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Abstract 
To test the performance of a new sequencing platform, develop an updated somatic calling pipeline and                
establish a reference for future benchmarking experiments, we sequenced 3 common cancer cell lines              
along with their matched normal cell lines to great sequencing depths (up to 278X coverage) on both                 
Illumina HiSeqX and NovaSeq sequencing instruments. Somatic calling was generally consistent           
between the two platforms despite minor differences at the read level. We designed and implemented a                
novel pipeline for the analysis of tumor-normal samples, using multiple variant callers. We show that               
coupled with a high-confidence filtering strategy, it improves the accuracy of somatic calls. We also               
demonstrate the utility of the dataset by creating an artificial purity ladder to evaluate the somatic pipeline                 
and benchmark methods for estimating purity and ploidy from tumor-normal pairs. The data and results               
of the pipeline are made accessible to the cancer genomics community. 

Introduction 
The field of cancer genomics has exploded with the development of high-throughput sequencing, largely              
driven by Illumina’s short read sequencing technology. Thousands of tumors have been sequenced in              
the last decade, with strategies varying from variant hotspot panels [1], cancer gene panels [2],               
whole-exome (such as used in The Cancer Genome Atlas project [3]) or whole-genome sequencing              
(WGS) [4]. In 2014, Illumina introduced the HiSeq X Ten (HiSeqX) as their main sequencing instrument                
dedicated to human whole-genome sequencing. In 2017, they released the NovaSeq 6000 Sequencing             
System (NovaSeq), which is currently the latest generation of Illumina sequencing instruments. The             
primary difference between these platforms is the adoption of 2-channel Sequencing-by-Synthesis in the             
NovaSeq where clusters detected in the red wavelength filter correspond to a C nucleotide, clusters               
detected in the green wavelength filter correspond to a T, clusters detected by both colors correspond to                 
A, and unlabeled clusters are G bases. For the NovaSeq, Illumina introduced a new base calling                
algorithm and method for estimating Quality scores, with 4 quality bins (as opposed to 8 bins for                 
HiSeqX). 
 
With the introduction of any new sequencing technology, it is important to investigate the error profiles                
and biases of the technology, and to understand the subsequent impact of those on downstream               
analyses. This is especially important for cancer data analysis where varying tumor purity and intra-tumor               
heterogeneity make distinguishing low frequency somatic variants from sequencing noise challenging.           
Here, we have created a whole genome reference dataset of 3 matched tumor-normal cell lines               
sequenced deeply on both HiSeqX and NovaSeq, employed it to calibrate our somatic pipeline, and               
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released it to the genomics community. The 3 cancer cell lines selected are common and represent the                 
range of mutations profiles that a somatic pipeline is expected to identify correctly. COLO-829 was               
derived from a metastatic melanoma male patient and presents a pseudo-tetraploid karyotype [5] [6]. It               
was the first cancer genome to be comprehensively characterized by whole-genome sequencing [7], has              
previously been characterized as hypermutated and was used to establish a reference for benchmarking              
somatic mutation pipelines [8]. HCC-1143 and HCC-1187 were isolated from patients with ductal             
carcinoma breast cancer [9]. HCC-1143 is near tetraploid [10] and heavily rearranged, and its matched               
normal cell line HCC-1143BL has a chromosome 2 amplification. HCC-1187 is hypotriploid [11].  

Methods 

Cell culture and DNA isolation 
The cancer cell lines (COLO-829 ATCC® CRL-1974™, COLO 829BL ATCC® CRL-1980™, HCC-1143            
ATCC® CRL-2321™, HCC1143 BL ATCC® CRL-2362™, HCC-1187 ATCC®CRL-2322™ and         
HCC-1187BL ATCC® CRL-2323™) were obtained from ATCC . The cell lines were cultured using the              2

recommendations from ATCC. Cultured cells were split into two aliquots for metaphase chromosome             
preparation and karyotype analysis. Representative images and karyotypes are reported in           
Supplemental Figure S1 . The number of passages is indicated in Supplemental Table 1 . 

Library preparation and sequencing 
Libraries were prepared using the TruSeq DNA PCR-free Library Preparation Kit (Illumina) with 1μg DNA               
input following Illumina’s recommended protocol , with minor modifications as described. Intact genomic            3

DNA was concentration normalized and sheared using the Covaris LE220 sonicator to a target size of                
450bp. After cleanup and end-repair, an additional double-sided bead-based size selection was added to              
produce sequencing libraries with highly consistent insert sizes. This was followed by A-tailing, ligation of               
Illumina DNA Adapter Plate (DAP) adapters and two post-ligation bead-based library cleanups. These             
stringent cleanups resulted in a narrow library size distribution and the removal of remaining unligated               
adapters. Final libraries were run on the Fragment Analyzer to assess their size distribution and               
quantified by qPCR with adapter specific primers (Kapa Biosystems). The libraries were pooled together              
based on expected final coverage and sequenced across multiple flow cell lanes to reduce impact of                
lane-to-lane variations in yield. Whole genome sequencing was performed on the NovaSeq (NSCS 1.3.1;              
RTA v3.3.3) and the HiSeqX (HCS HD 3.5.0.7; RTA v2.7.7) at 2x150 bp read length, using v1 S2/S4                  
300-cycle and SBS v3 reagents, respectively. 
 
 
 
 

2 https://www.atcc.org 
3 
https://support.illumina.com/content/dam/illumina-support/documents/documentation/chemistry_documentation/sam
plepreps_truseq/truseq-dna-pcr-free-workflow/truseq-dna-pcr-free-workflow-reference-1000000039279-00.pdf 
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Figure 1 : NYGC Somatic Pipeline for tumor-normal whole-genome sequencing samples. 
 

Pre-processing 
The sequencing data for all the cell lines was demultiplexed using bcl2fastq (Illumina) v2.20.0.422.              
FASTQ files were then processed through NYGC’s high-performance computing cluster using the NYGC             
automated pipeline (Figure 1 ). Sequencing reads were aligned to the GRCh38 reference genome (1000              
Genomes version) using BWA-MEM (v0.7.15) [12]. NYGC’s ShortAlignmentMarking (v2.1) was used to            4

mark short reads as unaligned. This tool is intended to remove spurious alignments resulting from               
contamination (e.g. saliva sample bacterial content) or from too aggressive alignments of short reads the               

4 available at https://github.com/nygenome/nygc-short-alignment-marking 
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size of BWA-MEM’s 19bp minimum seed length. These spurious alignments result in pileups in certain               
locations of the genome and can lead to erroneous variant calling.  
 
GATK (v4.1.0) [13] FixMateInformation was run to verify and fix mate-pair information, followed by              
Novosort (v1.03.01) markDuplicates to merge individual lane BAM files into a single BAM file per sample.                
Duplicates were then sorted and marked, and GATK’s base quality score recalibration (BQSR) was              
performed. The final result of the pre-processing pipeline was a coordinate sorted BAM file for each                
sample.  
 
Once preprocessing was complete, we computed a number of alignment quality metrics such as average               
coverage, %mapped reads and %duplicate reads using GATK (v4.1.0) and an autocorrelation metric             
(adapted for WGS from[14]) to check for unevenness of coverage. We also ran Conpair[15], a tool                
developed at NYGC to check the genetic concordance between the normal and the tumor sample and to                 
estimate any inter-individual contamination in the samples. 

Variant calling and annotation 
The tumor and normal bam files were processed through NYGC’s variant calling pipeline which consists               
of MuTect2 (GATK v4.0.5.1) [16], Strelka2 (v2.9.3) [17] and Lancet (v1.0.7) [18] for calling Single               
Nucleotide Variants (SNVs) and short Insertion-or-Deletion (Indels), SvABA (v0.2.1) [19] for calling Indels             
and Structural variants (SVs), Manta (v1.4.0) [20] and Lumpy (v0.2.13) [21] for calling SVs and BIC-Seq2                
(v0.2.6) [22] for calling Copy-number variants (CNVs). Manta also outputs a candidate set of Indels               
which is provided as input to Strelka2 (following the developers recommendation, as it improves              
Strelka2’s sensitivity for calling indels >20nt). Due to its computing requirements, in this pipeline Lancet               
is only run on the exonic part of the genome. It is also run on the +/- 250nt regions around non-exonic                     
variants that are called by only one of the other callers, to add confidence to such variants. Small SVs                   
called by Manta are also used to add confidence to the indel calls.  
 
Next, the calls were merged by variant type (SNVs, Multi Nucleotide Variants (MNVs), Indels and SVs).                
MuTect2 and Lancet call MNVs, however Strelka2 does not and it also does not provide any phasing                 
information. So to merge such variants across callers, we first split the MNVs called by MuTect2 and                 
Lancet to SNVs, and then merged the SNV callsets across the different callers. If the caller support for                  
each SNV in a MNV is the same, we merged them back to MNVs. Otherwise those were represented as                   
individual SNVs in the final callset. The SVs were converted to bedpe format, all SVs below 500bp were                  
excluded and the rest were merged across callers using bedtools pairtopair (slop of 300bp, same strand                
orientation, and 50% reciprocal overlap). For CNVs, segments with log2 > 0.2 were categorized as               
amplifications, and segments with log2 < -0.235 were categorized as deletions (corresponding to a single               
copy change at 30% purity in a diploid genome, or a 15% Variant Allele Fraction). The resulting variants                  
were annotated with Ensembl as well as databases such as COSMIC (v86) [23], 1000Genomes              
(Phase3)[24] , gnomAD (r2.0.1) [25], dbSNP (v150) [26] and Database of Genomic Variants (DGV) [27]               
using Variant Effect Predictor (v93.2) [28] for SNVs and Indels, and bedtools [29] for SVs and CNVs.  
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Somatic variant filtering 

Panel Of Normals 
The Panel Of Normals (PON) filtering removes recurrent technical artifacts from the somatic variant              
callset [16]. The Panel of Normals for SNVs, indels and SVs was created with whole-genome sequencing                
data from normal samples from 242 unrelated individuals. Of these, sequencing data for 148 individuals               
was obtained from the Illumina Polaris project which was sequenced on the HiSeqX platform with               5

PCR-free sample preparation. The remaining samples were sequenced by the NYGC. Of these, 73              
individuals were sequenced on HiSeqX, 11 on NovaSeq, and 10 were sequenced on both. 
 
We ran MuTect2 in artifact detection mode and Lumpy in single sample mode on these samples. For                 
SNVs and indels, we created a PON list file with sites that were seen in two or more individuals and we                     
used this list to filter the somatic variants in the merged SNV and indel files.  
 
For SVs, we used SURVIVOR (v1.0.3) [30] to merge Lumpy calls. Variants were merged if they were of                  
the same type, had the same strand orientation, and were within 300bp of each other (maximum                
distance). We did not specify a minimum size. After merging SVs, we used these calls as a PON list. To                    
filter our somatic SV callset, we merged our PON list with our callset using bedtools pairtopair (slop of                  
300bp, same strand orientation, and 50% reciprocal overlap), and filtered those SVs found in two or                
more individuals in our PON. 

Common germline variants 
In addition to the PON filtering, we removed SNVs and Indels that had minor allele frequency (MAF) of                  
1% or higher in either 1000Genomes (phase 3) or gnomAD (r2.0.1) [25], and SVs that overlapped DGV                 
and 1000Genomes (phase3). CNVs were annotated with DGV and 1000 Genomes but not filtered. 

Allele counts 
Since our variant callsets were generated by merging calls across callers, and each of them reported                
different allele counts, we reported final chosen allele counts for SNVs and indels. For SNVs, and for                 
indels less than 10nt in length, these were computed as the number of unique read-pairs supporting                
each allele using the pileup method, with minimum mapping quality and base quality thresholds of 10                
each. 
For larger indels and complex events, we chose the final allele counts reported by the individual callers                 
Strelka2, MuTect2, Lancet, in that order. For indels larger than 10nt that were only called by SvABA, we                  
did not report final allele counts and allele frequencies because SvABA does not report the reference                
allele count, making it difficult to estimate the variant allele frequency. 
We then used these final chosen allele counts and frequencies to filter the somatic callset. Specifically,                
we filtered any variant for which the variant allele frequency (VAF) in the tumor sample was less than                  
0.0001, or if the VAF in the normal sample was greater than 0.2, or if the depth at the position was less                      
than 2 in either the tumor sample or the normal sample. We also filtered variants for which the VAF in                    

5 https://github.com/Illumina/Polaris 
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normal sample was greater than the VAF in tumor sample. Variants that passed all of the                
above-mentioned filters were included in our final somatic callset (hereby referred to as AllSomatic). 

High-confidence variants 
For SNVs, indels and SVs, we also annotated a subset of the somatic callset as high confidence. 
For SNVs and indels, high confidence calls were defined as those that were either called by two or more                   
variant callers, or called by one caller and also seen in the Lancet validation calls or in the Manta SV                    
calls.  
For structural variants, high confidence calls were taken from the somatic callset if they met the following                 
criteria: a SV was called by 2 or more variant callers, or called by Manta or Lumpy with either additional                    
support from nearby CNV changepoint or split-read support from SplazerS [31], an independent tool              
used to calculate the number of split-reads supporting SV breakpoints. An SV was considered supported               
by SplazerS if it found at least 3 split-reads in the tumor only. Nearby CNV changepoints were                 
determined by overlapping BIC-Seq2 calls with the SV callset using bedtools closest. An SV was               
considered to be supported by a CNV changepoint if the breakpoint of the CNV was within 1000bp of an                   
SV breakpoint. 

Germline variant analysis 
We also called germline SNPs and indels using GATK HaplotypeCaller (v3.5), which generated a              
single-sample GVCF. We then ran GATK’s GenotypeGVCF to perform single sample genotype            
refinement and output a VCF, followed by variant quality score recalibration (VQSR) for variant filtering               
(at tranche 99.6%). Next, we ran Variant Effect Predictor (v93.2) to annotate the variants with Ensembl                
as well as databases such as COSMIC (v86), 1000Genomes (Phase3), gnomAD (r2.0.1), dbSNP (v150),              
ClinVar (201805), Polyphen2 (v2.2.2) and SIFT (v5.2.2). 

Mismatch analysis 
The whole genome data from both platforms was downsampled to 8X coverage for all samples, and the                 
number of single nucleotide mismatches to the reference in each sample was computed in order to                
evaluate the technical error profiles for each sequencing platform. Duplicate, unmapped, supplementary            
and vendor/platform QC-failed reads were excluded from the calculations. Mismatches were represented            
with respect to the read strand. For downstream analyses, mapping quality ≥10 and base quality ≥ 10                 
cut-offs were applied. The mismatch types were classified by the trinucleotide context in which they               
occur in the read strand. Mismatches were also summarized for the 6 reduced categories: C>A, C>G,                
C>T, T>A, T>C, T>G, by reverse complementing the other categories. 

PCAWG Sanger pipeline 
The CWL workflow definition file and the pre-compiled resource files were downloaded according to the               
instructions . The pipeline was run using cwltool (v1.0.52) and only supports the GRCh37 reference.  6

6 https://dockstore.org/containers/quay.io/pancancer/pcawg-sanger-cgp-workflow:develop 
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Comparison to COLO-829 reference dataset 
We downloaded the SNVs and Indels VCF file from EGA (Data accession ID: EGAD00001002142). This               
reference dataset was only provided for GRCh37. We therefore ran our pipeline and the PCAWG Sanger                
pipeline on the 80X/40X COLO-829/COLO-829BL HiSeqX and NovaSeq data aligned to GRCh37 with             
decoys reference (from GATK bundle for b37) and compared the somatic SNVs and Indels called on our                 
data to the PASS-filtered variants in the Craig et al. VCF file. MNVs called by our pipeline were                  
converted to SNVs for this comparison. CNV gene-level information was taken from Supplementary             
Table 2 of Craig et al. and compared to the CNV calls from our pipeline and the PCAWG Sanger pipeline                    
after converting the data to gene-level results. 

Data downsampling and purity ladder generation 
Since the samples were sequenced to different depths between the two platforms, for the HiSeqX vs                
NovaSeq comparisons, we downsampled the tumor samples to 80X and the normal samples to 40X for                
all inter-platform variant comparisons. For this we used samtools view to randomly subsample the reads               
from the high coverage data.  
 
For within platform, intra-run comparisons, we split the high coverage NovaSeq data for COLO-829,              
COLO-829BL, HCC-1143 and HCC-1143BL by readgroups using samtools split. Each readgroup           
corresponded to a different lane on the sequencer for that sample. Different sets of readgroups were                
used to create two replicates (Rep1 and Rep2) for each sample, thereby ensuring that the two replicate                 
samples consisted of mutually exclusive set of reads. The tumor samples were then downsampled to               
80X and normal samples to 40X.  
 
To simulate low tumor purity samples, we downsampled the Rep1 NovaSeq data for the tumors,               
COLO-829 and HCC-1143, to 10X, 20X, 30X, 40X, 50X, 60X and 70X, and mixed that with data from                  
their matched normal samples at 70X, 60X, 50X, 40X, 30X, 20X and 10X respectively. These mixed-in                
datasets were then analyzed against the 40X Rep1 matched normal sample data. Again, we used               
different readgroups for the mix-in than those that went into the Rep1 normal sample data.  
 
To estimate the purity of these mixed-in samples, we had to take into consideration the average ploidy of                  
the tumor. We used the ploidy that was estimated by CELLULOID [32] for the 100% purity samples,                 
since they seemed to be very accurate upon manual review.  
 
The tumor purity of the mixed-in samples was estimated using the following equation:  
 

 T purity =  
T Nf rac* ploidy

(1−T ) T  + T Nf rac * ploidy frac* ploidy
 

 
Where, 
Nploidy = Average ploidy of the normal sample, which we assumed to be 2. 
Tploidy = Average ploidy of the tumor sample, for which we used CELLULOID’s estimate of ploidy on the                  
100% purity data.  
Tfrac = Fraction of the reads in the mixed-in sample that came from the tumor. (For a 10X tumor+70X                   
normal mix-in sample, this was 10/(10+70) = 0.125). 
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Purity Ladder Precision/Recall 
SNVs and Indels called on the purity ladder samples were compared to the variants called in the high                  
coverage data. True positives (TP) were considered to be variants that were also seen in the high                 
confidence callset of the high coverage data, whereas false positives (FP) were considered to be               
variants that were called in the purity ladder sample but not seen in the AllSomatic callset of the high                   
coverage data. Those variants that were called in the high confidence callset of the high coverage but                 
not called in the purity ladder sample callset were classified as False Negatives (FN). Variants that were                 
in the AllSomatic callset of the high coverage data but not in the HighConfidence callset were ignored for                  
this analysis because they could not be confidently assigned as true variants.  
 
For CNVs, events called in low purity samples were compared at the base level to the CNVs called in the                    
high coverage 100% purity data. If a deletion or amplification was found in the low purity cell line, but not                    
in the high coverage 100% purity cell line, this was classified as a FP. If a deletion/amplification was not                   
found in the low purity cell line, but called in the high coverage 100% purity cell line, this was classified                    
as a FN. TP were considered to be any deletions or amplifications that were found at the same position                   
in both the low purity cell line and high coverage 100% purity cell line.  
Precision, recall and F1 scores were calculated as: 
 

recision P =  TP
(TP+FP )  

ecall R =  TP
(TP+FN )  

1 score 2F =  * Precision Recall*
Precision+Recall  

 
Purity-ploidy adjustment of CNV log2 values: 

TCN = N   Tploidy * purity

T   N   (2  − (1 − T )) ploidy * CN *
Obslog2 purity  

( )Adjlog2 = log2
TCN
T ploidy * NCN

Nploidy  

 
Where, 
TCN = Absolute copy number for that segment in the tumor sample 
NCN = Absolute copy number for that segment in the normal sample (2 for autosomes, 1 for sex 
chromosomes in male, 2 for X chromosome in female) 
Nploidy = Average ploidy of the normal sample (which we assumed to be 2) 
Tploidy = Average ploidy of the tumor sample 
Tpurity = Tumor purity 
Obslog2 = Observed log2 value for the segment (from BIC-seq2) 
Adjlog2 = Adjusted log2 value. 
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Purity-ploidy estimation using CELLULOID and HATCHet 
For purity and ploidy estimation, we used CELLULOID (v0.11) and HATCHet . CELLULOID was run in 7

single-clone mode with default parameters and segment-based optimization. HATCHet was also run with 
default parameters.  
 

Results 

Read level comparison 
We sequenced between 2 and 6.3 Billion reads for the 3 tumor cell lines, and between 1 and 4 Billion                    
reads for the normal cell lines (Supplemental Table 2 ). Before applying our alignment and variant calling                
pipeline to the samples, we observed a few noticeable differences between the sequencing platforms. As               
expected, the quality score profiles along the reads differ, reflecting differences in the base calling and                
quality score estimation between the instruments. However, GATK’s Base Quality Score Recalibration            
was effective in minimizing these differences (Supplemental Figure S2 ). Still, the drop in quality score at                
the end of Read2 on HiSeqX was more pronounced than on the NovaSeq. We noticed slightly larger                 
number of long homopolymers on the NovaSeq instruments (Supplemental Figure S3 ). We computed for              
each read the longest stretch of each possible base and summarized the results in Figure 2 . In both                  
Read 1 and Read 2, NovaSeq instruments produced more stretches of G’s than HiSeqX, which we                
attributed to an artifact resulting from the fact that G is detected as the absence of signal in the 2-color                    
chemistry of the NovaSeq platform. Although less pronounced, we also detected this effect for stretches               
of A’s (detected by the joint signal of both colors), especially in Read 2 and the inverse effect for C and T                      
bases (each detected by the red and green signal respectively). We believe that some of the patterns,                 
illustrated in Figure 2 (such as the bump of stretches of 81 G’s in Read 1) are also due to differences in                      
the base calling algorithms. 
 
 

7 https://github.com/raphael-group/hatchet commit 0e626b0 

9 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 30, 2019. ; https://doi.org/10.1101/623702doi: bioRxiv preprint 

https://github.com/raphael-group/hatchet
https://doi.org/10.1101/623702
http://creativecommons.org/licenses/by-nc/4.0/


 
Figure 2 : Distribution of length of longest stretches of a nucleotide in HiSeqX and NovaSeq, Read 1                 
and Read 2 FASTQ files. Each dot represents fraction of reads in a single FASTQ file. Fraction of the                   
total number of reads is represented in log-scale.  

 

Alignment-level comparison 
The mean coverage of the tumor cell lines ranged from 80X to 278X for the tumor cell lines, and from                    
42X to 180X for the normal cell lines. The alignment rate was very comparable between the two                 
platforms and always superior to 99.5%. The percentage of reads marked as duplicates was higher on                
HiSeqX (mean 11.25%) than NovaSeq (mean 6.6%), despite the deeper coverage of the NovaSeq              
samples. This was unexpected, because we usually see slightly higher duplication rates on NovaSeq as               
compared to HiSeqX. We attributed this observation to differences in loading concentration between the              
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HiSeqX and the NovaSeq flow cells as this generally correlates strongly with the observed duplication               
rate for PCR-free libraries.  
 
We observed differences between the sequencing platform in the single nucleotide mismatch profiles,             
where samples sequenced on HiSeqX contained more C>A and T>A mismatches compared to samples              
sequenced on NovaSeq which had more A>G and T>C (Supplemental Figure S6 ). HiSeqX data had an                
average mismatch rate of 0.75% compared to 0.6% in NovaSeq data. Filtering out low mapping quality                
reads and low quality bases reduced most of the sequencing platform based differences, leaving higher               
T>G and lower C>T and G>A mismatches in NovaSeq samples (Figure 3 A). The overall mismatch rates                
in the two platforms after quality filtering were very similar, 0.24% in NovaSeq and 0.23% in HiSeqX.  
 
 

 
Figure 3 : (A) Single nucleotide mismatches by type in samples sequenced on NovaSeq and HiSeqX,               
with MQ≥10 and BQ≥10 cut-offs. Each bar represents a single sample and is colored based on                
sequencing platform. (B) Average mismatch rates for bases with MQ≥10 and BQ≥10 across the 6 cell                
line samples for each mismatch type per trinucleotide for HiSeqX (top row), NovaSeq (middle row) and                
difference between HiSeqX and NovaSeq (bottom row). (C) Same as (B), but with mismatch types               
categories collapsed with their respective reverse complements. 
 
The mismatches were further split based on their trinucleotide context. Figure 3 B shows the fraction of                
mismatches averaged across all samples. We noticed that T>G mismatches in NovaSeq samples were              
predominantly found in the trinucleotide contexts of A[T>G]T, G[T>G]T and T[T>G]T. In order to              
compare with the somatic mutational profile, all mismatches were collapsed to the 6 mismatch types               
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(C>A, C>G, C>T, T>A, T>C, T>G) (Figure 3 C). Even after collapsing the mismatch types, we saw more                 
T>G/A>C mismatches in the NovaSeq data. The difference in the mismatches between HiSeqX and              
NovaSeq, for all samples is shown in Supplemental Figure S7 , and for the collapsed mismatch types in                 
Supplemental Figure S8 .  
 
 

Variant-level comparison  
In order to compare the variants called in HiSeqX and NovaSeq data for the same tumor-normal pairs,                 
we first downsampled all the tumor samples to 80X coverage and the normal samples to 40X coverage                 
and ran our variant calling pipeline. For all PASS-filtered somatic variants called by the pipeline, the                
concordance between the platforms ranged from 81 to 92% for SNVs, 45 to 58% for indels, and 50 to                   
77% for SVs (Figure 4 ). When comparing the high confidence variants, the concordance was much               
higher: 90 to 94% for SNVs, 87 to 94% for indels and 81 to 88% for SVs. This clearly illustrates the                     
advantages of using multiple callers and evidence from orthogonal strategies to reduce false positive              
calls, particularly for indel calling. We also compared two NovaSeq replicates of COLO-829 and              
COLO-829BL sequenced at 80X and 40X respectively, on distinct lanes of the same sequencing run,               
and found that the intra-run variability is comparable to the inter-platform variability (93% for SNVs, 91%                
for indels and 83% for SVs).  
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Figure 4 : Intra-run and inter-platform concordance of somatic variants. The first row corresponds to              
SNVs, second row to Indels and third row to structural variants. The first column corresponds to                
comparisons between two replicates of COLO-829 NovaSeq data (created using reads from mutually             
exclusive lanes) and indicate the within-platform intra-run variability. Columns 2-4 show comparisons            
between platforms for the three cell lines. Orange bars (resp. purple) represent the number of variants                
called uniquely in the NovaSeq runs (resp. HiSeqX) and the grey bars correspond to the variants called                 
in both samples. We indicate the results for all PASS variants from our pipeline (AllSomatic) and for the                  
variants we classified as high confidence (HighConf). All tumors were downsampled to 80X and normals               
to 40X mean coverage for these comparisons. 
 
Focusing on the discordant calls, we observed that most of the somatic SNVs identified by one platform                 
but not the other are observed at low allele frequency (<10%), indicating that they might have been                 
missed by insufficient coverage and sampling differences, or be false positives introduced by sequencing              
artifacts (Figure 5 B and Figure 5 D). We also observed that the mutation spectrum for discordant calls                
was very different from the concordant calls (Supplemental Figure S5 , Figure 5 ), with relatively large               
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number of T>G mutations among the variants unique to the NovaSeq instrument (Figure 5 ). This is in                 
agreement with the higher T>G mismatches, especially in A[T>G]T, G[T>G]T and T[T>G]T context, seen              
in NovaSeq data (Figure 3 ; Supplementary Figure S5). We did not see the same trend when comparing                 
high confidence variants (Supplemental Figure S10 ). We therefore think that a lot of these T>G variants                
called only in NovaSeq data may in fact be artifactual calls that could be filtered out if we include more                    
NovaSeq samples in our panel of normals. Our PON predominantly consisted of HiSeqX samples and               
may therefore be better at removing HiSeqX-specific artifacts. For example, we saw that a lot of T[C>A]A                 
SNV calls unique to HiSeqX (Supplemental Figure S10 ) were filtered because of the panel of normal                
filtering step, and therefore were not seen in our final callsets.  
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Figure 5 . Allele frequency and mutational spectrum of discordant SNVs between HiSeqX and             
NovaSeq. Panel A shows the number of SNVs that were called in both NovaSeq and HiSeqX data, only                  
in HiSeqX data and only in NovaSeq data. Panel B shows the allele frequency of the variants called only                   
by HiSeqX in purple, and for reference the allele frequency of variants called by both platforms. Panel C                  
shows the decomposition in trinucleotide contexts of the variants called uniquely by each platform . Panel                
D is similar to Panel B but for variants uniquely called by NovaSeq. 

Comparison to a reference callset and an alternative somatic pipeline 
The three cell lines we sequenced have already been extensively studied and sequenced by other               
groups. In particular Craig et al. sequenced different passages of COLO-829 in three different centers               
(TGen, BCSGSC and Illumina) and established a somatic reference dataset for SNV and indels from the                
consensus of their pipelines. This dataset also provided copy number gain/loss information for 6,586              
genes. In Pan-Cancer Analysis of Whole Genomes (PCAWG) project, three best-practice pipelines were             
developed from the participating institutions and made accessible in Docker containers [33]. Of the three               
pipelines, we ran the pipeline from Sanger institute on COLO-829 samples sequenced on HiSeqX and               
NovaSeq at NYGC. The other two pipelines from DKFZ and Broad institute were not readily               
implementable, due to assumed dependencies in those workflows. The PASS variants from the PCAWG              
Sanger pipeline were compared against the Craig et. al reference dataset. 
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Figure 6 : Comparison of somatic variants called on HiSeqX and NovaSeq COLO-829 tumor/normal data              
downsampled to 80X/40X to the Craig et al. reference dataset.  
 
Overall, we saw that our pipeline called fewer SNVs than Sanger pipeline, and yet we called over 98% of                   
the Craig et al. SNVs compared to around 96.4% called by the Sanger pipeline. Our pipeline called more                  
indels compared to the Sanger pipeline, but we had far fewer indel calls in the high confidence callset.                  
We called around 86% and 84% of the Craig et al. indels in our All Somatic and High Confidence                   
callsets, compared to 80% called by the Sanger pipeline, suggesting that our pipeline may be more                
sensitive. 
We explored the sources of discrepancies between our callset and the reference dataset established in               
Craig et al. and represented the different categories in Supplemental Figure S11 . Almost half of the                
variants absent from our final callset were in fact called as PASS-filtered by at least one of the callers,                   
but were removed from our AllSomatic list due to PON filtering. Some of the discordant variants were in                  
the raw callsets of one or more variant callers, but did not pass the caller-specific filtering. Other sources                  
of discrepancies were evidence of the variant allele in the normal sample, low coverage or low variant                 
allele frequency in the tumor sample. While there were some differences between SNV and indel calls                
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between the two pipelines, we found that the CNV recall was very similar between the two pipelines                 
based on a gene-level comparison (99.8% recall for both our pipeline and the Sanger pipeline). 
Overall, despite some discrepancies, we are confident about our callset and believe that the PON               
filtering is a powerful method to remove technical artifacts. It is also entirely possible that some somatic                 
variants were different between the cells used in the reference dataset and the ones used in this work.  

Recall and Precision at Various Purities  
One frequent concern in cancer genomics is that tumor samples are always heterogeneous, composed              
of tumor cells, stromal contamination and normal cells. Since one goal of a somatic pipeline is to                 
establish the catalog of the somatic mutations occuring in the tumor cells, it is important to take into                  
consideration the composition of the sample, usually summarized as the “tumor purity”. Using the two               
most deeply sequenced cell lines, we simulated lower purity tumor data and evaluated the performance               
of our SNV/indel pipeline at different purities by comparing to the results obtained with high coverage                
(see Methods). We observed that precision remained good for high-confidence SNVs and indels even at               
low purity, but that recall decreased rapidly with purity lower than 50% for the highly rearranged                
HCC-1143, and below 25% for COLO-829, which had comparatively fewer chromosomal abnormalities            
(Figure 7 A, Supplemental Figure S13 ). We conducted a similar type of precision/recall analysis for CNVs               
(Figure 7 B), comparing calls across samples at the base-pair level and found that for amplifications, the                
recall tended to decrease more gradually as purity decreased but for deletions there was a sharp drop-off                 
below 50% purity. This is mainly because deletions occupy few copy number states (e.g. 0 or 1 copy for                   
a diploid genome), whereas amplifications can have higher copy number states that will still be captured                
at lower purity, as is the case with HCC-1143. Precision remained relatively high at different purities for                 
both amplifications and deletions; however, for deletions it dropped off at around 25%, as very few calls                 
were being made at this level of purity.  
For low purity samples, some of the false negative CNV calls could be attributed to the chosen                 
thresholds for categorizing amplifications and deletions, and the fact that BIC-seq2 outputs log2 ratios              
that are not adjusted for purity and ploidy. We wanted to investigate how purity/ploidy adjustment could                
rescue true events missed in low purity samples. For this, we based our purity estimates off of the                  
fraction of reads we mixed from the tumor and normal sample to create these low purity samples, which                  
should represent the true purity (see Methods). Using these estimates, the CNV log2 values were               
adjusted. We found that the recall was much higher than the original unadjusted data, but precision                
gradually decreased as the purity dropped. At the lowest purity level, precision and recall dropped, which                
was likely a result of the different segmentation at this purity level. The ability to capture CNV calls in                   
lower purity samples by adjusting the log2 values based on purity/ploidy is very useful, but requires                
correct estimation of purity and ploidy for the tumor sample. 
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Figure 7 Precision, recall and F1 scores at different simulated purities for (A) SNVs (top) and Indels                 
(bottom), and (B) CNVs without (top) and with (bottom) adjustments of log2 values for purity and ploidy.  
 
Therefore, we evaluated CELLULOID [32] and HATCHet [34] for their ability to correctly estimate the               
purity and ploidy values for our purity ladder samples (Figure 8 ). Both tools use read depth information at                  
germline heterozygous sites to infer the tumor purity/ploidy. In particular, HATCHet can be run in               
multisample mode, which can leverage information from high purity samples to infer the purity/ploidy of               
low purity samples from the same individual. We ran HATCHet in both single sample and multisample                
mode. We found that both tools tend to perform well above 50% purity. Furthermore, HATCHet (in                
multisample mode) and CELLULOID can both give close estimates of the purity/ploidy for much lower               
purity samples. CELLULOID estimates only seemed to drop-off for samples with a purity lower than               
12.5%, while HATCHet in multisample mode produced a good estimate at this low purity level.  
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Figure 8 : Ploidy and Purity Estimation of Cell Line Purity Ladder using CELLULOID and HATCHet in                
single-sample and multi-sample mode 
 
Further, we looked into the log2 values of the events that were captured at lower purities and their                  
adjusted log2 values based on CELLULOID and HATCHet single sample estimates of purity and ploidy               
(Supplemental Figure S12 ). In the low purity samples, we were able to identify many of the events that                  
were originally lost at this purity level. However, it was also apparent that the CNVs being captured at the                   
lowest purity level did not necessarily resemble the high purity CNVs. This is another example of how                 
differences in segmentation in lower purity samples can have an impact on recapturing CNV calls.  
 

Discussion 
Cancer cell lines are useful models for studying cancer biology. They are widely available, easy to                
propagate and composed of a relatively homogeneous population of cells, making them extremely             
valuable for advancement of tools and methods for cancer genomics. However, they are imperfect              
models and do not represent the entire complexity of real tumor samples. They may also contain unique                 
genomic features needed for immortalization and in vitro growth. Here, we used 3 cancer cell lines for                 
benchmarking purposes and share our high-quality callset to the genomics community. We plan to keep               
using this data to test novel variant callers and may resequence these cell lines with novel sequencing                 
technologies (such as long read technologies). Here, we demonstrated using these cell lines the              
existence of systematic differences between the reads produced by HiSeqX and by NovaSeq. The              
patterns we identified will need to be taken into account to fully exploit the signal produced by the                  
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sequencers. For instance, we believe that a deep learning model designed to filter out sequencing               
artifacts and detect real mutations at very low frequency (such as would be needed for early detection of                  
cancer in liquid biopsy samples) would need to be trained independently for HiSeqX and for NovaSeq,                
depending on the instrument used for the real-life application of the model. We designed a pipeline for                 
somatic variant calling, composed of multiple softwares for SNV, indel and structural variants. We              
showed the advantage of using multiple tools to obtain high confidence calls. We showed that with the                 
standard coverage of tumor-normal whole genome sequencing (80X/40X) and our somatic pipeline, the             
pattern of homopolymer frequency does not translate into systematic biases once multiple somatic             
callers are applied. We noted a mild enrichment of T>G mutations in the variants called uniquely in                 
NovaSeq and not in HiSeqX data. However, that was not the case when we compared our high                 
confidence variants (those that are supported by multiple callers). Overall, this gives us the confidence to                
upgrade our sequencing platform to NovaSeq, without any loss of quality (and with a substantial gain in                 
the cost of sequencing and a higher throughput). We demonstrated the importance of filtering recurrent               
artifacts with a Panel of Normals, ideally composed of a large number of samples from the platforms                 
used to sequence the samples of interest and preferably using the same sequencing protocols. We               
expect to increase the number of normal samples included in our PON, especially from NovaSeq, as we                 
keep sequencing properly consented samples. We plan to explore refined strategies to filter artifacts              
based on the allele detected in normal samples rather than, as currently, based on the location in the                  
reference genome. Finally, we used the deeply sequenced libraries to test tools designed to estimate               
purity and ploidy of tumor samples and showed the importance of incorporating these estimates to               
improve copy-number detection. 

Conclusion 
We present high-quality, deeply sequenced whole-genome data for 3 common cancer lines. We used              
these samples to study in detail the differences between the two most recent high-throughput              
sequencers from Illumina, HiSeq X Ten and NovaSeq 6000. We ran these tumor-normal pairs through               
our somatic pipeline and demonstrated that the inter-platform variability was very similar to the intra-run               
variability, indicating that the systematic differences between the platforms at the read level are              
well-handled by the base calling algorithm and by our somatic pipeline. We demonstrated the              
advantages of combining multiple algorithms to detect SNV, indels and structural variants. We used the               
samples to study in details the effect of tumor purity on performance and tested tools aiming at                 
estimating purity from WGS data. We show how to use these estimations to recalibrate copy-number               
events and re-categorize amplifications and deletions. 

Data accessibility 
We will deposit the raw genomic data and the somatic variants on dbGAP. The somatic variants for 
HighCoverage and downsampled 40X/80X are directly accessible on our website . The website also 8

contains the sample reports generated by the pipeline and a link to the Outpost QC interface.  
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Supplemental information 
 

Cell line Ampule passage number 
(from ATCC) 

COLO-829 10 

HCC-1143 5 

HCC-1187 28 

Supplemental Table 1 :Cell line information from ATCC 
 
 

Sample Platform Total Reads %Aligned Reads Mean Coverage %Duplicates 

COLO-829 HiSeqX 3,942,506,750 99.64 166.36 11.62 

COLO-829 NovaSeq 5,111,570,566 99.57 228.06 6.28 

COLO-829BL HiSeqX 2,125,523,908 99.64 89.93 11.18 

COLO-829BL NovaSeq 4,062,312,284 99.62 179.73 6.97 

HCC-1143 HiSeqX 1,928,441,034 99.61 81.15 11.65 

HCC-1143 NovaSeq 6,310,318,566 99.54 278.26 7.28 
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HCC-1143BL HiSeqX 1,017,638,416 99.53 42.35 11.84 

HCC-1143BL NovaSeq 3,566,322,944 99.63 155.73 7.47 

HCC-1187 HiSeqX 1,914,759,882 99.69 79.80 11.35 

HCC-1187 NovaSeq 2,056,483,546 99.71 90.35 6.43 

HCC-1187BL HiSeqX 1,016,297,632 99.63 42.58 11.24 

HCC-1187BL NovaSeq 1,390,489,154 99.65 61.47 6.22 

 
Supplemental Table 2 : Alignment metrics and duplication rates 
 
 

 
Supplemental Figure S1 Karyotypes of COLO-829, HCC-1187, HCC-1143 and its associated “normal”            
cell lines HCC-1143BL. We note some slight differences between the results of the karyotype analyses               
and the CNV analyses resulting from WGS, possibly due to clonal heterogeneity, technical differences              
and differences in the level of detection of the technologies. 
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(A) COLO-829: 
70~73<3N>,XX,-1,del(1)(q12),+3,der(3)t(1;3)(q12;p25)x2,i(4)(q10),-5,+6,del(6)(q13q25),+7,dup(7)(q32q34)
x2,+8,+9,del(9)(p11.2)x2,-10,+13,-15,-16,+17,der(18)t(1;18)(p21;p11.3),+20,+22,+22,+22 [cp20] 

(B) HCC-1187: 
63~67<3N>,X,add(X)(p22.1),+add(1)(p22),+add(1)(p34),del(1)(q21),del(1)(q32),-2,del(2)(p13p23)x2,+3,del
(3)(p13),i(5)(q10)x2,del(5)(q13q33),del(6)(q13),+7,-8,del(8)(q22),-10,+11,add(11)(p15),add(12)(q22),del(13
)(q22q32)x3,add(16)(q24),del(17)(p11.2),add(18)(q23),+19,add(19)(p13)x2,-20,add(20)(q13.3),+21,+4~6m
ar [cp20] 

(C) HCC-1143: 
74~82<3N>,X,+add(1)(p34),+add(1)(q21),+del(1)(p32p34),+2,add(2)(q31),del(3)(p13),+4,del(4)(q22)x2,+5,
del(5)(q13q33),add(7)(q22),del(7)(p13),-8,-10,+11,del(11)(q13q23),del(11)(q23q24),del(12)(q13q22),-14,ad
d(14)(p11.2),del(17)(p11.2),+17,add(18)(p11.2),+19,add(19)(p13.3),add(21)(q22),+4~5mar [cp20] 

(D) HCC-1143BL: 47,XX,+2 [15]/47,XX,+2,del(16)(q12) [5] 
 
 
 

 
Supplemental Figure S2 : Base quality scores by cycle, before and after BQSR.  
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Supplemental Figure S3 : Fraction of total reads containing homopolymer (stretches of 20nt or longer) 
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Supplemental Figure S4 Intra-run and inter-platform concordance of somatic variants called by the             
different variant callers, similar to Figure 4 . Even though Lancet is run in Lancet exonic and validation                 
modes in the pipeline, for this plot, we show the results of Lancet run on the entire genome.  
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Supplemental Figure S5 . Mutation spectrum of concordant high confidence SNVs between HiSeqX and             
Novaseq.  
 
 

  

 
Supplemental Figure S6 : Single nucleotide mismatches by type in samples sequenced on NovaSeq             
and HiSeqX. We find that NovaSeq had more C>A and T>A mismatches, whereas HiSeqX had more                
A>G and T>G mismatches. Each bar represents a single sample and colored based on sequencing               
platform. HiSeqX samples had an average mismatch rate of 0.75%, whereas NovaSeq samples had              
average mismatch rates of 0.6%.  
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Supplemental Figure S7 : Difference in the fraction of mismatches between HiSeqX and NovaSeq per              
trinucleotide. Positive values correspond to higher fractions in HiSeqX and negative values correspond to              
higher fractions in NovaSeq. MQ ≥ 10 and BQ≥10 cut-offs were applied for this calculation. We observed                 
that NovaSeq called more T>G mismatches, especially in A [T>G]T, G [T>G]T and T [T>G]T context. 
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Supplemental Figure S8 : Difference in the mismatches between HiSeqX and NovaSeq per trinucleotide             
collapsed to the 6 mismatch categories(C>A, C>G, C>T, T>A, T>C, T>G). Positive values correspond to               
higher fractions in HiSeqX and negative values correspond to higher fractions in NovaSeq. MQ ≥ 10 and                 
BQ≥10 cut-offs were applied for this calculation. We observe that NovaSeq called more T>G              
mismatches, especially in A [T>G]T, G [T>G]T and T [T>G]T context. 
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Supplemental Figure S9 : Allele frequency and mutational spectrum of discordant SNVs between            
HiSeqX and NovaSeq without Panel of Normal filtering. Panel A shows the number of SNVs that were                 
called in both NovaSeq and HiSeqX data, only in HiSeqX data and only in NovaSeq data. Panel B shows                   
the allele frequency of the variants called only by HiSeqX in purple, and for reference the allele frequency                  
of variants called by both platforms. Panel C shows the decomposition in trinucleotide contexts of the                
variants called uniquely by each platform (top and bottom tracks) and called by both platform (middle                
track). Panel D is similar to Panel B but for variants uniquely called by NovaSeq. 
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Supplemental Figure S10 : Allele frequency and mutational spectrum of discordant high confidence            
SNVs between HiSeqX and NovaSeq. Only those SNVs that were in the high confidence callset for at                 
least one of the technologies were used for this. Panel A shows the number of SNVs that were called in                    
both NovaSeq and HiSeqX data, only in HiSeqX data and only in NovaSeq data. Panel B shows the                  
allele frequency of the variants called only by HiSeqX in purple, and for reference the allele frequency of                  
variants called by both platforms. Panel C shows the decomposition in trinucleotide contexts of the               
variants called uniquely by each platform. Panel D is similar to Panel B but for variants uniquely called by                   
NovaSeq. 
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Supplemental Figure S11 : Sources of discrepancies between NYGC callset and the reference dataset             
established in Craig et al. The figure shows (A) SNVs and (B) Indels from Craig et al dataset that were                    
not called in our AllSomatic callset on the HiSeqX data, and the reasons for rejection or no call: not                   
called by any caller (NotCalled), found only in rejected calls of callers (RejectedByCallers), rejected in               
Panel of Normals filtering step (PanelOfNormal), rejected in common germline filtering step            
(CommonGermline) or rejected in allele count filtering step (AlleleCount). The lower panels show             
scatterplots of VAF of the variants in the tumor vs VAF in the normal, VAF in the normal vs depth (DP) at                      
the position in the normal, VAF in the tumor vs depth in the tumor.  
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Supplemental Figure S12 : Adjustment of Log2 Values in Cell Line Purity Ladder 
Density plot showing the log2 values of CNVs called in the purity ladder cell lines for (A) COLO-829 and                   
(B) HCC-1143. The first row shows the original unadjusted log2 values that were called at various                
purities. The second row shows the CELLULOID adjusted log2 values at the same purity levels. The third                 
row shows the HATCHet adjusted log2 values at the same purity levels.  
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Supplemental Figure S13 : Variant allele frequency distribution and number of high confidence SNVs             
and Indels called in the high coverage data that are also called in the AllSomatic callsets of the purity                   
ladder samples for (A) COLO-829 and (B) HCC-1143. 
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Supplemental Figure S14 : Precision, recall and F1 scores at different simulated purities for CNVs              
without (Original) and with (CELLULOID/HATCHet) adjustments of log2 values for purity and ploidy.             
Panel A corresponds to COLO-829, Panel B to HCC-1143. 
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C

 
 
Supplemental Figure S15 : Copy number profile (top), B-allele frequency (BAF) of germline 
heterozygous SNPs by position (middle) and variant allele frequency (VAF) by position of 
HighConfidence somatic SNVs called on the high coverage NovaSeq data for (A) COLO-829, (B) 
HCC-1143 and (C) HCC-1187.  
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