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Abstract Synthetic gene circuits perturb the physiology of their cellular host. The extra load on endogenous processes
shifts the equilibrium of resource allocation in the host, leading to slow growth and reduced biosynthesis. Here we
built integrated host-circuit models to quantify growth defects caused by synthetic gene circuits. Simulations reveal a
complex relation between circuit output and cellular capacity for gene expression. For weak induction of heterologous
genes, protein output can be increased at the expense of growth defects. Yet for stronger induction, cellular capacity
reaches a tipping point, beyond which both gene expression and growth rate drop sharply. Extensive simulations
across various growth conditions and large regions of the design space suggest that the critical capacity is a result
of ribosomal scarcity. We studied the impact of growth defects on various gene circuits and transcriptional logic
gates, which highlights the extent to which cellular burden can limit, shape and even break down circuit function. Our
approach offers a comprehensive framework to assess the impact of host-circuit interactions in silico, with wide-ranging
implications for the design and optimization of bacterial gene circuits.
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SYNTHETIC gene circuits rely on the machinery of the host
cell where they reside. As the host fuels the expression

of foreign genes, it diverts away resources from vital pro-
cesses. This causes host cells to be susceptible to contextual
effects known as “burden” , which may also affect the func-
tion of synthetic circuits1,2. The competition between syn-
thetic and native genes produces a complex interplay between
circuits and their host3. Such interplay perturbs endogenous
processes and results in slow growth, reduced biosynthesis,
and the onset of stress responses, all of which can affect cir-
cuit function4,5. Characterization of individual circuit parts is
therefore insufficient for accurate prediction of function, and
can thus lead to numerous rounds of trial-and-error iterations
between circuit design, characterization and testing.

The seminal work by Tan and colleagues demonstrated
that growth defects can dramatically change circuit function6.
To improve our understanding of host-circuit interactions,
a number of recent studies have focused on the cross-talk
between gene circuits and host resources for transcription7,
translation2,8–11 and protein degradation12,13. In particular,
theoretical and experimental results showed that expression of
heterologous proteins generally causes a decrease in constitu-
tive expression of other genes7–10, due to limited resources for
transcription and translation.

As gene circuits grow in size and complexity, their footprint
on the host becomes a limiting factor on function. Ceroni and
colleagues developed the first tool to experimentally quantify
the burden caused by heterologous gene expression8. They

a)Corresponding author: d.oyarzun@ed.ac.uk

built a “capacity monitor” consisting of a GFP-expressing
cassette as proxy for the gene expression capacity in Es-
cherichia coli. The GFP output of the monitor drops when
heterologous gene expression is triggered, depending on the
amount of resources sequestered by the synthetic construct.
Subsequent works have focused on strategies to mitigate the
deleterious impact of burden. For instance, Shopera et al14

found that negative feedback regulation reduces the cross-talk
between gene circuits. Gorochowski et al15 showed that tran-
scriptional profiles can be used to debug failure modes of var-
ious gene circuits. Most recently, Rugbjerg and colleagues16

coupled metabolite production to the expression of essen-
tial endogenous genes, which allowed to exploit evolution-
ary forces and increase production, while Darlington et al
engineered a system that alleviates resource bottlenecks via
an orthogonal ribosome17. Recent work further showed that
promoters linked to the heat shock response of E. coli re-
spond to heterologous expression, and then employed them
to build a CRISPR/dCas9-based feedback system to control
expression18.

Experimental quantification of growth defects, however,
can be impractical because pushing a host into a burdened
state may trigger stress responses and escape mutations16,19.
This can shift the host physiology into new regimes that
are strain-specific and generally not well understood. To-
gether with appropriate experimental tools to better under-
stand growth defects, there is growing need for predictive
models that link circuit function to growth rate and the overall
physiology of the host.

Our goal in this paper is to gain a quantitative grasp of
the interplay between circuit function and growth defects. To
this end, we use mathematical models for host-circuit systems
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that predict growth rate from the allocation of resources be-
tween native and foreign processes. We employ a mechanistic
growth model20 extended with a cellular capacity monitor8 as
a backbone for modelling gene circuits expressed in a bacte-
rial host. Our models capture demands for cellular resources
and their impact on endogenous genes for metabolism and
other essential processes. The mechanistic nature of the mod-
els allows direct incorporation of tunable parameters that are
commonly used in circuit design, such as the gene induction
strength or ribosomal binding site (RBS) strength. Model sim-
ulations suggest that ribosomal scarcity can lead to growth de-
fects and cause the capacity for gene expression to reach a tip-
ping point. Such critical capacity appears to be a hallmark for
the host transition into an overburdened state that impairs het-
erologous expression. We use extensive simulations to iden-
tify the implications of this phenomenon for circuit function
and their corresponding design spaces.

RESULTS AND DISCUSSION

Mechanistic host-circuit models

We built several models for gene circuits coupled with the
host physiology. We describe the host with a recently de-
veloped mechanistic growth model20, parameterized for pro-
teome composition data in E. coli21. The growth model pro-
vides a dynamic description of how cells allocate their re-
sources across various components of the proteome in mid-
exponential growth phase. As illustrated in Fig. 1, we parti-
tion the proteome into four components: circuit proteins, ribo-
somes, metabolic enzymes, and housekeeping proteins. The
model accounts for ribosomal autocatalysis, i.e. ribosomes re-
quire free ribosomes for their own expression, and accurately
predicts specific growth rate emerging from the interplay be-
tween metabolism, biosynthesis and circuit activity. In the
model, mRNA transcripts compete for free ribosomes and en-
ergy for translation. Heterologous circuit genes thus compete
with native genes for cellular resources, while the predicted
growth rate dilutes away the circuit proteins. This creates a
two-way interaction between gene circuits and their cellular
host. Our models can readily incorporate the impact of vari-
ous growth media, as well as circuit design parameters such as
gene induction, modelled as the maximal transcription rate of
a gene, or RBS strengths, modelled via changes to the binding
affinity between transcripts and ribosomes. Further details on
model construction and parameterization can be found in the
Methods.

To assess the impact of the interplay between circuit and
host, we conducted a series of simulations that mimic exper-
iments commonly used in the design and optimization of cir-
cuits. Previous studies revealed trade-offs between gene in-
duction and RBS strengths that shape cellular burden8. At the
same time, different growth media have been reported to in-
fluence the ribosomal pool within cells21. To this end, we im-
plemented various nutrient conditions, and explored the joint
impact of RBS strength and circuit induction. All our sim-
ulations also include constitutive expression of a green fluo-
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FIG. 1. Integrated host-circuit model. We built mathematical
models for gene circuits coupled with the physiology of a bacterial
host. Circuit and native genes compete for free ribosomes and en-
ergy molecules. Our models are based on a mechanistic description
of bacterial growth from a coarse-grained partition of the proteome20.
The host model includes a GFP capacity monitor8 to track the impact
of synthetic circuits on the cellular capacity for gene expression.

rescent protein (GFP) gene. This corresponds to an in silico
version of the “capacity monitor”8, where changes in consti-
tutive GFP expression reflect competition for a shared pool of
cellular resources. Here we define cellular capacity as the
rate of GFP expression per cell8 in mid-exponential growth
phase, which provides a convenient metric to quantify the im-
pact of synthetic circuits on the resources of their host. In our
models capacity corresponds to the steady-state rate of GFP
expression.

Limits on expression of heterologous proteins

We first focused on the expression of a heterologous pro-
tein from an inducible promoter for various gene induction
strengths, RBS strengths and growth media. As shown in
Fig. 2A, the model predicts that increased induction indeed
causes an increase in heterologous expression. We found,
however, that heterologous expression does not grow mono-
tonically with induction, but instead protein output reaches a
maximum and drops sharply for stronger gene induction. Sim-
ulations for different nutrient conditions and RBS strengths
reveal that this phenomenon appears for a broad range of the
induction-RBS design space, as well as in different growth
conditions (Fig. 2B). Specifically, we note that the curves in
Fig. 2A shift horizontally with RBS strength, which indicates
that mRNA binding strength and circuit induction jointly in-
crease expression output. At the same time, nutrient quality
scales protein expression globally, with richer media resulting
in higher protein output (Fig. 2B).

The observed impact of RBS strength and nutrient qual-
ity (Fig. 2A–B) suggest that limits in heterologous expression
may be linked to energy and ribosome availability. We thus
examined the availability of energy molecules and free ribo-
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FIG. 2. Limits on expression of an inducible gene. (A) Dose-
response curve of inducible gene expression for increasing induc-
tion and RBS strengths. The host-circuit model predicts a maximal
expression output followed by a sharp decrease for strong induc-
tion. RBS strengths are fold-changes of the nominal case (in blue).
(B) Expression of the inducible gene for various nutrient qualities;
colours represent the predicted doubling time of the wild type strain.
(C) Steady-state abundance of host resources (energy and free ribo-
somes) for increasing gene induction strength; colors correspond to
the legend in panel B. The energy-ribosome relation is independent
of the heterologous RBS strength. The wild type (WT) corresponds
to the case of nil induction. Model predictions are in mid-exponential
growth phase and parameters can be found in Methods C.

somes predicted by the model (Fig. 2C). In all cases, we ob-
served a depletion of free ribosomes for high circuit induc-
tion, while energy levels remained above 60% of the wild
type. Richer growth media result in more energy consump-
tion, yet we found that the relation between energy and free
ribosomes is unaffected by the RBS strength. To explain this
phenomenon, from the model we derived a relation for the
steady-state levels of energy molecules:

a =
nsvcat

λ
−M, (1)

where a represents abundance of energy molecules, ns is the
nutrient quality, vcat is the rate of nutrient metabolization, M
is the cell mass, and λ is the predicted growth rate (details
in Methods). The formula in (1) indeed does not depend on
the RBS strength of the heterologous gene, in agreement with
Fig. 2C.

Critical cellular capacity

To better characterize the limits of heterologous expression,
we examined the dependency of cellular capacity (quantified

by the GFP capacity monitor8) and growth rate on the gene in-
duction strength. Across various growth conditions, we found
two regimes where circuit and host display qualitatively dis-
tinct behavior. As shown in Fig. 3A, for weak to moderate in-
duction, there is a near-linear dependency between cellular ca-
pacity and circuit output. In this regime, increased induction
leads to a larger protein output at the expense of a decrease in
cellular capacity. This is in agreement with previous experi-
ments in which expression of an inducible gene caused a drop
in constitutive expression of another gene7,9,10. The lowered

0

20

40

60

80

100

ca
pa

cit
ym

on
ito

r (
%

of
W

T)T)T

A

gr
ow

th
ra

te
(%

of
W

T)T)T

20

40

60

80

100
B

WT

heterologous expression (# molecules)
10 50 70

doubling time (WT)

45169 28
min

 
Δ induction

0

overloaded

WT

overloaded

30

heterologous expression (# molecules)
10 50 7030

x102

x102

critical
capacity

FIG. 3. Critical cellular capacity and growth defects. (A) Out-
put of the capacity monitor8 with respect to expression of the in-
ducible gene in Fig. 2A. We found a critical capacity at which the
host transitions into an overloaded regime. In the overloaded regime,
both inducible expression and growth rate decrease with the induc-
tion strength. Nutrient quality shifts the capacity curves to higher
expression levels but does not alleviate the resource bottlenecks. (B)
At the tipping point, an ∼80% drop in capacity is accompanied by
growth defects of ∼50% for the considered E. coli model strain. The
wild type (WT) corresponds to the case of nil induction. Model pre-
dictions are in mid-exponential growth phase and parameters can be
found in Methods C.

cellular capacity is accompanied by a growth defect of up to
∼50% with respect to the wild type strain (see Fig. 3B).

Beyond the above regime, however, our simulations reveal
a tipping point at which the relation between growth and cir-
cuit output changes drastically. As seen in Fig. 3A, in this new
regime, both cellular capacity and protein output jointly de-
crease. The tipping point between both regimes corresponds
to a critical cellular capacity, which is associated with a de-
pletion of available ribosomes observed in Fig. 2C. Beyond
the tipping point, the host enters an overloaded regime in
which scarcity of ribosomes is forbidding for the expression
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FIG. 4. Design space for the expression of an inducible gene. (A)-(B) Predicted growth rate and heterologous expression upon changes in
gene induction and RBS strength for the inducible gene in Fig. 2A. A stronger RBS shifts the critical capacity (white, dashed line) to weaker
induction values. For strong RBS, growth rate becomes more sensitive to changes in gene induction. (C) The whole parameter space collapses
to a single curve similar to Fig. 3B. Wild type (WT) corresponds to the case of nil induction.

of both endogenous and heterologous genes.
We further employed the host-circuit models to explore

how induction and RBS strength jointly impact cellular
growth and protein expression. As shown in Fig. 4A, for
similar levels of induction, designs with stronger RBS impart
more burden to the host. The relation between growth rate
and induction strength becomes more sensitive for stronger
RBS. In particular, for designs with a ∼100-fold increase in
RBS strength, small changes in gene induction lead to ∼60%
change in growth rate. This is a form of growth ultrasensitiv-
ity that emerges as a result of excessive burden on the host.
Simulations also indicate that heterologus expression is lim-
ited even for increased RBS strength (Fig. 4B). We also found
that the whole design space, i.e. all combinations of induction
and RBS strength, collapse to a single curve of expression
vs. growth (Fig. 4C), where the tipping point in capacity and
its corresponding drop in growth rate become apparent.

Loss-of-function in gene circuits

To explore the relation between growth defects and circuit
function, we studied the dynamics of several gene circuits.
Using our host-circuit models, we systematically investigated
their function and impact on growth rate across large ranges
of their design parameters.

Genetic toggle switch We first investigated the effects of
RBS strength on the design space of the toggle switch22

(Fig. 5A). This circuit displays bistability and can be toggled
between two steady states with external inducers. The de-
sign space of the toggle thus contains all combinations of in-
ducer levels that lead to a bistable system. Our simulations
(Fig. 5A) predict that stronger RBS causes a substantial reduc-
tion of the design space, as a result of growth defects. Such
shrinkage is not observed in isolated models of the switch,
suggesting that competition for host resources causes a re-
duced design space and loss-of-function. The hysteresis di-
agrams in Fig. 5B show that within the bistable regime, the

switching dynamics are also affected by strong RBS, causing
the “high” state to decrease monotonically upon stronger in-
duction.
Genetic oscillator Next, we explored the impact of design

parameters on the repressilator23, one the most well stud-
ied genetic oscillators (Fig. 5C). Upon changes in induction
and RBS strengths, we found a monotonic drop in growth
rate, similarly as in the expression of the inducible promoter
in Fig. 4A. We found a large design space for oscillations,
covering several orders of magnitude in induction and RBS
strengths. Outside the design space, we found two additional
regimes: designs that display a single stable steady state and
thus lack oscillations, and designs that display damped oscil-
lations that decay to a steady state. The first regime is con-
sistent with what is observed in the isolated circuit23, but the
damped oscillations appear to be an emergent feature from the
cross-talk between circuit and the host.

As seen in Fig. 5D, changes in growth are accompanied by
variations in the amplitude of oscillations, which reach a max-
imal value for ∼50% drop in growth rate. For stronger RBS
and gene induction, we observe a sharp drop in the oscillation
amplitude, until complete loss-of-function. This is not seen
in isolated circuit models and thus reflects the impact of host
physiology on the design space and dynamics of the oscilla-
tor. Akin to our analysis of heterologous expression and the
toggle switch, our simulations (Fig. 5C–D) suggest that the re-
pressilator is subject to a critical cellular capacity that defines
a transition from normal operating condition to a high-burden,
slow growth regime. The critical capacity appears within the
oscillation-positive region suggesting an additional limitation
for the available design space.
Genetic logic gates To illustrate the impact of host-circuit
interactions on more complex genetic circuitry, we examined
several logic gates based on transcriptional regulators24. We
simulated NOT, AND and NAND gates (Fig. 6A, C, E) and
predicted the resulting growth rates for combinations of in-
puts (Fig. 6B, D, F). As seen in Fig. 6B (left), the function
of the NOT gate remains largely unaffected by host-circuit in-
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FIG. 5. Impact of host-circuit interactions on a genetic toggle switch and a genetic oscillator. (A) Circuit diagram of the genetic toggle
switch22 and predicted regions for bistability for varying inductions of both genes. Our host-circuit model predicts a shrinkage of the design
space for stronger RBS. (B) Hysteresis diagrams of the toggle switch reveal changes in circuit function due to host-circuit interactions; the
expression level of the ON state drops for strong induction of one gene. Hysteresis diagrams were computed by fixing the induction level
of gene 1 and varying the induction of gene 1. (C) Circuit diagram of the repressilator23 and predicted growth rate across the design space.
Host-circuit models predict a decrease in growth rate for increasing induction and RBS strength of the repressilator. The white dashed line
represents designs with a 50% drop in growth rate with respect to the wild type (WT). The WT model corresponds to the host model coupled
with the GFP capacity monitor only. (D) Similar to the toggle switch in panel A, the host-circuit model predicts a shrinkage of the design space
for oscillations for strong induction and RBS; insets show the circuit dynamics in each regime. Details on model parameters and simulations
can be found in Methods.

teractions, even for strong RBS of gene 2. For intermediate
input levels, however, simulations in Fig. 6B (right) predict an
increase in growth rate of up to 40% with respect to the basal
case; this effect is more pronounced for designs with weaker
RBS of gene 2. Such apparent growth benefit is a consequence
of the circuit architecture (Fig. 6A): an increase in the input
causes a stronger repression of gene 2 and thus relieves the
burden on the host. But since the expression of the repres-
sor coded by gene 1 also causes burden, for sufficiently high
inputs the expression of gene 1 counteracts the growth advan-
tages gained by repression of gene 2, resulting in an overall
drop in growth rate.

In contrast, simulations of the AND gate in Fig. 6D (left)
suggest a much stronger impact of host-circuit interactions.
An ideal AND gate should produce a high output when both
inputs are high, see Fig. 6C (inset), yet the host-circuit mod-
els predict a bell-shaped response surface, where the output
reaches a maximal value for an intermediate level of the in-
puts, beyond which the output drops monotonically. The loss-
of-function coincides with a drop in growth rate observed for

increased levels of either input, as seen in Fig. 6D (right).
The composition of both circuits, the NAND gate in

Fig. 6E, displays a complex relation between inputs and out-
put. The gate produces appropriate responses in large ranges
of the input space (Fig. 6E, left), with some distortions possi-
bly caused by the loss-of-function of the AND component.
Likewise, we observe a growth advantage for intermediate
levels of the input as a result of the architecture of the NOT
gate, akin to what we observed in Fig. 6B (right).

DISCUSSION

Microbes tailor their proteome composition to sustain
growth and other vital functions. Heterologous expression
perturbs the homeostatic balance of a cellular host by drawing
resources for biosynthesis, which in turn can lead to unpre-
dictable circuit behaviour2. Such multi-faceted interactions
between circuits and their host are difficult to predict, yet they
are thought to be major contributors to poor functionality in
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synthetic gene circuits1.
In this work we employed mechanistic host-circuit mod-

els to study the interplay between circuit function and growth
defects. The models consistently predict the existence of a
critical capacity for gene expression. Stronger gene induc-
tion results in higher heterologous expression, but only up to
a maximal yield achieved at the critical capacity and with a
substantial growth defect. The critical capacity defines a state
in which heterologous expression becomes severely hampered
by the innate resource limitations in the host. If gene induc-
tion is strong enough to tip the host over the critical capacity,
the relation between induction and protein yield reverses, with
stronger induction causing reduced yield in heterologous ex-
pression and a further decrease in growth rate. The critical
capacity thus provides a quantitative metric to quantify how a
host transitions into a burdened regime limited by ribosomal
availability.

Our models suggest that the main source of burden is the
depletion of free ribosomes for translation of circuit genes,
in agreement the widespread conception that ribosomal avail-
ability is a major control node for cellular physiology21,25,26.
Also in agreement with recent experiments8,9, the host-circuit
models indicate that designs with stronger RBS impose a
heavier burden on the host. An increased mRNA-ribosome
binding affinity gives foreign transcripts a binding advantage,
resulting in increased burden and a smaller pool of free ribo-
somes available for native transcripts. Thanks to the unique
ability of our models to simultaneously predict circuit func-
tion and specific growth rate, we can map cellular burden into
quantitative predictions for growth defects.

We also found that host-circuit interactions can drastically
change the function of synthetic constructs. We first focused
on the genetic toggle switch22 and the repressilator23, two
exemplar circuits designed to achieve specific dynamic re-
sponses. In both cases we found that the circuit design spaces
shrink as a result of the interplay with the host physiology.
For the toggle switch, strong RBS leads to loss of function
for gene inductions that would otherwise be predicted as pro-
ducing a bistable response. A similar phenomenon appeared
in the repressilator, where strong RBS may cause the circuit
to lose the oscillatory function. Simulations of genetic logic
gates24 further illustrate the impact of host-circuit interactions,
suggesting that burden may pervade the function of a wide
range of genetic circuitry.

A number of studies have proposed models for resource
competition and its impact on the function of gene circuits2.
The concept of “retroactivity”, introduced by del Vecchio and
colleagues27 provides a useful metric to analyze how circuits
affect each other’s function due to limited resources13. Other
approaches have focused on minimal models to describe com-
petition for a finite pool of resources7,9,10. Important limita-
tions of these previous works are the assumption of a constant,
circuit-independent, growth rate and the lack of explicit mech-
anisms that link circuit expression to the abundance of free
ribosomes. In regimes where growth defects are small, our
host-circuit models agree with previous works7–10 that show
a decrease in constitutive expression in response to the induc-
tion of heterologous genes. These observations are in agree-

ment with the near-linear relation we found between the ex-
pression of inducible and constitutive genes before reaching
the critical capacity (Fig. 3A). However, the ability of our
models to predict growth rate and shifts in proteome com-
position offers additional information on how circuits behave
within their cellular context. The mechanistic nature of the
models allows us to directly simulate the impact of design pa-
rameters such as RBS strengths, gene induction and protein
degradation tags. Moreover, because the models include ri-
bosomal autocatalysis, they account for cases in which strong
RBS leads to a sizeable fraction of the ribosome pool being
sequestered by heterologous transcripts, which amplifies the
impact of burden by limiting the ability of the host to syn-
thesize more ribosomes and alleviate the resource bottleneck.
Our mathematical models also account for various growth me-
dia and their impact on the host-circuit interplay. In particular,
simulations suggest that richer media do not mitigate the re-
source bottleneck, but instead allow for increased expression
of both endogenous and heterologous genes.

In this paper we focused on host-circuit competition for
energy and free ribosomes, two key cellular resources that
impact growth directly. In practice, gene circuits also con-
sume other cellular components that may become resource
bottlenecks, such as RNA polymerases and σ-factors for tran-
scription, or amino acids and tRNAs for translation. Some
of these components can be readily included in mechanistic
models similar to ours28, yet this can increase model complex-
ity and obscure the relations between different sources of bur-
den. Recent experimental work29 has shown that engineered
metabolic pathways can impose an additional source of bur-
den resulting from metabolic imbalances. This offers excit-
ing avenues for modelling the activity of engineered pathways
coupled with the host physiology, with promising applications
at the interface of metabolic engineering, synthetic biology
and mechanistic cell modelling30.

Experimental validation of our predictions would greatly
help the identification of the critical capacity barrier in vivo.
Recent datasets suggest highly nonlinear relations between
growth rate and heterologous expression31, raising compelling
prospects for the integration of mechanistic cell models with
such large-scale characterization data. Moreover, since bur-
den can also lead to the insurgence of escape mutants8,16,19,
future experimental work may focus on characterizing the cor-
relation between critical capacity and loss of circuit function
due to mutations. Our mechanistic models hold promise
as detailed and tractable descriptions of host-circuit interac-
tions. Their level of granularity finds an adequate compro-
mise between simple phenomenological models for growth21

and complex models for whole-cell physiology32. This mod-
elling framework thus offers a powerful quantitative tool for
teasing out the interplay between burden and circuit function,
ultimately, paving the way for more robust and predictable
synthetic biology.
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FIG. 6. Impact of host-circuit interactions on genetic logic gates. (A) Schematic of a NOT gate and its ideal response curve. (B) Predicted
response of NOT gate and growth rate for increasing RBS strength of gene 2. (C) Schematic of an AND gate and its ideal response surface.
(D) Predicted response of AND gate and growth rate of the host. (E) Schematic of a NAND gate and its ideal response surface; the gate is the
composition of AND and NOT gates from panels A and C. (F) Predicted response of a NAND gate and growth rate of the host. All gates are
based on an implementation using transcriptional activators and repressors24; model details and parameters can be found in the Methods.

METHODS

A. Model for a bacterial host

We use the coarse-grained model described in Weiße et
al.20. The model accounts for the uptake of an external nutri-
ent at a fixed concentration s by a transport protein pt. The
internalised nutrient sint, is catabolised by a metabolic en-
zyme pm to produce a generic form of energy, denoted a, that
models the total pool of intracellular molecules required to
fuel biosynthesis, such as ATP and aminoacids. The model
includes transcription and degradation of mRNAs mx, their
binding to free ribosomes pr to form ribosome-mRNA com-

plexes cx, and translation reactions for synthesis of the various
components of the proteome px. We divide the components of
the proteome (px) into several classes x ∈ {r, t,m, q, gfp}.
The q class represents house-keeping proteins and gfp cor-
responds to the “capacity monitor” developed by Ceroni and
colleagues8. The model reactions are displayed in Table I.

In the model, λ is the predicted growth rate and the nutrient
efficiency parameter ns determines energy yield per molecule
of internalized nutrient. The model includes dilution of all
chemical species by cell growth, as well as degradation of
transcripts and proteins (with rate constants dm,x and dx, re-
spectively). The specific growth rate can be computed from
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TABLE I. Reactions of the wild type host model. The proteome com-
ponents are x ∈ {r, t,m, q, gfp}.

metabolism transcription ribosome binding

s
vimp−−→ sint

vcat−−→ ns a ∅ wx−→ mx pr + mx
kb−⇀↽−
ku

cx

degradation translation dilution

mx
dm,x−−→ ∅ nx a + cx

vx−→ pr + mx + px a,mx, cx, px
λ−→ ∅

px
dx−→ ∅

the total number of ribosomes engaged in translation20:

λ =
γ(a)

M
×

∑
x∈{r,t,m,q,gfp}

cx, (2)

where γ(a) is the rate of translational elongation and assumed
be a saturable function of the available energy, γ(a) = γmaxa/
(a+Kγ) and M is the cell mass.

Proteome components From the chemical reactions in
Table I, we can write an ordinary differential equation (ODE)
model for each component of the proteome:

ṗx = vx − (λ+ dx)px,

ṁx = wx − (λ+ dm,x)mx + vx − kbprmx + kucx,

ċx = −λcx + kbprmx − kucx − vx.

(3)

where x includes all proteins except ribosomes, i.e. x ∈
{t,m, q, gfp}. The equations for ribosomes are different be-
cause of ribosomal autocatalysis and competition for free ri-
bosomes (see next section). Note that in Eq. (3) each gene re-
quires three species: the transcript (mx ), the mRNA-ribosome
complex (cx ), and the protein itself (px ). We assume that
transcription and translation rates (wx and vx, resp.) de-
pend on the energy resource, a, and follow wx = wx,maxa/
(θx + a) for all proteins except the housekeeping proteins,
i.e. x ∈ {r, t,m, gfp}. The transcription of housekeep-
ing mRNAs is subject to negative autoregulation so as to
keep constant expression levels in various growth conditions,
i.e. wq = wq,max

a
θq+a

1
1+(q/Kq)

hq . The translation rate for
all proteins follows vx = (cx/nx) × (γmaxa/(a+Kγ)) with
x ∈ {r, t,m, q, gfp}, with nx being the protein length in num-
ber of amino acids.

Shared cellular resources In our model genes compete
for two resources, an energy resource (a) and free ribosomes
for translation (pr). Energy is obtained from the internalized
nutrient, which we model by the ODE:

ṡi = vimp − vcat − λsi,

where nutrient import and catabolism are assumed to follow
Michaelis-Menten kinetics of the form vimp = ptvts/(Kt + s)
and vcat = pmvmsi/(Km + si), with kinetic parameters vt, Kt,
vm and Km. The ODEs for energy, free ribosomes, ribosomal

transcripts and their complexes are:

ȧ = nsvcat −
∑

xε{r,t,m,q,gfp}

nxvx − λa, (4)

ṗr = vr − λpr +
∑

xε{r,t,m,q,gfp}

(vx − kbprmx + kucx), (5)

ṁr = wr − (λ+ dm,r)mx + vr − kbprmr + kucr,

ċr = −λcr + kbprmr − kucr − vr.

Eq. (5) accounts for ribosomal autocatalysis, i.e. ribosomal
transcripts sequester free ribosomes for their own translation,
and the pool of free ribosomes can increase both due to trans-
lation of new ribosomes and the free-up of ribosomes engaged
in translation.

B. Integrated host-circuit models

To model the expression of heterologous genes, we used
equations analogous to Eq. (3) for each circuit gene:

ṗc
i = vc

i − (λ+ dp)p
c
i ,

ṁc
i = wc

i − (λ+ dm)m
c
i + vc

i − kc
b,iprm

c
i + kc

u,ic
c
i ,

ċc
i = −λcc

i + kc
b,iprm

c
i − kc

u,icx − vc
i ,

where the superscript c represents a circuit species and the
subscript i denotes the ith circuit gene. To model the impact
of gene circuits in host resources, we modified the resource
equations in (4)–(5):

ȧ = nsvcat −
∑
x

nxvx −
∑
i

nc
i v

c
i − λa, (6)

ṗr = vr − λpr +
∑
x

(vx − kbprmx + kucx)

+
∑
i

(vc
i − kc

b,iprm
c
i + kc

u,ic
c
i ),

and the specific growth rate in Eq. (2) now includes transla-
tion of circuit genes:

λ =
γ(a)

M

(∑
x

cx +
∑
i

cc
i

)
. (7)

We modelled the translation rate of all foreign genes simi-
larly as that of native genes:

vc
i =

cc
i

nc
i
× γmaxa

a+Kγ
,

with nc
i being the length of the ith circuit protein. Finally, the

transcription rate for foreign genes is:

wc
i = wc

max,i
a

θc + a
Ri, (8)

where wc
max,i is the maximal transcription rate, and Ri is a

regulatory function for each circuit. For the inducible gene
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(Fig. 2–4) we use R1 = 1. The genetic switch (Fig. 5A–B)
has two genes with regulatory functions:

R1 =
1

1 +
(
pc

2
Kc

)h , R2 =
1

1 +
(
pc

1
Kc

)h . (9)

The repressilator (Fig. 5C–D) has three genes with regulatory
functions:

R1 =
1

1 +
(
pc

3
Kc

)h , R2 =
1

1 +
(
pc

1
Kc

)h , R3 =
1

1 +
(
pc

2
Kc

)h .
(10)

The NOT gate (Fig. 6A–B) has two genes with regulatory
functions:

R1 = 1, R2 =
1

1 +
(
pc

1
Kc

)h . (11)

The AND gate (Fig. 6C–D) has three genes with regulatory
functions:

R1 = 1, R2 = 1, R3 =

(
pc

1
Kc

1

)h1

1 +
(
pc

1
Kc

1

)h1
×

(
pc

2
Kc

2

)h2

1 +
(
pc

2
Kc

2

)h2
.

(12)

Finally, the NAND gate (Fig. 6E–F) has four genes with reg-
ulatory functions:

R1 = 1, R2 = 1, R3 =

(
pc

1
Kc

1

)h1

1 +
(
pc

1
Kc

1

)h1
×

(
pc

2
Kc

2

)h2

1 +
(
pc

2
Kc

2

)h2
,

R4 =
1

1 +
(
pc

3
Kc

3

)h3
.

(13)

In the regulatory functions in Eq. (9)–(13) the parameters Kc

and h represent a regulatory threshold and effective Hill coef-
ficient, respectively.

C. Model parameters

Model for host We parameterized the wild type host
model using parameters from Weiße et al20, which were es-
timated using Bayesian inference on E. coli growth data21.
Throughout this paper we consider the wild type strain to
already include the GFP capacity monitor from Ceroni et
al8. The parameters for the capacity monitor are wGFP,max =
100mRNAs/min for the maximal transcription rate, and RBS
equal to that of endogenous transcripts RBSGFP = kb/ku =
0.95 × 10−2 molecules−1. The transcripts and protein half-
lives of the capacity monitor were assumed to be two and four
minutes, respectively, so that dm,gfp = ln 2/2 and dgfp = ln 2/
4. We assume all other proteins are not subject to active
degradation, i.e. dx = 0 for x = {r,m, t, q}.

TABLE II. Model parameters for the host. All values taken from
Weiße et al20; the mRNA-ribosome binding rate which was set to
kb = 0.95 × 10−2 min−1molecules−1. Units of aa correspond to
number of amino acids per cell.

Name Value Name Values

s 104 (molecules) M 108 (aa)

nr 7459 (aa/molecules) θr 427 (molecules)

γmax 1260 (aa/min molecules) Kγ 7 (molecules)

vt 726 (min-1) Kt 1000 (molecules)

vm 5800 (min-1) Km 1000 (molecules)

wr,max 930 (molecules / min) wm,max, wt,max 4.14 (molecules / min)

wq,max 949 (molecules/min) dm,r, dm,t, dm,m, dm,q 0.1 (min-1)

Kq 152219 (molecules) hq 4

θq, θt, θm, θgfp 4.38 (molecules) ku 1 ( min-1)

nq, nt, nm, ngfp 300 (aa/molecules) nr 7459 (aa/molecules)

Models for gene circuits For all heterologous genes, we
assumed transcript and protein half-lives of two and four min-
utes, respectively23, so that dm = ln 2/2 and dp = ln 2/4.
We set the transcriptional energy threshold equal to that of na-
tive non-ribosomal genes, with θc = θx = 4.38 molecules for
x ∈ {q, t,m, gfp}. Heterologous proteins were assumed to be
of length nc

i = nx = 300 amino acids, equal to that of native
non-ribosomal proteins.

The parameters for the gene circuits were chosen so as to
produce realistic molecule numbers across all cases. We
fixed the parameters of the toggle switch in Eq. (9) and re-
pressilator in Eq. (10) to Kc = 100 molecules and Hill co-
efficient h = 2. For the NOT gate, we fixed the parameters
of R2 in Eq. (11) to Kc = 250 molecules and h = 2. For
the AND gate, we fixed the parameters of R3 in Eq. (12) to
Kc

1 = 200 molecules and h1 = 2.381 for the activation by
gene 1, and we used Kc

2 = 3000 molecules and h2 = 1.835
for the activation by gene 2, similar to the parameter values
estimated in Wang et al24. We modelled the NAND as the
composition of the AND and NOT gate with RBS for gene 3
set to unity, without changing their individual parameters. The
remaining circuit parameters were varied across simulations,
as explained next.

D. Circuit simulations

All simulations were computed with the stiff ODE integra-
tion routine ode15s in Matlab R2018a. For each circuit sim-
ulation, we initialize the native species of the host from nu-
merical steady states computed from a separate simulation of
the wild type strain. We modelled gene induction via the max-
imal transcription rate wc

max,i in Eq. (8). We modelled changes
to RBS strength by varying the mRNA-ribosome binding rate
constant kc

b,i (in units of min−1molecules−1) and the disso-
ciation rate constant kc

u,i (in units of min−1). The quality of
the growth media was modelled via the nutrient efficiency ns.
Next we detail the parameter ranges for all simulations.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 15, 2019. ; https://doi.org/10.1101/623421doi: bioRxiv preprint 

https://doi.org/10.1101/623421
http://creativecommons.org/licenses/by-nc-nd/4.0/


10

Inducible gene In Fig. 2A–C we swept the gene induc-
tion in the range wc

max,1 ∈ [100, 104]. The RBS strengths in
Fig. 2A were simulated with pairwise ratios between bind-
ing rate constants kc

b,1 = {10−2, 10−1, 100} and dissocia-
tion rate constants kc

u,1 = {10−2, 10−3, 10−4}; nutrient qual-
ity in Fig. 2A was fixed to ns = 0.5. In Fig. 2B–C we
fixed RBS strength using kc

b,1 = kc
u,1 = 10−2 and varied

the nutrient quality ns = {0.1, 0.5, 1}. In Fig. 3 we swept
wc

max,1 ∈ [100, 104] with nutrient quality ns = {0.1, 0.5, 1}.
In Fig. 4 we swept wc

max,1 ∈ [100, 104] with fixed nutrient
quality ns = 0.5. For the RBS strength, we simultaneously
increased the binding rate constant from kc

b,1 = 1 × 10−2 to
kc

b,1 = 1, and decreased the dissociation rate constant from
kc

u,1 = 1× 10−2 to kc
u,1 = 1× 10−4.

Genetic toggle switch To compute the regions for bista-
bility in Fig. 5A we swept induction of both genes in the range
wc

max,i ∈ [100, 104], and numerically computed the number
of stable steady states from a large number of model simula-
tions starting from different initial conditions. To compute
the hysteresis diagrams in Fig. 5B, we fixed the induction
of protein 1, wc

max,1 = 50, and varied wc
max,2 ∈ [100, 104]

with RBS strengths using kc
b,i = {10−2, 10−1, 10−0.523}, and

kc
u,i = {10−2, 10−3, 10−3.523} for both genes. The nutrient

quality was fixed to ns = 0.5 in all toggle switch simulations.
Genetic oscillator In Fig. 5C–D we swept the gene in-

duction in the range wc
max,i ∈ [100, 104]. We changed the

RBS strength by increasing the binding rate constant from
kc

b,i = 1 × 10−2 to kc
b,i = 1, while simultaneously decreas-

ing the dissociation rate constant from kc
u,i = 1 × 10−2 to

kc
u,i = 1× 10−4 for the three genes; nutrient quality was fixed

to ns = 0.5. Oscillations and their amplitude were detected
using custom Matlab scripts.

Genetic logic gates In all gates we fixed the nutrient qual-
ity to ns = 0.5 and modelled the inputs via the maximal
transcription rate wc

max,i in the range wc
max,1 ∈ [100, 103].

For the NOT we changed RBS strength of gene 2 by in-
creasing the binding rate constant from kc

b,2 = 1 × 10−2 to
kc

b,2 = 7 × 10−2, while decreasing the dissociation rate con-
stant from kc

u,2 = 1 × 10−2 to kc
u,2 = 1.4 × 10−3. For the

AND gate and NAND gates we fixed the RBS strength with
kc

b,i = kc
u,i = 1× 10−2 for all genes.

E. Relation between energy and free ribosomes

As shown in Fig. 2C, model simulations suggest that the
relation between energy and free ribosomes for various induc-
tion strengths is independent of the RBS strength of a heterol-
ogous gene. To explain this phenomenon, we can solve for a
in (6) with i = 1 (inducible gene) at steady state:

a =
1

λ
(nsvcat − γ(a)Rt), (14)

where the term Rt =
∑
x cx +

∑
i chet,i is the total number

of ribosomes engaged in translation. From the formula for
growth rate in (7) we get γ(a)Rt = λM , and after substitution
in Eq. (14) we get the expression in Eq. (1) of the main text.
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