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ABSTRACT 26 

The genus Caldicellulosiruptor are extremely thermophilic, heterotrophic anaerobes that 27 

degrade plant biomass using modular, multifunctional enzymes. Prior pangenome analyses 28 

determined that this genus is genetically diverse, with the current pangenome remaining open, 29 

meaning that new genes are expected with each additional genome sequence added. Given the 30 

high biodiversity observed among the genus Caldicellulosiruptor, we have sequenced and 31 

added a 14th species, Caldicellulosiruptor changbaiensis, to the pangenome. The pangenome 32 

now includes 3,791 ortholog clusters, 120 of which are unique to C. changbaiensis and may be 33 

involved in plant biomass degradation. Comparisons between C. changbaiensis and 34 

Caldicellulosiruptor bescii on the basis of growth kinetics, cellulose solubilization and cell 35 

attachment to polysaccharides highlighted physiological differences between the two species 36 

which are supported by their respective gene inventories. Most significantly, these comparisons 37 

indicated that C. changbaiensis possesses unique cellulose attachment mechanisms not 38 

observed among the other strongly cellulolytic members of the genus Caldicellulosiruptor.  39 

 40 
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INTRODUCTION 41 

The genus Caldicellulosiruptor is comprised of extremely thermophilic, fermentative 42 

heterotrophs whose members have been isolated worldwide from terrestrial geothermal springs 43 

or other thermal environments [37]. The original isolates from the genus Caldicellulosiruptor 44 

were identified on the basis of their ability to grow on cellulose at elevated temperatures [56,54], 45 

especially temperatures beyond the optimal growth temperature of Ruminiclostridium 46 

thermocellum [48]. Interest in thermostable enzymes produced by this genus continues, as the 47 

initial discovery of their multifunctional, modular enzymes [51,26,57,67] represented an alternate 48 

paradigm to cellulosomes [2,52]. Further discoveries on the capabilities of these thermostable 49 

enzymes include the unique mode of action used by the central cellulase, CelA, [8], synergistic 50 

activity in ionic liquid optimized enzyme mixtures [45,46] and the creation of designer 51 

cellulosomes from Caldicellulosiruptor catalytic domains [29]. Development of a genetics system 52 

for Caldicellulosiruptor bescii [14,16] has also expanded the scope of work with this genus, 53 

including metabolic engineering [10,12,13,50] and catalytic improvement [18,30,32,31,34,33].  54 

The availability of genome sequences has precipitated deeper insights into the genus 55 

Caldicellulosiruptor, including comparative studies which have identified biomarkers for plant 56 

biomass deconstruction [6,5,23], novel insertion elements [15], genetic tractability [11], diverse 57 

mechanisms involved in biomass solubilization [66,37], unique cellulose adhesins (tāpirins) 58 

[5,37] and the identification of new combinations of catalytic domains [5,36,23]. Perhaps owing 59 

to the unique thermal environments that this genus inhabits, their genomes appear to be 60 

dynamic, as the first described Caldicellulosiruptor pangenome was predicted to be open [5], 61 

and remained open after the addition of five additional genome sequences [36].  62 

Here, we have analyzed the genome sequence of Caldicellulosiruptor changbaiensis, 63 

isolated from a hot spring in the Changbai Mountains [3], representing the 14th and most recent 64 

addition to the Caldicellulosiruptor pangenome. Past Caldicellulosiruptor pangenomes were 65 

comprised of multiple species from most countries of origin, which allowed for prior analysis on 66 
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the basis of biogeography [5], with the exception of China and Japan [20]. Now with the addition 67 

of the C. changbaiensis genome sequence, insights into the biogeography of isolates from 68 

China and how they compare to the global Caldicellulosiruptor pangenome is possible. 69 

Furthermore, on the basis of the open Caldicellulosiruptor pangenome [20,5], we hypothesize 70 

that the C. changbaiensis genome may encode for novel substrate-binding proteins and/ or 71 

plant biomass degrading enzymes. In addition to updating the Caldicellulosiruptor pangenome, 72 

we also present differences in the growth physiology of C. changbaiensis versus 73 

Caldicellulosiruptor bescii, currently the benchmark species against which most 74 

Caldicellulosiruptor are compared for their plant biomass degrading capabilities.  75 
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MATERIALS AND METHODS 76 

Microbial strains and medium. Freeze-dried stocks of C. changbaiensis strain CBS-Z 77 

were obtained from the Leibniz Institute DSMZ – German Collection of Microorganisms and Cell 78 

Cultures (DSMZ). Glycerol stocks of C. bescii DSM-6725 were obtained from the laboratory of 79 

Robert M. Kelly, North Carolina State University (Raleigh, NC). Both species were cultured at 80 

75˚C on low osmolarity defined (LOD) medium [25] under a nitrogen headspace to maintain 81 

anaerobic conditions and supplemented with carbohydrates as a carbon source. Carbohydrates 82 

used as a carbon source included cellobiose (≥ 99%, Chem-Impex Int’l, Inc.), pectin (Sigma-83 

Aldrich), xylan (Sigma-Aldrich), glucomannan (NOW Foods), and microcrystalline cellulose (20 84 

µm Sigmacell, Sigma-Aldrich). For genomic DNA isolation, C. changbaiensis was cultured 85 

anaerobically at 75˚C on low osmolarity complex (LOC) medium [25] with cellobiose as a carbon 86 

source. 87 

Genomic DNA isolation. Genomic DNA was isolated using the Joint Genome Institute’s 88 

CTAB-based protocol (https://jgi.doe.gov/user-programs/pmo-overview/protocols-sample-89 

preparation-information/jgi-bacterial-dna-isolation-ctab-protocol-2012/), with modifications. In 90 

order to isolate enough DNA for sequencing, 500 ml of overnight C. changbaiensis culture was 91 

harvested by centrifugation at 5000xg, 4˚C for 20 minutes and resuspending the cell pellet in 92 

14.8 ml of TE buffer, prior to lysis. Gel electrophoresis in 0.7% agarose was used to assess the 93 

quality of genomic DNA and the concentration and purity of the sample for sequencing was 94 

quantified using a NanoDrop spectrophotometer, and Qubit fluorometric assay (dsDNA HS 95 

assay, Thermo Fisher). Prior to genome sequencing, a 16S rRNA gene fragment was amplified 96 

from isolated genomic DNA using oligonucleotide primers (Eton Bioscience) previously 97 

designed for identification of C. changbaiensis [3], for positive identification of C. changbaiensis 98 

(Table 1). Amplicons were sent for Sanger sequencing (Eton Bioscience), using the same 99 

oligonucleotide primers. 100 
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C. changbaiensis genome sequencing, assembly and annotation. The genome 101 

sequence for C. changbaiensis [40] was assembled to 60-fold coverage from long-read Oxford 102 

NanoPore (MinION) data generated in house, and short-read Illumina data generated by 103 

Molecular Research, LP (MR DNA). Hybrid assembly of the complete C. changbaiensis genome 104 

used Unicycler v0.4.7 [61], and annotation of the genome used the Prokaryotic Genome 105 

Annotation Pipeline v4.7 [55] provided by the National Center for Biotechnology Information 106 

(NCBI). The assembled genome and reads used for assembly of the C. changbaiensis genome 107 

are available through NCBI BioProject accession PRJNA511150. 108 

Phylogenomic analysis. Fourteen genome sequences from the genus 109 

Caldicellulosiruptor were included in the phylogenomic analyses (see Table 2 for genome 110 

sequence accession numbers). Orthologous protein groups were classified using the 111 

GET_HOMOLOGUES v20092018 software package [19], running OrthoMCL v1.4 [39], 112 

COGtriangles v2.1 [35], or bidirectional best hits (BDBH) as determined by BLASTP [1,9]. 113 

Orthologous protein clusters were determined using the OrthoMCL parameters: 75% pairwise 114 

coverage, maximum BLASTP E-value of 1e-5, and MCL inflation of 1.5. GET_HOMOLOGUES 115 

was also used to parse the pangenome matrices comparing the C. changbaiensis genome 116 

inventory against the recent 13 Caldicellulosiruptor pangenome [37] or the revised C. bescii 117 

genome [22]. Core- (Eq. 1) and pangenome (Eq. 2) parameters were predicted after curve 118 

fitting randomly sampled core- or pangenome data to functions previously described by Tettelin 119 

et al., [58]. 120 
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 1367 � 1668 ��� � ��
�.���      (1)  121 

����������	 
 2371 � 63.2�� � 1	 � ��� � ��
�.��� ��	
��������

�.��


����� � ��

�.��
�     (2) 122 

Genome-level similarity was quantified as average nucleotide identity (ANIb) from the BLASTN+ 123 

alignment of 1,020 nt fragments from the 14 Caldicellulosiruptor genomes [49,27]. ANIb were 124 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 3, 2019. ; https://doi.org/10.1101/622977doi: bioRxiv preprint 

https://doi.org/10.1101/622977


 6

calculated by Pyani v.0.2.7, (https://github.com/widdowquinn/pyani) and percent identities were 125 

plotted as a heatmap by the software package. 126 

Growth kinetics on polysaccharides. C. bescii or C. changbaiensis were revived from 127 

-80˚C glycerol stocks for growth curve analysis on microcrystalline cellulose, xylan, pectin or 128 

glucomannan. Glycerol stocks (1 ml) were subcultured into 50 ml LOD medium for 3 129 

consecutive subcultures using 2% (v/v) inoculum at each passage. Revived cultures were then 130 

transferred (2% [v/v] inoculum) to LOD medium containing a 1:1 ratio of maltose (C. bescii) or 131 

cellobiose (C. changbaiensis) to polysaccharide. The 1:1 mixture was then passaged (2% [v/v] 132 

inoculum) three times successively in LOD medium with polysaccharide, only. Cultures for 133 

growth curves were inoculated at a starting cell density of 1 x 106 cells ml-1 in 200 ml LOD plus 134 

the respective polysaccharide. Biological replicates were used for each growth phase 135 

experiment. Cell counting used epifluorescence microscopy at 1000x total magnification and a 136 

counting reticle as described previously [28]. Cells were fixed in a final volume of 1.1 ml 137 

gluteraldehyde (2.5% [v/v] in water) prior to incubation with acridine orange (1 g l-1) and 138 

approximately 5 ml sterilized water and thoroughly mixed. Stained cells were then vacuum 139 

filtered through a polycarbonate 0.22 µm filter (GE). Samples were counted using a 10x10 140 

reticle a total of ten times. Cell counts were averaged for calculation of cell density (cells ml-1). 141 

Doubling times are described as the number of hours per generation during exponential growth, 142 

calculated as Δtime divided by the number of generations.  143 

Microcrystalline cellulose solubilization. Solubilization of microcrystalline cellulose 144 

followed protocols established by Zurawski et al., [66] with modifications. C. bescii or C. 145 

changbaiensis were cultured in serum bottles with 50 ml of LOD medium supplemented with 146 

0.6g of microcrystalline cellulose (20µm Sigmacell) at a starting cell density of 106 cells ml-1. 147 

Cultures were then incubated without shaking at 75˚C for seven days, after which the remaining 148 

microcrystalline cellulose was harvested by centrifugation at 6000 xg, 4˚C for 15 min in a swing 149 

bucket rotor. The cellulose pellet was washed four times in sterile, deionized water and air dried 150 
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at 75˚C until the weight of the microcrystalline cellulose did not change. Uninoculated LOD 151 

served as an abiotic control. Percent solubilization is reported as the difference in substrate 152 

weight divided by the starting weight multiplied by 100. All experimental conditions were 153 

measured in triplicate and significance was determined by a t-test (p-value < 0.05). 154 

Cell attachment assays. C. bescii and C. changbaiensis cell cultures were grown to 155 

early stationary phase on either xylan or cellulose (1 g l-1) as the carbon source, and cell 156 

densities were calculated before harvesting at 5000 xg for 10 minutes at room temperature. 157 

Cells were resuspended and concentrated ten-fold in the binding buffer (50 mM sodium 158 

phosphate, pH 7.2) to a 10-fold density of approximately 1-2 x 109 cells ml-1 for cells cultured on 159 

xylan or 1 x 108 cells mil-1 for cells cultured on cellulose. For each treatment condition, 1.2 ml of 160 

C. bescii or C. changbaiensis planktonic cells in binding buffer were added to a 1.5 ml 161 

microcentrifuge tube, and supplemented with 10 mg of washed substrate (experimental 162 

condition: xylan or cellulose), or no substrate for the negative control. All assay tubes were 163 

incubated at room temperature for one hour with gentle rotary shaking at 100 rpm. After 164 

incubation, planktonic cells were enumerated as described above for the growth curves. Each 165 

binding assay was repeated six times. Two-sample t-tests were used to analyze the data using 166 

the R studio statistics package v.3.3.3 [47]. 167 

  168 
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RESULTS AND DISCUSSION 169 

 Phylogenomic analysis of the C. changbaiensis genome. With the addition of the 170 

fourteenth Caldicellulosiruptor genome [40], we sought to define an updated core- and 171 

pangenome. Three different algorithms: OrthoMCL [39], bidirectional best hit and COGtriangles 172 

[35] were used to classify orthologous clusters for pangenome analysis (Table S1). Of the three, 173 

the clusters formed by OrthoMCL resulted in an estimated core- and pangenome with the lowest 174 

residual standard errors, and are reported here (Fig. 1). Overall, there are 120 unique protein 175 

clusters identified in the C. changbaiensis genome when compared to the prior 176 

Caldicellulosiruptor pangenome [37], 75 of which were annotated as hypothetical proteins. 177 

Further transcriptomic and proteomic studies may aid in the identification of the function of these 178 

unique hypothetical proteins. By adding a 14th genome, the Caldicellulosiruptor core genome 179 

was reduced to 1,367 orthologous clusters (see Eq. 1), however, the pangenome (3,791 genes) 180 

continues to expand at an estimated rate of 63.2 genes per additional genome (Eq. 2, Fig. 1) 181 

highlighting the plasticity of the Caldicellulosiruptor pangenome.  182 

In contrast to previously released genome sequences from New Zealand [36], C. 183 

changbaiensis exhibits a similar pattern of biogeography based on average nucleotide identity 184 

(ANIb). As expected, Caldicellulosiruptor sp. F32, isolated from compost in China [63], and C. 185 

naganoensis, isolated from a hot spring in Japan [56] shared higher percent identity levels with 186 

C. changbaiensis, along with C. saccharolyticus, isolated from a hot spring in New Zealand (Fig. 187 

2, Table S2). All species that C. changbaiensis shared the highest ANI with have been 188 

described and confirmed as being strongly cellulolytic, implying that the C. changbaiensis 189 

genome would also encode for a glucan degradation locus (GDL). Despite the high level of 190 

ANIb, based on the open Caldicellulosiruptor pangenome, we expected to find new genes 191 

involved in carbohydrate metabolism and possibly GDL arrangements.  192 

 C. changbaiensis exhibits different abilities to grow on polysaccharides versus C. 193 

bescii. In order to benchmark the ability of C. changbaiensis to grow on plant-related 194 
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polysaccharides, we compared its doubling time during exponential growth on representative 195 

plant polysaccharides to C. bescii (Table 3). Doubling times (generation time) were calculated 196 

from cell densities measured during exponential growth. Overall, C. changbaiensis grows slower 197 

on microcrystalline cellulose than C. bescii, with a 38% larger doubling time during growth on 198 

crystalline cellulose, however, both cultures grew at similar rates on xylan. On both 199 

glucomannan, and pectin, C. changbaiensis grew faster with 35% lower doubling times (Table 200 

3). The differential ability of C. changbaiensis and C. bescii to grow on pectin and glucomannan 201 

is not unexpected, as the differential ability from one species to another to hydrolyze and 202 

metabolize plant biomass, comprised of polysaccharides such as xylan, pectin and 203 

glucomannan, was previously observed, in one case C. saccharolyticus grew slower on plant 204 

biomass versus C. bescii [62] and C. kronotskyensis [66] and another observation where C. 205 

danielii grew approximately 50% faster than C. bescii, C. morganii and C. naganoensis on plant 206 

biomass [36]. 207 

When comparing the genomes of C. changbaiensis and C. bescii, C. changbaiensis 208 

encodes for 411 genes not shared with C. bescii, 120 of which are unique to the genus. We 209 

expect that the differences in growth rates on carbohydrates to be related to differences in gene 210 

inventory. In fact, the C. changbaiensis gene inventory encoding for carbohydrate active 211 

enzymes includes 13 genes not found in the C. bescii genome, including an annotated β-212 

mannanase (glycoside hydrolase [GH] family 26) and two mannooligosaccharide 213 

phosphorylases (GH130). This additional β-mannanase and phosphorylases likely contribute to 214 

the enhanced growth of C. changbaiensis on glucomannan (Table 3).  215 

The lower doubling time on pectin is surprising, however, given that C. changbaiensis 216 

does not encode for the pectinase cluster that is located in the C. bescii genome immediately 217 

downstream of the GDL. C. bescii gene deletion strains lacking the pectinase cluster were 218 

impaired in their growth on both pectin-rich plant biomass and pectin [17], indicating that C. 219 

changbaiensis has evolved alternate mechanisms to deconstruct or metabolize pectin. 220 
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Screening the C. changbaiensis genome for pectin-related enzymes did not identify any genes 221 

encoding for polysaccharide lyases (PL) that were unique in comparison to C. bescii, however 222 

genes encoding for representatives from GH family 43, 51 (α-L-arabinofuranosidases) and 95 (α 223 

-fucosidase) were present. One scenario is that these enzymes participate in the hydrolysis of 224 

carbohydrate sidechains from pectin [44]. Another plausible explanation is that C. 225 

changbaiensis has evolved to import and efficiently ferment a broader range of carbohydrates 226 

released during growth on plant biomass, including uronic acids, and/ or the deoxy sugars 227 

fucose and rhamnose. While C. bescii may rely on its enzymatic repertoire to deconstruct plant 228 

biomass, it may not metabolize all types of carbohydrates that are released, similar to R. 229 

thermocellum which produces xylanases, but does not metabolize xylose [42,43]. 230 

Organization of the C. changbaiensis genome degradation locus. C. changbaiensis 231 

was originally described as strongly cellulolytic [3] and accordingly, its genome encodes for a 232 

GDL that shares a similar organization with other strongly cellulolytic members of the genus. 233 

since C. bescii was able to grow at a faster rate on microcrystalline cellulose than C. 234 

changbaiensis (Table 3), we opted to focus on the comparison of GDL between these two 235 

species. The GDL from both species is remarkedly similar, with only CelD possessing a different 236 

arrangement of catalytic and non-catalytic domains (GH10-CBM3-GH5) from C. changbaiensis, 237 

and truncated versions of CelE (GH9-CBM3-GH5) and CelF (GH74-CBM3) present (Fig. 3). 238 

Prior in vitro biochemical analyses on the synergy of cellulase mixtures from C. bescii had 239 

observed that a mixture of three cellulases, CelA, CelC and CelE (ACE cellulases) worked 240 

synergistically to hydrolyze cellulose as well as a mixture of all six C. bescii cellulases [21]. One 241 

could hypothesize, then, that members of the genus Caldicellulosiruptor that possess all three of 242 

these enzymes would be among the most cellulolytic. Three additional species, C. 243 

kronotskyensis, C. danielii, and C. naganoensis also share a similar organization of their GDL 244 

[36], including the presence of CelA, CelC and CelE. The contributions of CelD and CelF to 245 
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cellulose hydrolysis or solubilization are low [22,21] and likely not to impact the ability of C. 246 

changbaiensis to efficiently hydrolyze cellulose.  247 

Indeed, C. changbaiensis can solubilize microcrystalline cellulose (Fig. 4), however the 248 

amount of cellulose solubilized was 22.4% lower than the amount solubilized by C. bescii, which 249 

is similar to the performance of C. saccharolyticus when compared to C. bescii [24.8% lower, 250 

66]. This result begs the question if the mere presence of the ACE cellulases is sufficient to 251 

meet the C. bescii benchmark for hydrolysis of cellulose. One explanation could be that the C. 252 

changbaiensis CelE ortholog may not be as efficient in cellulose hydrolysis since it is lacking 253 

two CBM3 modules. However, the nearly equal reduction of cellulose solubilization by both C. 254 

bescii gene deletion strains incapable of producing CelA-CelC versus CelA-CelE does not 255 

support this possibility [22]. Furthermore, CelE truncations that possessed the GH9 catalytic 256 

domain and three or two CBM3 domains were equally capable of microcrystalline cellulose 257 

hydrolysis [53], making it unlikely that the loss of a CBM3 domain from the C. changbaiensis 258 

CelA ortholog hampered its activity.  259 

Alternately, sequence divergence of ACE cellulase orthologs may play a larger role in 260 

the catalytic capacity of cellulolytic members from the genus Caldicellulosiruptor. Of the ACE 261 

cellulases, CelA is a key player, supported by its unique hydrolysis mechanism [8], the severe 262 

reduction in cellulose hydrolysis by C. bescii celA gene deletion mutant [65,22], and biochemical 263 

analysis of GDL enzyme synergy [21]. Prior comparison of CelA orthologs from C. bescii and C. 264 

danielii found CbCelA to be a superior enzyme [36], indicating that GDL sequences have 265 

diverged during speciation, making it likely that the ACE cellulases from C. changbaiensis may 266 

not demonstrate the same catalytic efficiency as C. bescii.  267 

 Attachment of C. bescii and C. changbaiensis to plant polysaccharides. Aside from 268 

comparisons of catalytic ability, we also compared the ability of C. changbaiensis versus C. 269 

bescii planktonic cells to bind to insoluble substrates (xylan and cellulose). A decrease in the 270 

planktonic cell density (PCD) after exposure to the substrate compared to the PCD of the 271 
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negative controls without substrate is indicative of cells binding to the substrate. Surprisingly, we 272 

saw no such decrease in PCD for C. changbaiensis cultured on xylan after incubation with 273 

cellulose or xylan (Figs. 5A and B). This inability of C. changbaiensis to attach to xylan or 274 

cellulose after growth on xylan is surprising, given that xylan is a major polysaccharide 275 

constituent of lignocellulose, and would likely serve as a chemical signal. Since no xylan or 276 

cellulose attachment proteins are produced in response to growth on xylan, C. changbaiensis 277 

appears to act as a specialist, responding only to cellulose. Regardless, when C. changbaiensis 278 

is grown on cellulose, it maintains an ability to attach to cellulose (29% cells attached), which is 279 

slightly lower than the relative amount of C. bescii cells attached to cellulose (33% attached, 280 

Fig. 5C). Surprisingly, when C. bescii cells cultured on xylan were tested for attachment to 281 

either xylan or cellulose there was a significant decrease in (PCD) of indicating that C. bescii 282 

cells grown on xylan are producing proteins capable of attaching to xylan (33% attachment, Fig. 283 

5A) or cellulose (68% attachment, Fig. 5B). While we expected to see cells from cultures grown 284 

on xylan attaching to xylan, interestingly, C. bescii cell attachment was most pronounced when 285 

cells were grown on xylan and incubated with cellulose (Fig. 5B). The ability of C. bescii to 286 

attach to cellulose (Figs. 5B and C), is in large part due to the presence of tāpirins, since a C. 287 

bescii tāpirin deletion mutant was severely impaired in cellular attachment to cellulose [37].  288 

The C. changbaiensis genome encodes for atypical tāpirin genes. Another notable 289 

difference observed between C. changbaiensis and C. bescii during growth on cellulose is the 290 

lack of floc formation by C. changbaiensis (Fig. 6). Based on this discrepancy between C. 291 

changbaiensis and C. bescii, we examined the genomic context of the type IV pilus locus 292 

encoded by the C. changbaiensis genome (Fig. 7). The T4P locus is found in the genome in all 293 

members of the Caldicellulosiruptor, and is also located upstream of the GDL in the genomes of 294 

strongly cellulolytic species [5,4]. Most notably, while a full T4P locus is present in the C. 295 

changbaiensis genome, classical tāpirin genes are absent which encode for proteins that bind 296 

with high affinity to cellulose [4,37]. Instead, two genes with little, to no homology to the classical 297 
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tāpirins are located directly downstream of the T4P locus which we will refer to as atypical 298 

tāpirins. The proteins encoded for by these genes are not unique to C. changbaiensis, as both 299 

C. acetigenus and C. ownesensis also encode for these atypical tāpirins. All three species 300 

encode for two atypical tāpirins: a hypothetical protein (Genbank accession: WP_127352232.1) 301 

and a von Willebrand Factor A protein (Genbank accession: WP_127352233.1) (yellow arrows, 302 

Fig. 7). While C. changbaiensis shares a similar genomic context at the 3’ end of the T4P locus, 303 

the atypical C. changbaiensis tāpirins are not close orthologs, as they share 74.33% and 304 

68.01% amino sequence similarity with the first and second atypical tāpirins encoded C. 305 

owensensis. Prior proteomics data collected from cellulose-bound, supernatant and whole cell 306 

lysate protein fractions determined that both atypical tāpirins are produced by C. owensensis in 307 

response to cellulose [5], supporting their potential role in cell attachment to cellulose. 308 

This observed sequence divergence between the atypical tāpirins from strongly and 309 

weakly cellulolytic species is similar to the tāpirin encoded for by C. hydrothermalis which 310 

shares little amino acid sequence homology with classical tāpirins, but shares a similar tertiary 311 

structure, and is capable of occupying more sites on crystalline cellulose in comparison to 312 

classical tāpirins [37]. Production of tāpirins with an affinity to cellulose likely plays a role in the 313 

ability of weakly cellulolytic members of the genus to adhere to cellulose and benefit from the 314 

cellooligosaccharides released by the action of cellulases [60]. The atypical tāpirins, originally 315 

only observed in the genomes of weakly cellulolytic species, may also serve as cellulose 316 

adhesins, however, further in-depth biochemical characterization of both atypical tāpirin proteins 317 

is required to confirm their function. 318 
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CONCLUSIONS 319 

 Overall, the Caldicellulosiruptor pangenome remains open, and is expected to gain 320 

approximately 63 new genes with each additional species sequenced (Fig. 1A). The addition of 321 

a second species isolated from China indicates that the diversity of Caldicellulosiruptor species 322 

from this region is higher than those isolated from Iceland, however, the level of observed 323 

diversity is not as high as those species isolated from Kamchatka, Russia or New Zealand on 324 

the basis of ANIb (Fig. 2). C. changbaiensis encodes for a GDL (Fig. 3) similar in organization 325 

as C. bescii, however is not as cellulolytic as C. bescii on the basis of doubling time (Table 3) 326 

and cellulose solubilization (Fig. 4). However, C. changbaiensis does appear to have a broader 327 

metabolic appetite for uronic acids or deoxy sugars. C. changbaiensis also fails to form a floc 328 

during growth on microcrystalline cellulose (Fig. 6), a phenotype previously described for C. 329 

bescii [64], however both species are capable of attaching to cellulose (Fig. 5). Interestingly, C. 330 

bescii retains an ability to attach to cellulose when previously grown on xylan, while C. 331 

changbaiensis does not (Fig. 5B) indicating that the two species respond differently to soluble 332 

carbohydrates present in their environment. Tāpirins were previously demonstrated to be key 333 

cellulose adhesins for strongly [4] to weakly cellulolytic [37] members of the genus 334 

Caldicellulosiruptor. Surprisingly, C. changbaiensis does not encode for the classical tāpirins, 335 

and instead encodes for atypical tāpirins, one of which possesses a von Willebrand type A 336 

protein domain (Fig. 7). These atypical tāpirins are homologous to those encoded for by weakly 337 

cellulolytic C. owensensis and C. acetigenus, however this may not indicate that the atypical 338 

tāpirins are not involved in attachment to cellulose, as the divergent classical tāpirin encoded for 339 

by C. hyrothermalis binds at a high density to cellulose [37]. The combined lack of classical 340 

tāpirins, along with the ability to attach to cellulose indicates that C. changbaiensis evolved a 341 

unique strategy to attach to cellulose. Further study on the biophysical properties of these 342 

atypical tāpirins is warranted to assess their ability to interact with plant polysaccharides, 343 

including cellulose.344 
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FIGURE LEGENDS 345 

Figure 1. Core- and pangenome size estimates calculated from random sampling of 14 346 

Caldicellulosiruptor genomes. (a) Fitted curve of the estimated Caldicellulosiruptor core 347 

genome from 10 random samples of genomes up to n=14. The current size of the core genome 348 

is 1367 orthologous clusters. (b) Fitted curve of the estimated Caldicellulosiruptor pangenome 349 

from 10 random samples of genomes up to n=14. The Caldicellulosiruptor pangenome remains 350 

open and has increased to 3791 genes. The rate of growth for the pangenome is 63.2 new 351 

genes per genome sequenced. Core- and pangenome estimates were calculated from the 352 

equations reported by Tettelin et al., [58] using GET_HOMOLOGUES software [19]. 353 

 354 

Figure 2. Heatmap representation of the average nucleotide identity for 14 genome 355 

sequenced species from the genus Caldicellulosiruptor. Average nucleotide identity (ANIb) 356 

was calculated on the basis of legacy BLASTn sequence identity over 1020nt sequence 357 

fragments. ANIb values of all 14 genomes are represented by a heat plot ranging from blue 358 

(75%< ANIb <90%), white (90%< ANIb <95%) to red (ANIb >95%). Pyani 359 

(https://github.com/widdowquinn/pyani) was used to calculate ANIb values and generate the 360 

clustered heatmap. Hierarchal cluster dendrograms were generated on the basis of similar ANIb 361 

values across each species. ANIb values are reported in Table S1. Calace, C. acetigenus; 362 

Cbes, C. bescii; Calcha, C. changbaiensis; Caldan, C. danielii; Calhy, C. hydrothermalis; Calkr, 363 

C. kristjanssonii; Calkro, C. kronotskyensis; Calla, C. lactoaceticus; Calmo, C. morganii; Calna, 364 

C. naganoensis; COB47, C. obsidiansis; Calow, C. owensensis; Csac, C. saccharolyticus; F32, 365 

C. sp. F32. 366 

 367 

Figure 3. Modular multifunctional enzymes encoded for by the glucan degradation locus. 368 

Glucan degradation loci were selected on the basis of the presence of “ACE” cellulases. ACE 369 

cellulases: CelA, CelC and CelE. Circles represent the glycoside hydrolase (GH) domains, 370 
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rectangles represent the carbohydrate binding module (CBM) domains. GH5, green circles; 371 

GH9, red circles; GH10, violet circles; GH 44, blue circles; GH48, grey circles; GH74, orange 372 

circles. CBM3, grey rectangles; CBM22, pink rectangles. 373 

 374 

Figure 4. Solubilization of microcrystalline cellulose by C. bescii  and C. changbaiensis. 375 

Uninoculated control, indicates abiotic cellulose solubilization in LOD medium. Error bars 376 

represent standard error (n=3). Similar letters over columns denote p< 0.05 as determined by a 377 

t-test.  378 

 379 

Figure 5. Comparison of the ability of C. bescii or C. changbaiensis planktonic cells to 380 

attach to polysaccharides. Titles above bar charts indicate the carbon source for growth/ 381 

binding substrate. (a, b) When cells are grown on xylan, only planktonic C. bescii cells were 382 

able to attach to xylan or cellulose. (c) Cells grown on cellulose as the carbon source and 383 

exposed to cellulose as the binding substrate. Planktonic cell densities (PCD), enumerated by 384 

epifluorescence microscopy are plotted on the y-axis. Green columns indicate PCD without 385 

binding substrate and purple columns indicate PCD with the binding substrate. * indicates p < 386 

0.01 as determined by a t-test. All assays had n=6 biological replicates. 387 

 388 

Figure 6. Flocculation of C. bescii cells cultured on chemically defined medium and 389 

microcrystalline cellulose. (a) Formation of a floc of C. bescii cells around microcrystalline 390 

cellulose (diameter, 20µm) while planktonic C. changbaiensis cells (cloudiness) are visible. (b) 391 

Same serum bottles as in “A”, however the bottles were vigorously mixed. The C. bescii floc 392 

remains fairly stable, while both microcrystalline cellulose and cells are mixed in the C. 393 

changbaiensis culture. 394 

 395 
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Figure 7. Genomic context for the location of the tāpirins from strongly to weakly 396 

cellulolytic Caldicellulosiruptor species. Different colors represent the classical versus 397 

atypical tāpirins. Blue arrows: Cbes tāpirin 1 (Gen bank accession: YP_002573732) and Cbes 398 

tāpirin 2 (Gen bank accession: YP_002573731). Green arrow: Calhy tāpirin 1 (Gen bank 399 

accession number: YP_003992006). Yellow arrows: Calcha tāpirin 1 (Gen bank accession: 400 

WP_127352232.1) and 2 (Gen bank accession: WP_127352233.1), and Calow tāpirin 1 (Gen 401 

bank accession: YP_004002936) and 2 (Gen bank accession r: YP_004002935). Grey 402 

rectangles indicate the presence of the GDL downstream of the tāpirins. Atypical tāpirin 1 is 403 

annotated as a hypothetical protein and atypical tāpirin 2 is annotated as a von Willebrand 404 

factor A protein. Cbes, C. bescii; Calhy, C. hydrothermalis; Calcha, C. changbaiensis and 405 

Calow, C. owensensis. Peach rectangles represent the type IV pilus locus directly upstream of 406 

the tāpirins. Arrows indicate tāpirin 1 and 2. Numbers in the tāpirin arrows indicate the amino 407 

acid length. 408 
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 411 

  412 Table 1. Oligonucleotide primers used for 

Caldicellulosiruptor 16S rRNA gene fragment amplification  

Primer Name Primer Sequence (5’ to 3’) Source 

8F-207 AGAGTTTGATCCTGGCTCAG 
[3] 

Caldi-R-208 GTACGGCTACCTTGTTACG 
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Table 2. Caldicellulosiruptor genome sequences included in the updated pangenome 

analysis 

Species Name NCBI RefSeq Accession Reference 

C. acetigenus GCF_000421725.1 [41] 

C. bescii GCF_000022325.1 [22] 

C. changbaiensis GCF_003999255.1 [40] 

C. danielii GCF_000955725.1 [38,36] 

C. hydrothermalis GCF_000166355.1 [7,5] 

C. kristjanssonii GCF_000166695.1 [7,5] 

C. kronotskyensis GCF_000166775.1 [7,5] 

C. lactoaceticus GCF_000193435.2  [7,5] 

C. morganii GCF_000955745.1 [38,36] 

C. naganoensis GCF_000955735.1 [38,36] 

C. obsidiansis GCF_000145215.1 [24] 

C. owensensis GCF_000166335.1 [7,5] 

C. saccharolyticus GCF_000016545.1 [59] 

C. str. F32 GCF_000404025.1 [63] 

 413 

  414 
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Table 3. Doubling time of C. changbaiensis or C. bescii 

grown on plant polysaccharides 

Polysaccharide gCbes (hr) gCalcha (hr) 

Microcrystalline cellulose 3.93 ± 0.157 5.43 ± 0.304 

Beechwood xylan 2.55 ± 0.211 2.54 ± 0.428 

Glucomannan 3.22 ± 0.62 2.08 ± 0.025 

Pectin 3.48 ± 0.224 2.26 ± 0.167 
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Figure 1. Core- and pangenome size estimates calculated from random sampling of 14 
Caldicellulosiruptor genomes. (A) Fitted curve of the estimated Caldicellulosiruptor core genome from 

10 random samples of genomes up to n=14. The current size of the core genome is 1367 orthologous 

clusters. (B) Fitted curve of the estimated Caldicellulosiruptor pangenome from 10 random samples of 

genomes up to n=14. The Caldicellulosiruptor pangenome remains open and has increased to 3791 

genes. The rate of growth for the pangenome is 63.2 new genes per genome sequenced. Core- and 

pangenome estimates were calculated from the equations reported by Tettelin et al., [58] using 

GET_HOMOLOGUES software [19].
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Figure 2. Heatmap representation of the average nucleotide identity for 14 genome 
sequenced species from the genus Caldicellulosiruptor. Average nucleotide identity (ANIb) 
was calculated on the basis of legacy BLASTn sequence identity over 1020nt sequence 
fragments. ANIb values of all 14 genomes are represented by a heat plot ranging from blue 
(75%< ANIb <90%), white (90%< ANIb <95%) to red (ANIb >95%). Pyani
(https://github.com/widdowquinn/pyani) was used to calculate ANIb values and generate the 
clustered heatmap. Hierarchal cluster dendrograms were generated on the basis of similar ANIb
values across each species. ANIb values are reported in Table S1. Calace, C. acetigenus; 
Cbes, C. bescii; Calcha, C. changbaiensis; Caldan, C. danielii; Calhy, C. hydrothermalis; Calkr, 
C. kristjanssonii; Calkro, C. kronotskyensis; Calla, C. lactoaceticus; Calmo, C. morganii; Calna, 
C. naganoensis; COB47, C. obsidiansis; Calow, C. owensensis; Csac, C. saccharolyticus; F32, 
C. sp. F32.
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Figure 3. Modular multifunctional enzymes encoded for by the glucan degradation 
locus. Glucan degradation loci were selected on the basis of the presence of “ACE” 
cellulases. ACE cellulases: CelA, CelC and CelE. Circles represent the glycoside 
hydrolase (GH) domains, rectangles represent the carbohydrate binding module (CBM) 
domains. GH5, green circles; GH9, red circles; GH10, violet circles; GH 44, blue circles; 
GH48, grey circles; GH74, orange circles. CBM3, grey rectangles; CBM22, pink 
rectangles.
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Figure 4. Solubilization of microcrystalline cellulose by C. bescii and C. changbaiensis. 
Uninoculated control, indicates abiotic cellulose solubilization in LOD medium. Error bars 

represent standard error (n=3). Similar letters over columns denote p< 0.05 as determined by a 

t-test. 
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Figure 5. Comparison of the ability of C. bescii or C. changbaiensis planktonic cells to 
attach to polysaccharides. Titles above bar charts indicate the carbon source for growth/ 
binding substrate. (A, B) When cells are grown on xylan, only planktonic C. bescii cells were able 
to attach to xylan or cellulose. (C) Cells grown on cellulose as the carbon source and exposed to 
cellulose as the binding substrate. Planktonic cell densities (PCD), enumerated by 
epifluorescence microscopy are plotted on the y-axis. Green columns indicate PCD without 
binding substrate and purple columns indicate PCD with the binding substrate. * indicates p < 
0.01. All assays had n=6 biological replicates.
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A

B

Figure 6. Flocculation of C. bescii cells cultured on chemically defined medium and 
microcrystalline cellulose. (A) Formation of a floc of C. bescii cells around microcrystalline 

cellulose (diameter, 20µm) while planktonic C. changbaiensis cells (cloudiness) are visible. (B)
Same serum bottles as in “A”, however the bottles were vigorously mixed. The C. bescii floc 

remains fairly stable, while both microcrystalline cellulose and cells are mixed in the C. 

changbaiensis culture.
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Figure 7. Genomic context for the location of the tāpirins from strongly to weakly 
cellulolytic Caldicellulosiruptor species. Different colors represent the classical versus 
atypical tāpirins. Blue arrows: Cbes tāpirin 1 (Gen bank accession: YP_002573732) and Cbes
tāpirin 2 (Gen bank accession: YP_002573731). Green arrow: Calhy tāpirin 1 (Gen bank 
accession number: YP_003992006). Yellow arrows: Calcha tāpirin 1 (Gen bank accession: 
WP_127352232.1) and 2 (Gen bank accession: WP_127352233.1), and Calow tāpirin 1 (Gen 
bank accession: YP_004002936) and 2 (Gen bank accession r: YP_004002935). Grey 
rectangles indicate the presence of the GDL downstream of the tāpirins. Atypical tāpirin 1 is 
annotated as a hypothetical protein and atypical tāpirin 2 is annotated as a von Willebrand 
factor A protein. Cbes, C. bescii; Calhy, C. hydrothermalis; Calcha, C. changbaiensis and 
Calow, C. owensensis. Peach rectangles represent the type IV pilus locus directly upstream of 
the tāpirins. Arrows indicate tāpirin 1 and 2. Numbers in the tāpirin arrows indicate the amino 
acid length.
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