

genetic map for sweetpotato, from the BT population used here.722

For a hexaploid species, this has opened up new opportunities723

for more interpretable QTL genetic models due to MAPPOLY im-724

plementation of a HMM that delivers QTL genotype conditional725

probabilities along a fully integrated genetic map (Mollinari and726

Garcia 2018).727

More specifically, QTL mapping in autopolyploid species has728

been limited to a fixed-effect interval mapping (FEIM) model729

proposed for tetraploids (Hackett et al. 2001) and eventually730

expanded for hexaploids (van Geest et al. 2017). Consisting of a731

single-QTL model, 2m− 2 main effects are fitted (m is the ploidy732

level), and this model is compared to a null model (with no QTL)733

using LRT, ultimately expressed as LOD scores. Permutation-734

based genome-wide significance LOD thresholds are then used735

to declare a QTL. Trying to add more QTL into FEIM could736

rapidly lead the model to over-parameterization, since each QTL737

requires as much as six (for tetraploids), ten (for hexaploids) or738

14 (for octoploids) parameters to be estimated. Furthermore,739
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new rounds of permutation, based on a model with QTL, would740

need to be carried out in order to provide an updated LOD741

score threshold (Klaassen et al. 2019). In contrast, the random-742

effect multiple interval mapping (REMIM) model presented743

here is designed to fit multiple random-effect QTL by estimating744

only one single parameter (σ2
q ) per QTL. Score statistic tests are745

performed in order to assess whether a QTL variance component746

is zero or not, conditional to other QTL in the model. These tests747

provide an approach for comparing two nested models with748

the reduced model having a random effect excluded, just like749

residual LRT (RLRT) would do. However, (R)LRT is more prone750

to numerical errors because the null hypothesis (H0 : σ2
q = 0)751

falls on the boundary of the parameter space, whereas score-752

based methods can be robust to eventual misspecification of the753

distribution of random effects (Verbeke and Molenberghs 2003).754

We used the BT population genetic map to simulate quantita-755

tive traits in order to compare FEIM and REMIM performances,756

and also to assess the impact of using different thresholds for757

QTL detection (Figure 2). According to our simulations, both ap-758

proaches would detect similar number of simulated QTL at more759

stringent criteria, with REMIM delivering less false positives.760

The results also suggested that one could use a more relaxed761

criteria in order to increase the power of detection while still762

maintaining an acceptable level of FDR. Although conclusions763

may be limited to the simulated scenario, multiple-QTL model764

approaches have been proven to provide greater power and765

better FDR control than single-QTL models for both univariate766

(Zeng et al. 1999; Laurie et al. 2014) and multivariate models767

(Da Costa E Silva et al. 2012b), mostly due to the differences in768

detecting QTL with smaller effects. In fact, this is rather expected769

as a multiple-QTL model has a smaller residual variance which770

helps to detect additional QTL. Multiple-QTL models are also771

supposed to improve detection of more than one QTL on the772

same LG (Mayer 2005), as they are usually hard to separate from773

each other due to the high extension of linkage disequilibrium in774

mapping populations. For polyploids, a non-optimal approach775

of using residuals from a fitted single-QTL model as phenotypic776

data to find a second linked QTL has been proposed (Mengist777

et al. 2018). In QTL mapping analysis, it is important to have a778

reasonable balance between detection power and FDR, as we are779

interested in mapping as many true QTL as possible. It should780

also consider the goals of the study, i.e. whether it is intended781

to use a few very reliable QTL for marker-assisted breeding,782

or to discover as many QTL-related putative genes as possible783

for further validation. Additional suggestive QTL also increase784

the number of hypothesized regions that affect trait variation785

and may be targeted for selection. For yield-related traits in786

our BT population, FEIM results were limited to 15 QTL (see787

Figure S4), most of which also happened to be mapped using788

REMIM (Figure 3). In fact, by performing REMIM, we found789

27 minor QTL (3.68% ≤ h2
q ≤ 9.92%) in addition to 14 major790

ones (10.22% ≤ h2
q ≤ 22.69%) (Table 2, see Figure S2). Based on791

double pseudo-testcross approach, previous estimates of propor-792

tion of variance explained (PVE) by nine QTL for storage root793

yield ranged from 17.7 to 59.3% for 202 individuals from a cross794

between two Chinese sweetpotato varieties (Li et al. 2014). In795

another study, analyses of two reciprocal full-sib populations796

with less than 120 individuals each detected seven QTL for root797

and top (foliage) weight (16.0% ≤ PVE ≤ 29.5%), and only one798

QTL detected for root number (PVE = 14.8%) (Chang et al. 2009).799

Because of likely estimation bias due to reduced sample size and800

the use of not very informative markers and linkage maps, these801

previous PVE findings are hard to compare with our results. Ad-802

justed R2 from FEIM accounted for 7.8% ≤ PVE ≤ 12.6% (see803

Table 3), which may not be comparable with h2
q from REMIM804

due to different approaches (single vs. multiple QTL models).805

In general, the number of mapped QTL was compatible806

with the proportion of total variance explained by the QTL807

(h2
total) (Table 2). From seven to ten QTL (68.48% ≤ h2

total ≤808

78.67%) were mapped for traits related with number of roots809

(67.00% ≤ H2 ≤ 75.35%), whereas from one to five QTL810

(20.65% ≤ h2
total ≤ 48.99%) were found underlying root yield811

variation (58.76% ≤ H2 ≤ 74.28%). Finally, there were five812

QTL (h2
total = 51.22%) for FYTHA (H2 = 55.01), but only one813

(h2
total = 15.53%) for CI (H2 = 80.50). Although number of roots814

seemed to be as heritable as root yield (Table 1), the latter traits815

are likely more complex in terms of their genetic architecture816

than the former ones. That is, not only number of roots con-817

tributes to yield, but also size and composition, so we can expect818

that more regions are involved in root yield, in addition to those819

involved in number of roots. Nevertheless, Yada et al. (2017b)820

found a rather low trait heritability (likely individual-basis) for821

commercial root yield (H2 = 24%) among 278 full-sibs of a cross822

between ‘New Kawogo’, a Ugandan landrace, and ‘Beauregard’,823

possibly due to stronger G×E interaction, which adds to the824

trait complexity. Here, G×E interaction seemed important for all825

traits and its consequences to QTL mapping and breeding will826

be explored in future studies. As QTL mapping targets major827

QTL, usually stable across environments, most of the minor ones828

must have gone undetected. Moreover, additional genetic varia-829

tion could be due to higher order allele interactions and genetic830

epistasis, which the current models do not account for. In fact,831

only a few minor QTL co-localized among number of roots and832

yield traits, which explains lower correlations among QTL-based833

breeding values (from −0.02 to 0.63***, see Figure S3) relative834

to correlations among predicted means (from 0.21*** to 0.84***,835

Figure 1) between these sets of traits. Based on the correlation836

between QTL-based breeding values, FYTHA does not seem to837

be useful in indirect selection for CYTHA (−0.02, see Figure S3),838

as suggested previously (Chang et al. 2009), even though some839

correlation (0.21**) among their predicted means was observed840

(Figure 1). Although ‘Beauregard’ and ‘Tanzania’ contributed841

more importantly with positive and negative major effects, re-842

spectively, the presence of both favorable and unfavorable QTL843

alleles in either parents possibly explains the presence of trans-844

gressive segregants for all traits. Transgression in polyploids845

seems to be due to not only cumulative complementary alleles846

at different loci (Tanksley 1993), but also from the same QTL.847

In fact, increased heterozygosity has been suggested as one of848

the major forces of polyploid evolutionary success, as a broader849

allele repertoire may result in the variation of gene expression850

and regulation needed to thrive in more diverse environmental851

conditions (Van De Peer et al. 2009). As an example, ’Tanzania’852

exhibited allele contributing to increase CYTHA from a major853

QTL (Figure 4), although this landrace was not very productive854

in our environments overall. The additive effects are the most855

important when performing selection as for a breeding point-of-856

view. However, one could easily estimate eventual dominance857

effects from the detected QTL using simpler biallelic-based mod-858

els as proposed previously (Hackett et al. 2014; Chen et al. 2018).859

The effective use of higher allele interactions in QTL detection860

remains limited, though.861

Several studies have looked at genes involved in storage862

root initiation and development in sweetpotato as reviewed by863
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Khan et al. (2016). The storage roots differentiate from lateral864

roots by development of cambia around the protoxylem and865

secondary xylem, while lignification of the steles of some lateral866

roots inhibits this transformation (Villordon et al. 2012). The867

transformation is genetically and environmentally controlled.868

Using the expression profile of the parents of the current map-869

ping population, we found genes in leaves and roots (see Figure870

S5) related to root development and sugar transport within the871

QTL hotspot on LG 3 associated with number of storage roots,872

implying that both root restructuring and carbon supply is likely873

involved in the number of lateral root that transform to storage874

root. In A. thaliana, SKU5 (itf03g02930 homolog) was shown to875

have a role in regulating directional root growth as mutants in876

SKU5 were shorter than wild-type and altered in the angle of tip877

growth when grown on agar (Sedbrook et al. 2002). ANN1 and878

ANN2 (itf03g03280 homolog) have been shown to be involved in879

post-phloem sugar transport to the root tip (Wang et al. 2018), a880

phenotype essential to development of storage roots. AtWOX13881

(itf03g03460 homolog) was shown to take part in lateral root de-882

velopment (Kreis et al. 2008). Other genes such as SRF1 through883

SRF10 (Tanaka et al. 2005), knotted1-like homeobox (KNOXI;884

Tanaka et al. 2008), MADS-box genes (Kim 2002), expansin (EXP)885

genes and BEL1-like homeodomain (Ponniah et al. 2017) have886

been strongly implicated in storage root formation and devel-887

opment in sweetpotato. Though we did not find evidence of888

differential expression of these genes in the available transcrip-889

tomic data, two MADS-box transcription factors (itf03g02230890

and itf03g02240), a BEL1-like homeodomain (itf03g02670) and an891

EXP (itf03g05010) were all found within the QTL region on LG 3.892

The association between these genes and the genes described in893

this study is yet to be defined and suggests the complex nature894

of storage root formation and development. On the QTL hotspot895

related to storage root weight on LG 15, we found the CTR1896

gene (itf15g01020 homolog), which encodes a serine-threonine897

kinase and functions in the ethylene signaling pathway leading898

to inhibition of cell proliferation (Ramzan et al. 2015) had vari-899

able expression in the sampled roots. Rose et al. (1997) showed900

that inhibition of ethylene biosynthesis led to inhibition of EXP1901

gene in tomato. In sweetpotato, down-regulation of an EXP1902

homologue (IbEXP1) enhanced storage root development (Noh903

et al. 2013). While little is known about the role of ethylene in904

storage root development, the complex interactions of multiple905

hormones in storage root formation would suggest ethylene may906

be involved in storage root development. The main component907

of the sweetpotato storage root is starch. We found differen-908

tial expression of a gene encoding starch branching enzyme909

(itf15g01120 homolog). Starch biosynthesis involves four major910

classes of enzymes: ADP-glucose pyrophosphorylases, starch911

synthases, starch branching enzymes and starch debranching912

enzymes (Li et al. 2014). Starch branching enzymes influence913

the structure of starch through formation of α-1,6-branch points914

with different frequencies and chain length (Tetlow and Emes915

2014). Given the number and magnitude of QTL identified in916

the current study as associated with yield and yield component917

traits, the results indicate that the candidate genes identified918

in the current study may interact with those from other loci to919

determine the final yield in terms of number, composition and920

weight of storage roots.921

Here, we present a stepwise-based algorithm for multiple-922

QTL model selection in full-sib populations of autopolyploid923

species with a fully integrated map, from which QTL genotype924

conditional probabilities can be calculated. The use of score925

statistics is a key component of this new method, which de-926

pends on a dynamic and fast-computing test for model selection927

during the QTL search process. Simulations were performed in928

order to assess the impact of using different threshold criteria929

for QTL detection and to provide some empirical sense on how930

to use the method in practice. REMIM has been carried out in931

a hexaploid sweetpotato population to detect both minor and932

major loci contributing to the variation of yield-related traits933

that may be targeted in molecular-assisted breeding. The use of934

random-effect models has created the context for fitting multiple935

QTL, providing straightforward information on variance com-936

ponents, important for computing QTL heritabilities. Finally,937

QTL genotype predictions allowed us to estimate allele-specific938

additive effects, for characterizing major additive allele contribu-939

tions, and compute QTL-based breeding values, that can be used940

for performing selection. This novel approach may enable more941

complex models, such as those accounting for interaction among942

QTL as well as multiple traits or multiple environments in order943

to study shared genetic control in different traits/environments944

and G×E interaction at QTL level. Understanding the genetic945

architecture of root yield and other traits related to quality and946

resistance to biotic and abiotic stresses represents great opportu-947

nity for improving interesting characteristics in sweetpotato and948

other polyploids. Most of these important traits are polygenic949

in nature and only assessed later in a breeding program, where950

marker-assisted selection could help to speed up the process.951
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Figure S1 QTL support intervals from random-effect multiple interval mapping (REMIM) of yield-related traits from ‘Beauregard’
× ‘Tanzania’ (BT) full-sib family. Black dots represent the QTL peaks, and colored bars represent the ∼95% support interval com-
puted as LOP− 1.5. Trait abbreviations: number of commercial (NOCR), noncommercial (NONC) and total (TNR) roots per plant,
commercial (CYTHA), noncommercial (NCYTHA) and total (RYTHA) root yield in t · ha−1, foliage yield (FYTHA) in t · ha−1, and
commercial index (CI).
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Figure S2 Score-based p-values and QTL heritabilities (h2
q) from random-effect multiple interval mapping (REMIM) of eight yield-

related traits from ‘Beauregard’ × ‘Tanzania’ (BT) full-sib family. Dots are positioned relative to the QTL peaks: color gradient
represents the p-values, while sizes are proportional to heritabilities of mapped QTL. Trait abbreviations: number of commercial
(NOCR), noncommercial (NONC) and total (TNR) roots per plant, commercial (CYTHA), noncommercial (NCYTHA) and total
(RYTHA) root yield in t · ha−1, foliage yield (FYTHA) in t · ha−1, and commercial index (CI).
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Figure S3 Pearson’s correlations (*p < 0.05, **p < 0.01, ***p < 0.001) among QTL-based breeding values for eight yield-related
traits from ‘Beauregard’ × ‘Tanzania’ (BT) full-sib family. Trait abbreviations: number of commercial (NOCR), noncommercial
(NONC) and total (TNR) roots per plant, commercial (CYTHA), noncommercial (NCYTHA) and total (RYTHA) root yield in
t · ha−1, foliage yield (FYTHA) in t · ha−1, and commercial index (CI).
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Figure S4 Logarithm of the odds (LOD score) profiles from fixed-effect interval mapping (FEIM) of eight yield-related traits from
‘Beauregard’ × ‘Tanzania’ (BT) full-sib family. Triangles represent the QTL peaks. Trait abbreviations: number of commercial
(NOCR), noncommercial (NONC) and total (TNR) roots per plant, commercial (CYTHA), noncommercial (NCYTHA) and total
(RYTHA) root yield in t · ha−1, foliage yield (FYTHA) in t · ha−1, and commercial index (CI). Dashed horizontal lines represent the
permutation-based genome-wide significance LOD threshold of 0.20.
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SKU5  similar itf03g02930

Annexin itf03g03280

WUSCHEL related homeobox itf03g03460

Protein kinase superfamily protein itf15g01020

Starch branching enzyme 2.2 itf15g01120
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Figure S5 Heatmap with expression abundances in fragments per kilobase exon model per million mapped reads (FPKM, log2-
transformed) for five genes in leaves and roots of ‘Beauregard’ (B) and ‘Tanzania’ (T). DAT: days after transplanting. SR: storage
roots. FR: fibrous roots.
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Supplemental Tables

Table S1 Detection power (in percentage) and absolute difference between simulated and mapped QTL peak position (on
average, in centiMorgans) from 1,000 simulated quantitative traits with three QTLs with different heritabilities (h2

q =

{0.27, 0.18, 0.09}). Fixed-effect interval mapping (FEIM) and random-effect multiple interval mapping (REMIM) were carried
out under different genome-wide significance LOD and pointwise backward p-value thresholds, respectively, in ‘Beauregard’ ×
‘Tanzania’ (BT) full-sib population

h2
q

FEIM REMIM

Genome-wide
significance

Power (%) Difference
(cM)a

Pointwise
significance

Power (%) Difference
(cM)a

0.27 0.20 89.40 2.41 (3.31) 10−2 92.60 2.75 (3.37)

0.18 73.00 3.16 (3.67) 84.90 3.51 (3.93)

0.09 34.50 4.06 (4.19) 62.50 4.12 (4.13)

0.27 0.15 88.80 2.40 (3.31) 10−3 92.00 2.65 (3.36)

0.18 71.60 3.16 (3.67) 81.80 3.29 (3.81)

0.09 32.30 3.99 (4.21) 51.70 3.77 (3.97)

0.27 0.10 88.00 2.40 (3.32) 10−4 89.10 2.48 (3.24)

0.18 70.00 3.16 (3.69) 73.40 3.14 (3.73)

0.09 29.90 3.85 (4.08) 39.30 3.67 (3.89)

0.27 0.05 86.60 2.38 (3.33) 10−5 84.40 2.38 (3.17)

0.18 66.80 3.13 (3.68) 65.60 2.89 (3.59)

0.09 27.20 3.82 (4.07) 26.70 3.43 (3.86)

a Standard errors of means are between parentheses.

Table S2 False discovery rate (FDR, in percentage) and proportion of matched QTL (coverage, in percentage) relative to support
intervals calculated for each d = {1.0, 1.5, 2.0} from 1,000 simulated quantitative traits. Fixed-effect interval mapping (FEIM)
and random-effect multiple interval mapping (REMIM) was carried out under different genome-wide significance LOD and
pointwise backward p-value thresholds, respectively, in ‘Beauregard’ × ‘Tanzania’ (BT) full-sib population

d
FEIM REMIM

Genome-wide
significance

FDR (%) Coverage (%) Pointwise
significance

FDR (%) Coverage (%)

1.0 0.20 27.49 85.98 10−2 48.95 90.21

1.5 20.53 94.51 46.03 95.67

2.0 17.53 98.32 45.25 97.08

1.0 0.15 25.98 85.99 10−3 26.23 91.26

1.5 18.75 94.50 22.77 95.79

2.0 15.66 98.34 21.71 97.16

1.0 0.10 24.01 86.00 10−4 16.73 91.82

1.5 16.61 94.52 12.96 95.94

2.0 13.50 98.30 11.92 97.13

1.0 0.05 21.71 86.08 10−5 12.90 92.36

1.5 14.25 94.49 9.56 95.87

2.0 10.97 98.27 8.62 97.00
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Table S3 Summary of fixed-effect interval mapping (FEIM) for eight yield-related traits in ‘Beauregard’ × ‘Tanzania’ (BT) full-
sib family. Linkage group (LG), map position (in cM) and its ∼95% support interval (SI), likelihood-ratio test (LRT), its corre-
sponding logarithm of the odds (LOD) and the adjusted R2 (in percentage) are shown for each mapped QTL using permutation-
based genome-wide significance LOD threshold of 0.20.

Traita QTL LG Position (SI) LRT LOD R2
adj (%)

NOCR 1 1 140.03 (113.05-154.02) 47.71 10.36 11.83

2 3 20.18 (16.60-39.52) 47.41 10.3 11.74

NONC 1 1 142.10 (127.44-162.44) 32.08 6.97 7.08

2 3 32.56 (4.68-50.15) 39.02 8.47 9.22

3 10 111.40 (97.02-154.13) 37.61 8.17 8.79

4 15 54.49 (34.37-75.28) 47.48 10.31 11.76

TNR 1 1 140.03 (131.50-155.34) 49.28 10.7 12.29

2 3 32.56 (18.43-44.03) 50.48 10.96 12.64

3 9 26.14 (15.11-54.08) 34.35 7.46 7.78

4 15 75.28 (33.13-118.00) 37.88 8.23 8.87

CYTHA 1 15 5.27 (1.07-36.02) 44.4 9.64 10.84

NCYTHA 1 3 32.56 (24.47-44.03) 34.71 7.54 7.89

2 15 105.02 (103.05-117.01) 37.43 8.13 8.73

RYTHA 1 15 5.27 (1.07-36.02) 42.23 9.17 10.19

FYTHA 1 4 95.01 (68.09-112.02) 31.84 6.91 7.00

2 10 30.31 (16.12-37.32) 34.93 7.58 7.96

CI 1 15 4.19 (0.00-37.25) 34.31 7.45 7.77

a Trait abbreviations: number of commercial (NOCR), noncommercial (NONC) and total (TNR) roots per plant, commercial (CYTHA), noncommercial (NCYTHA) and total
(RYTHA) root yield in t · ha−1, foliage yield (FYTHA) in t · ha−1, and commercial index (CI).
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Table S4 Allele additive effects from QTL mapped for eight yield-related traits in ‘Beauregard’ × ‘Tanzania’ (BT) full-sib family
using random-effect multiple interval mapping (REMIM). ‘Beauregard’ ({a, ..., f }) and ‘Tanzania’ ({g, ..., l}) alleles represent the
parental contribution to the trait mean.

Traita QTL
’Beauregard’ ’Tanzania’

a b c d e f g h i j k l

NOCR 1 −0.0767 0.0998 −0.0025 0.0248 −0.0221 −0.0233 −0.0168 0.0216 0.0305 0.0523 −0.1057 0.0181
2 0.0072 0.0782 −0.0600 0.0351 −0.0162 −0.0444 −0.0083 0.0966 −0.0420 0.0219 −0.0541 −0.0140
3 0.0112 −0.0360 −0.1171 0.0791 0.0172 0.0456 −0.1475 0.0045 0.0302 0.0685 0.0272 0.0171
4 −0.0446 −0.0138 0.0545 −0.0276 0.0031 0.0285 0.0407 −0.0534 0.0618 −0.0010 −0.0569 0.0088
5 0.1042 −0.0060 −0.0487 −0.0179 −0.0287 −0.0029 0.0072 0.0802 −0.0385 −0.0659 0.0086 0.0083
6 −0.0184 −0.0463 0.0944 0.0299 −0.0200 −0.0396 0.0406 −0.0627 −0.0084 −0.0149 −0.0005 0.0459
7 −0.0979 0.0436 0.0795 −0.0238 0.0053 −0.0066 −0.0073 −0.0213 −0.0033 −0.0188 0.0254 0.0254

NONC 1 −0.0065 0.0898 −0.0631 −0.0086 0.0004 −0.0120 −0.0094 0.0480 0.0079 −0.0105 −0.0073 −0.0286
2 0.0492 −0.0402 −0.0619 0.0578 −0.0399 0.0350 −0.0476 −0.0012 −0.0319 0.0295 −0.0109 0.0622
3 −0.0601 0.0219 −0.0284 0.0097 −0.0053 0.0623 −0.0135 −0.0232 0.0733 0.0096 0.0048 −0.0509
4 −0.0147 −0.0056 0.0199 −0.0666 0.0535 0.0134 0.0182 0.0024 −0.0133 −0.0574 0.0566 −0.0066
5 −0.0355 −0.0245 0.1207 −0.0647 −0.0168 0.0207 0.0324 −0.0387 0.0096 0.0079 0.0051 −0.0163
6 −0.0041 −0.0330 −0.0358 −0.0239 0.0225 0.0743 −0.0605 0.0054 0.0790 −0.0100 0.0174 −0.0314
7 −0.0375 −0.0169 −0.0522 −0.0189 0.0433 0.0823 0.0026 0.0304 −0.0097 0.0073 0.0098 −0.0404
8 0.0480 0.0233 −0.0488 −0.0325 0.0034 0.0065 −0.0718 0.0583 0.0063 −0.0527 0.0385 0.0214
9 −0.0236 0.0210 0.0394 −0.0462 −0.0337 0.0431 0.0222 0.0696 −0.0431 −0.0368 0.0138 −0.0257

TNR 1 −0.1089 0.1489 0.0388 −0.0386 −0.0364 −0.0038 −0.0366 0.0279 −0.0089 0.1466 −0.1538 0.0248
2 0.0674 −0.0521 −0.2164 0.1942 −0.0873 0.0942 −0.2958 0.0116 −0.0017 0.1910 0.0015 0.0935
3 −0.0910 0.0071 −0.0011 0.0510 −0.0154 0.0495 0.0869 −0.0924 0.1659 0.0022 −0.0802 −0.0824
4 −0.0169 0.0362 0.0188 −0.0017 −0.0564 0.0201 −0.0109 −0.0672 0.0224 0.0496 −0.0830 0.0893
5 0.0093 −0.0954 0.0393 −0.0886 0.0793 0.0561 0.0286 −0.0325 0.0097 −0.0735 0.0481 0.0197
6 −0.0923 −0.0610 0.1614 −0.0188 −0.0513 0.0620 0.0677 −0.0757 −0.0191 −0.0217 −0.0048 0.0536
7 0.0630 −0.0419 −0.0103 −0.0742 −0.0033 0.0667 −0.0921 0.0702 0.0999 −0.0205 0.0585 −0.1160
8 0.0531 0.0498 −0.0964 −0.0560 0.0354 0.0141 −0.1263 0.0350 −0.0019 −0.0542 0.0885 0.0590
9 −0.0183 0.0886 −0.0302 −0.0284 0.0634 −0.0751 0.0805 −0.1203 0.0930 −0.0222 −0.0296 −0.0014

10 −0.0322 0.0995 0.0176 −0.0951 −0.0842 0.0944 −0.0457 0.1152 0.0623 −0.0294 −0.0839 −0.0186
CYTHA 1 0.3022 0.8168 −0.6094 −0.0872 −0.1778 −0.2447 0.0310 0.2950 1.0456 −0.3993 −0.4669 −0.5054
NCYTHA 1 −0.0293 0.0510 −0.0056 −0.0203 −0.0169 0.0212 0.0075 0.0358 0.0014 0.0273 −0.0984 0.0264

2 −0.0021 0.0178 0.0192 −0.0118 −0.0464 0.0233 −0.0081 −0.0665 −0.0043 0.0406 −0.0114 0.0497
3 −0.0346 0.0214 0.0028 −0.0366 0.0557 −0.0086 0.0044 0.0093 0.0535 0.0021 −0.0511 −0.0181
4 −0.0092 −0.0401 −0.0260 0.0362 −0.0271 0.0662 −0.0336 −0.0396 0.0529 0.0296 0.0200 −0.0294
5 0.0000 0.0234 −0.0298 −0.0756 0.0141 0.0679 −0.0543 0.0586 0.0442 0.0067 −0.0033 −0.0520

RYTHA 1 −0.0115 −0.2356 −0.3605 0.1004 0.4067 0.1005 0.4142 −0.2283 −0.5186 −0.3287 0.3150 0.3464
2 0.3820 0.0903 −0.4735 0.1308 0.0187 −0.1483 0.3776 −0.1423 −0.7335 −0.2565 −0.0959 0.8506
3 0.3013 0.8584 −0.6686 0.0513 −0.3013 −0.2410 0.0457 0.4922 1.1574 −0.5636 −0.4004 −0.7314

FYTHA 1 0.5933 0.2377 0.0278 −0.0235 −0.0610 −0.7743 0.3693 0.0962 −0.5706 −0.0128 0.3894 −0.2715
2 0.3460 0.2159 0.0281 −0.6872 −0.0797 0.1769 0.6112 −0.5162 0.0262 0.1795 −0.3660 0.0653
3 −0.2534 −0.0520 0.0282 0.1661 0.2388 −0.1277 0.5113 −0.3626 0.0336 0.4025 −0.0063 −0.5785
4 −0.2832 −0.2848 0.2943 0.0672 −0.1976 0.4041 −0.2560 −1.0853 0.6058 0.2293 0.4539 0.0524
5 0.1011 0.2950 0.0799 0.4343 −0.7205 −0.1898 0.0774 −0.7765 0.3509 0.0161 0.0354 0.2968

CI 1 0.0012 0.0120 −0.0060 −0.0027 0.0004 −0.0049 0.0012 0.0040 0.0104 −0.0048 −0.0056 −0.0052

a Trait abbreviations: number of commercial (NOCR), noncommercial (NONC) and total (TNR) roots per plant, commercial (CYTHA), noncommercial (NCYTHA) and total
(RYTHA) root yield in t · ha−1, foliage yield (FYTHA) in t · ha−1, and commercial index (CI).
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Table S5 Map (in centiMorgans) and genome (in base pairs) positions and support intervals (inside the parentheses) for QTL
mapped in ’Beauregard’×’Tanzania’ full-sib family using random-effect multiple interval mapping (REMIM) for eight yield-
related traits.

Traita QTL LG Map position (cM) I. trifida genome (bp) I. triloba genome (bp)

NOCR 1 1 139.24 (99.06-152.48) 22077567 (15917835-23281986) 26692560 (10387193-28126436)

2 2 139.30 (98.83-152.5) 16126352 (11398424-3350738) 11822379 (6161757-13945807)

3 3 20.18 (0.00-37.44) 1591872 (32030-3185578) 1802096 (22131-3524655)

4 4 76.48 (57.01-100.14) 4780118 (3520761-7038218) 5570824 (4107181-11896279)

5 7 38.27 (2.18-99.12) 2838315 (239482-15160871) 3005905 (302031-21622505)

6 9 31.15 (22.24-73.45) 2036465 (1357520-3997473) 2537129 (1804182-4799470)

7 11 98.39 (83.07-123.22) 7711459 (6002238-16415359) 10309151 (8138260-18201378)

NONC 1 2 88.62 (72.44-95.72) 10660510 (9568479-11099215) 5346836 (4151689-5850309)

2 3 12.36 (0.00-21.01) 790052 (32030-1645526) 898334 (22131-1870158)

3 4 65.09 (54.35-70.05) 4039479 (3226706-4328193) 4701624 (3769011-5022282)

4 6 3.12 (0.00-25.13) 10827111 (11507438-7099549) 8590172 (9365714-4034190)

5 9 15.11 (13.48-51.17) 963597 (777490-2666908) 1377719 (1161653-3269774)

6 10 145.40 (137.16-164.81) 22087839 (21754871-23272183) 26130519 (25776790-27501919)

7 12 137.16 (125.03-147.31) 21521557 (20738759-22197168) 25320356 (24372733-26179595)

8 13 65.36 (50.68-98.41) 12302173 (4360140-17295029) 19828339 (8041557-25122550)

9 15 46.19 (32.15-119.04) 2779657 (1939509-18430098) 3166284 (2238681-22171700)

TNR 1 1 140.03 (130.13-148.23) 22212737 (20422516-23040691) 26810094 (6478813-27858718)

2 3 20.18 (18.43-25.28) 1591872 (1428660-1971958) 1802096 (1628157-2218567)

3 4 62.03 (43.43-86.11) 3832284 (2567373-5837890) 4469117 (2988152-9198140)

4 4 200.09 (164.01-205.15) 30146741 (27537111-30647356) 33756387 (30687469-34246129)

5 6 3.12 (0.00-14.33) 10827111 (11507438-9128510) 8590172 (9365714-6585862)

6 9 73.45 (13.48-82.10) 3997473 (777490-4928686) 4799470 (1161653-6032732)

7 10 149.31 (144.46-185.31) 22370642 (22001105-24392989) 26474885 (26021589-28734008)

8 13 71.22 (44.23-120.57) 13078300 (3404827-18987490) 20738566 (6812279-27040045)

9 14 66.19 (59.27-79.27) 13866336 (6439913-15641815) 12047246 (13374139-19755290)

10 15 109.10 (65.09-118) 11529245 (4456148-18121488) 13540937 (4998050-21802867)

CYTHA 1 15 5.27 (0.00-32.15) 477772 (21822-1939509) 570552 (56000-2238681)

NCYTHA 1 1 131.50 (113.05-152.48) 20574531 (19617725-23281986) 6295866 (8560921-28126436)

2 4 180.36 (43.43-215.18) 28612876 (2567373-31472749) 32007820 (2988152-35147251)

3 8 0.00 (0.00-76.43) 19730 (19730-5572337) 67559 (67559-6976839)

4 10 60.24 (35.15-114.14) 5641312 (2981461-19734636) 7167078 (3609708-23944890)

5 15 105.02 (75.28-125.3) 10277885 (5578641-18573061) 11851576 (6377917-22348321)

RYTHA 1 8 115.54 (40.19-115.54) 15710677 (2729207-15710677) 17988854 (3362265-17988854)

2 13 128.02 (90.20-145.54) 19774175 (16115515-20717332) 27997761 (24485922-29160603)

3 15 4.19 (0.00-8.02) 452966 (21822-656169) 541410 (56000-772513)

FYTHA 1 4 63.08 (0.00-112.02) 3949338 (42497-11940181) 4583079 (27376-15353793)

2 7 56.40 (34.12-109.48) 4151772 (2632557-10523783) 4391711 (2793744-15591910)

3 8 43.00 (27.20-54.33) 2990041 (2088002-3564360) 3816702 (2602036-4509723)

4 10 29.09 (18.40-37.32) 2508929 (1725045-3121782) 2930617 (1764312-3779221)

5 13 42.60 (31.67-68.18) 3275253 (2251209-12530096) 6492727 (3912768-20079912)

CI 1 15 5.27 (0.00-36.02) 477772 (21822-2185604) 570552 (56000-2490117)

a Trait abbreviations: number of commercial (NOCR), noncommercial (NONC) and total (TNR) roots per plant, commercial (CYTHA), noncommercial (NCYTHA) and total
(RYTHA) root yield in t · ha−1, foliage yield (FYTHA) in t · ha−1, and commercial index (CI).
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