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Abstract:  16 

Biomarkers are important tools for diagnosis, prognosis, and identification of the causal 17 

factors of physiological conditions. Biomarkers are typically identified by correlating biological 18 

measurements with the status of a condition in a sample of subjects. Cross-sectional studies 19 

sample subjects at a single timepoint, while longitudinal studies follow a cohort through time. 20 

Identifying biomarkers of aging is subject to unique challenges. Individuals who age faster have 21 

intrinsically higher mortality rates and so are preferentially lost over time, in a phenomenon 22 

known as cohort selection. In this paper, we use simulations to show that cohort selection biases 23 

cross-sectional analysis away from identifying causal loci of aging, to the point where cross 24 

sectional studies are less likely to identify loci that cause aging than if loci had been chosen at 25 

random. We go on to show this bias can be corrected by incorporating correlates of mortality 26 

identified from longitudinal studies, allowing cross sectional studies to effectively identify the 27 

causal factors of aging. 28 

Keywords: Regression, senescence, mortality, epigenetics, longevity, gerontology 29 

  30 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 2, 2019. ; https://doi.org/10.1101/624270doi: bioRxiv preprint 

https://doi.org/10.1101/624270
http://creativecommons.org/licenses/by-nc/4.0/


3 
 

Body: 31 

Despite the universality of aging (1, 2), we do not know which factors are the most important 32 

contributors to age-associated decline in physiological function and to increase in mortality rate. 33 

Further, we lack consensus regarding what it means to be aged and how to properly measure 34 

aging (3, 4). The advent of high throughput “omics” technologies has led to the tantalizing 35 

promise that a large enough dataset of informative biomarkers might both elucidate the causal 36 

factors behind aging, and provide precise, individualized diagnoses (5). Biomarkers have also 37 

been proposed as surrogate endpoints, allowing studies to forgo the slow and expensive process 38 

of measuring the symptoms of aging as they develop over time (6). However, the limits of what 39 

biomarkers can tell us about aging, and the consequences of the methods by which we discover 40 

biomarkers, have yet to be examined theoretically.  41 

Biomarkers, broadly speaking, are biological quantities that are convenient to measure, and 42 

that give us medically important information (7, 8). Biomarkers can inform three very different 43 

categories of medically important information. First, biomarkers can inform diagnosis and 44 

associated prognosis. The first molecular biomarker was glucose, used to diagnose diabetes (9). 45 

Historically, sweet urine indicated death within a matter of months (10), making glucose in the 46 

urine useful for informing prognosis but little else. Today, prognosis without treatment is still 47 

useful for patients with untreatable cancer or Alzheimer’s disease, who may wish to put their 48 

affairs in order. Biomarkers for aging can similarly predict lifespan remaining or future quality 49 

of life (e.g. 11).  50 

Second, biomarkers can reveal disease mechanisms. Perhaps surprisingly, while glucose is 51 

important to the mechanism of diabetes, historically, it did not lead physicians directly to the 52 

causal mechanisms of the disease. When medieval physicians noticed that glucose in the urine 53 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 2, 2019. ; https://doi.org/10.1101/624270doi: bioRxiv preprint 

https://doi.org/10.1101/624270
http://creativecommons.org/licenses/by-nc/4.0/


4 
 

varied with diet, they mistakenly concluded that diabetes must be a disease of the digestive 54 

system (10). Instead, the indirect advantage of the discovery of glucose was that because its 55 

presence in the urine aided diagnosis, it facilitated the search for other mechanistic clues, 56 

specifically abnormalities in the pancreas noted during autopsy (12). In contrast, after cholesterol 57 

was noted as a prognostic biomarker for coronary artery disease, this led more directly to 58 

understanding the mechanistic role of plaque build-up (13).  59 

Third, a biomarker can provide information that enhances interventions and improves 60 

outcomes (14). Such markers are called “predictive” rather than the “prognostic” biomarkers 61 

discussed above (15, 16). Insulin treatment, combined with a more accurate blood test (17), made 62 

glucose an important biomarker to drive treatment decisions (10). The presence of hormone 63 

receptors in breast cancer biopsy tissue is another predictive biomarker used to make treatment 64 

decisions. There is hope that the many cancer driver mutations currently being identified might 65 

also move from prognostic indicators to drug targets, in the way that oncofusion protein BCR-66 

Abl (18) is targeted by Gleevec. 67 

Identifying biomarkers generally begins with noting a correlation between a measurement 68 

and patient fate (19-21). Patient fate can be measured longitudinally, or else a known correlate of 69 

patient fate can be measured within a contemporaneous cross-section. To measure biomarkers of 70 

aging in a longitudinal study, potential markers are measured at the start, and a cohort is then 71 

followed through time to determine mortality. The correlation between marker status at the 72 

beginning of the study and later mortality rates or other symptoms of aging is then ascertained 73 

(22-24). In a cross-sectional study, biomarkers are identified based on their ability to predict 74 

either current chronological age (25), or a composite of chronological age and physiological 75 

indicators often termed “biological age” (26), even when their intent, as described above, is to 76 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 2, 2019. ; https://doi.org/10.1101/624270doi: bioRxiv preprint 

https://doi.org/10.1101/624270
http://creativecommons.org/licenses/by-nc/4.0/


5 
 

predict lifespan remaining (27). New technologies mean that we can now investigate many 77 

potential biomarkers simultaneously, which opens the door both to discovering more and/or 78 

better markers, and to the risk of spurious results (28).  79 

Longitudinal studies are obviously slow and difficult to conduct, but cross-sectional studies 80 

may not yield reliable results. Individuals with lower intrinsic mortality rates are likely to survive 81 

to older ages than their peers with high mortality rates, and are thereby more likely to be 82 

observed at older ages. This bias, known as cohort selection (29), may complicate the search for 83 

biomarkers of aging. Here, we simulate core aspects of the search for epigenetic biomarkers in 84 

the cross-sectional approaches, specifically those of Horvath (25), Horvath (30), and Levine (26). 85 

We include the possibility of cohort selection, in order to determine what cross-sectionally 86 

identified biomarkers can, and cannot, tell us about aging. 87 

Methods: 88 

We first conduct simulations based on the procedure of Horvath (25), who trained an 89 

algorithm to predict chronological age from DNA methylation status at 21,389 sites in a cross-90 

section of 7,844 individuals of different ages. The resulting regression model used 353 of those 91 

sites, and was used to assess the relative rate of aging (assessed as the difference between 92 

predicted age and chronological age) in a wide range of test datasets, from cancer tissue to 93 

patients with progeria.  94 

Guided by this procedure, we simulate the methylation status of many loci during aging, 95 

followed by cross-sectional approaches to select loci as biomarkers. Specifically, we simulate 96 

L=20,000 loci in each individual. Each locus has two states, degraded and non-degraded, and 97 

begins the simulation in the undegraded state. We simulate enough individuals to obtain 1000 98 

living individuals at each target age of 10, 20, 30,…80 years, with simulations proceeding in 99 
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discrete time steps of one year. Each year, each un-degraded locus i has a probability 𝜌" of 100 

degrading, making the mean age at which the locus degrades (1-𝜌i)/	𝜌i.  101 

We consider two models for the probability of dying m. First, we make the probability of 102 

dying increase exponentially with time, independently of which loci have degraded, according to 103 

a Gompertz mortality curve (47): 104 

𝑚 = αexp(𝛾𝑡)     (1) 105 

Using mortality rates from Arias et al. (48), we estimate 𝛼 = 𝑒012	deaths/year and 𝛾 =106 

0.0807/year to obtain a survival curve that approximates human demography in a developed 107 

nation, excluding elevated infant and early adult mortality, as well as any late life mortality 108 

deceleration. 109 

In the second model, we make mortality a function of the number of degraded loci, 110 

choosing a function that yields a mortality curve that increases approximately exponentially with 111 

age. Specifically, we make mortality a power function of the sum of the effects of all degraded 112 

loci: 113 

𝑚 = 𝑎(1 − ∑ 𝑏"𝑥"" )=     (2) 114 

where bi is the effect size of locus i (often 0) and xi is 0 if the locus is in an undegraded state and 115 

1 if the locus is degraded. Log mortality then has a linear relationship with age (i.e. we have a 116 

Gompertz mortality curve) in the special case where ∑ 𝑏"" = 1, with k determining its slope. 117 

With 𝑘 < 0, mortality varies from a minimum of 𝑎 when no causal sites have degraded to a 118 

maximum of infinity (instant death) when all sites have degraded. In our simulations, we set 𝑏" 119 

for all causative sites to equal 1 𝐿⁄  where 𝐿 is the number of causative loci. We refer to the 120 

“effect size” as the percent increase in mortality resulting from a single degraded locus in an 121 

otherwise undegraded individual: 100 × ((1 − 𝑏")= − 1). 122 
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To parameterize Equation 2 to approximate the Gompertz curve parameter values of 123 

Equation (1), we assume (just for the purpose of this parameterization) that all loci degrade at the 124 

same rate 𝜌, and thus the expected number of degraded loci as a function of time t is E(∑ 𝑥"" ) =125 

𝐿(1 − (1 − 𝜌)D). If we ignore variation both in effect sizes of causative loci and in the number 126 

of causative loci degraded, and we also ignore cohort selection (i.e. ignoring the fact that 127 

individuals with more than average degradations are less likely to be alive to have their mortality 128 

assessed), substitution of this expectation into Equation 2 would yield: 129 

𝑚 = 𝑎 exp(𝑘𝑡 ln(1 − 𝜌))    (3) 130 

We therefore set 𝑎 = α and 𝑘 = 𝛾/ ln(1 − 𝜌) in Equation 2. Figure 1 shows that when these 131 

simplifying assumptions are relaxed, mortality in our Equation (2) simulations (red and blue for 132 

small and large 𝑏", respectively) still exhibits the exponential relationship with time 133 

characteristic of a Gompertz mortality curve (solid black), with a slight deviation toward late life 134 

due to cohort selection when loci are of large effect (blue).  135 

Some more recent efforts to identify biomarkers of aging (e.g. Levine (26)) train on a 136 

measure of “biological age” that incorporates phenotypic indicators in addition to chronological 137 

age. Phenotypic indicators are physiological measurements identified by their ability to predict, 138 

within a linear regression, mortality rates measured in a longitudinal study.  139 

To determine how including measures of biological age affects the search for causal 140 

biomarkers of aging, we construct a simulated “biological age” phenotype p. We assume that 141 

phenotype can be scaled such that the mean phenotype of each age group is equal to the mean 142 

mortality rate of that age group (i.e., 𝑚DHHHH = 𝑝DJ ), and that once this is done, the variance in 143 

phenotype among individuals of age t is equal to the variance in mortality (i.e., vart(mi) = 144 

vart(pi)). We also assume that within any age cohort, the phenotype correlates with mortality 145 
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with the same correlation coefficient 𝑟L,N. Finally, we assume p is normally distributed, making 146 

individual i's simulated phenotype: 147 

𝑝" = 	𝑚DHHHH + 𝑟L,N(𝑚" − 𝑚DHHHH) + 𝑁Q0, Q1 − 𝑟L,NR S varD(𝑚")S   (4) 148 

where 𝑚" is the true mortality rate of individual 𝑖, and 𝑁(0, 𝜎R) is a random number drawn from 149 

a normal distribution with mean 0 and variance 𝜎R. This formulation lets 𝑟L,N determine the 150 

fraction of variance in p that stems from variation in m, without changing vart(pi).  151 

Next we consider how phenotypes can be used to construct a biological age. Simulated 152 

phenotypic values could be used, along with mean mortality 𝑚DHHHH for each age group, to predict 153 

individual mortality rates using a linear model: 154 

𝑚Ẏ[ = 𝛽D𝑚DHHHH + 𝛽L𝑝"     (5) 155 

Instead of simulating the fit of this regression model to a data sample, we consider the 156 

best possible predictor by obtaining values for 𝛽 analytically when the number of datapoints n 157 

goes to infinity. First, we take the expectation of both sides of Eq. 5, giving 𝑚DHHHH = lim
_→a

𝛽D 𝑚DHHHH +158 

lim
_→a

𝛽L 𝑚DHHHH, hence for the best predictor we will have 𝛽D = 1 − 𝛽L.  159 

Second, we minimize the sum of squares ∑ (𝑚Ẏ[ −𝑚")R_
" . From Equation 5, 160 

∑ (𝑚Ẏ[ −𝑚")R_
" = ∑ Q𝛽D𝑚DHHHH + 𝛽L𝑝" − 𝑚"S

R_
" .   (6.1) 161 

Using 𝛽D = 1 − 𝛽L yields: 162 

∑ (𝑚Ẏ[ −𝑚")R_
" = ∑ bQ1 − 𝛽LS𝑚DHHHH + 𝛽L𝑝" − 𝑚"c

R
_
" .   (6.2) 163 

Substituting in Equation 4 yields: 164 

∑ (𝑚Ẏ[ −𝑚")R_
" = ∑ b𝑚DHHHH + 𝛽L b𝑟L,N(𝑚" − 𝑚DHHHH) + 𝑁Q0, Q1 − 𝑟L,NR S varD(𝑚")Sc − 𝑚"c

R
_
" . (6.3) 165 

 166 

We next take the limit as the number of data points goes to infinity. Using 167 
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lim
_→a

(1/𝑛)∑ 𝑁Q0, Q1 − 𝑟L,NR S varD(𝑚")S = 0_
"     (7.1) 168 

lim
_→a

(1/𝑛)∑ (𝑚" − 𝑚DHHHH)R_
" = varD(𝑚")    (7.2) 169 

lim
_→a

(1/𝑛)∑ b𝑁Q0, Q1 − 𝑟L,NR S varD(𝑚")Sc
R

_
" = Q1 − 𝑟L,NR S varD(𝑚"), (7.3) 170 

we obtain, after some rearrangement, 171 

lim
_→a

(1/𝑛)∑ (𝑚" − 𝑚Ẏ[)R_
" = Q1 + 𝛽LR − 2𝛽L𝑟L,NS varD(𝑚").   (8) 172 

This reaches a minimum when the derivative by 𝛽L is zero, which occurs when 𝛽L = 𝑟L,N.  173 

To obtain an estimated biological age 𝑡Ẏf from the combination of an observed phenotype 174 

𝑝" and a chronological age t, using this idealized linear model, we back-transform the estimated 175 

mortality from Equation 5 using the Gompertz mortality function (Equation 1):  176 

𝑡Yf =
1
g
(ln𝑚Ẏ[ − ln𝛼)     (9) 177 

For each age cohort, we simulate each individual until they either die or reach the target 178 

age; only the latter are included in the training dataset. The process is repeated until we obtain 179 

1000 individuals for each of the 8 ages of interest. Each locus is coded as 1 if degraded at the age 180 

of sampling and 0 otherwise. We correlate loci status either with chronological age, as in 181 

Horvath (25),  or with biological age, as in Levine et al. (26), using the glmnet package in R (49). 182 

Regression coefficients between locus status and age are generated with a ridge lasso elastic net 183 

with the elastic net mixing parameter α=0.5 as in Horvath (25). During our analysis we noticed 184 

subtle biases in the regression coefficients generated by glmnet as a function of the order in 185 

which the loci appear in the training data set. To prevent such biases from affecting our results, 186 

we randomized the order of loci in the data set.   187 
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Results: 188 

Here we examine the effect of two locus attributes – degradation rate, and the effect size 189 

of degradation on mortality – on the regression coefficient assigned by glmnet as a predictor of 190 

age. Loci with expected ages of degradation less than 40 make poor biomarkers of age, and the 191 

most commonly selected biomarkers have expected ages of degradation between 60 and 100 192 

(Figure 2A). Similarly, the most informative loci (i.e. those assigned the largest weights by 193 

glmnet) are expected to degrade between ages 70 through 90 (Figure 2B).  194 

Loci that have no causal effect on mortality are more likely to be chosen as informative 195 

markers (Figure 2C) than their age-causing counterparts. This counter-intuitive result arises 196 

because cohort selection makes biomarkers of aging unsuitable for identifying mechanisms of 197 

aging. In the rare cases when age-causing loci of large effect are chosen, they have slightly 198 

smaller regression coefficients than neutral loci (Figure 2D). Together, these results show that 199 

loci that cause aging are worse predictors of chronological age than neutral loci. 200 

To illustrate how cohort selection makes age-causing loci worse predictors of age, we 201 

track the mean number of degraded loci as a function of cohort age. Let ni be the number of 202 

individuals with i degraded loci, mi(t) the probability of dying from age t to age t+1 of 203 

individuals with l degraded loci, and 𝑝h"_iN(𝑙 − 𝑖, 𝐿 − 𝑙, 𝜌") the probability from a binomial 204 

distribution, of 𝑙 − 𝑖 loci degrading out of 𝐿 − 𝑙 previously non-degraded loci, when the 205 

probability of a locus degrading per year is pi. The expected number of individuals of age t years 206 

with l degraded loci is then: 207 

𝑛k(𝑡) = ∑ 𝑛"(𝑡 − 1)Q1 − 𝑚"(𝑡 − 1)S𝑝h"_iN(𝑙 − 𝑖, 𝐿 − 𝑙, 𝜌")k
"   (4) 208 

To explore the dynamics of neutral loci, we make mortality a function of time as given by 209 

Equation 1 (Figure 3, dashed black); for causative loci, mortality is given by Equation 2 (Figure 210 
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3, solid grey). Early in life, the frequency of degraded age-causing loci is dominated by the rate 211 

of degradation and is thus indistinguishable from neutral loci. Later in life, the additional 212 

mortality incurred by age-causing loci results in a slight decline in frequency relative to non-213 

causal loci. Even though cohort selection is subtle (as shown in Figure 3), it is enough to make 214 

loci that cause aging significantly worse predictors of chronological age than neutral loci. 215 

Training on chronological age biases regression analysis away from identifying causative 216 

loci of aging, but more recent work instead trains biomarkers on “biological age,” a combination 217 

of chronological age and phenotypic measurements that are known to correlate with mortality 218 

(26). Such phenotypic measurements are identified by regressing phenotype and mortality over 219 

the course of a longitudinal study (e.g. 23).  220 

To determine if training on longitudinally validated correlates of aging can help identify 221 

causative loci of aging in a cross-sectional study, we modified our analysis to incorporate 222 

chronological age, a known correlate of individual mortality, and simulated noise. We construct 223 

a simulated biological age-revealing phenotype such that the correlation coefficient 𝑟L,N between 224 

an appropriately transformed version of that phenotype and mortality has the same value within 225 

each age cohort. Biological age is then calculated as an optimal function of phenotype and 226 

chronological age (see Methods). When 𝑟L,NR = 1, biological age perfectly reflects an 227 

individual’s true mortality; when 𝑟L,NR = 0, it gives no information beyond that already given by 228 

chronological age. Figure 4 shows that when phenotype provides little additional information 229 

(𝑟L,NR < 0.04), non-causative loci (blue circles) are preferentially chosen as biomarkers to predict 230 

biological age. However, when phenotype is a reliable indicator of mortality (𝑟L,NR > 0.7) most, 231 

or even all, causative loci (red diamonds) are chosen as biomarkers of age. 232 
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To evaluate the quality of existing age-revealing phenotypes in the context of the search 233 

for causative biomarkers of aging, we used NHANES III linked laboratory and mortality data 234 

from the CDC (31, 32). We regressed (using the lm function in R) the nine phenotypic indicators 235 

used in Levine et al. (26) (white blood cell count, serum alkaline phosphatase, red cell width 236 

distribution, mean blood cell volume, lymphocytes percent, ln(serum C-reactive protein), serum 237 

creatinine, serum albumin, and serum glucose) on lifespan remaining, including only the 6898 238 

individuals who had died over the course of the study. Chronological age explained r2 =0.184 of 239 

variation in lifespan remaining, while the combination of chronological age plus phenotype 240 

explained r2 =0.28, indicating that the amount of unique information provided by phenotype is r2 241 

= 0.043 with respect to lifespan remaining, on the cusp of where biological age is useful for 242 

identifying causative loci of aging in our idealized model with respect to mortality rate. 243 

However, there is also considerable stochastic variation in lifespan remaining even when there is 244 

no variance in underlying mortality rate. It therefore seems clear that the phenotypic age markers 245 

used by Levine et al. (26) are above the threshold quality needed to identify causal loci of aging 246 

more often than chance. 247 

Next, we examine whether biomarkers of aging may be useful prognostic indicators of 248 

variation in the overall rate of degradation between individuals. To test this, we generated 249 

populations where the rate of aging varies among individuals, and populations where individuals 250 

vary in initial status, but then continue to age at the same rate. We trained the model to predict 251 

chronological age from loci status, as above. Comparing the difference between predicted age 252 

and chronological age to the known underlying rate of aging, shows that biomarkers, even 253 

neutral biomarkers, can provide useful information regarding the rate of aging (Figure 5A), but 254 

not regarding initial mortality rate (Figure 5B). Note that we examined the special case in which 255 
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variation in either the slope or intercept of the aging curve arises at birth. These results should 256 

still hold when it is later events that alter longevity, e.g. following an intervention. Biomarkers of 257 

aging could therefore inform the efficacy of interventions that affect the slope of the Gompertz 258 

curve, but not its intercept. 259 

 260 

Discussion: 261 

Like other biomarkers discussed in the Introduction, biomarkers of aging can have three uses: 262 

to estimate lifespan remaining (prognosis), to identify the mechanisms that cause aging (33), and, 263 

most ambitiously and usually late in their development, to distinguish classes of individuals for 264 

whom different treatments are appropriate. In cross-sectional studies, epigenetic biomarkers of 265 

aging have been selected for their ability to predict age at the time of sampling (21). However, 266 

the individuals in the training dataset are not random samples from their age cohort. Specifically, 267 

some individuals will not be sampled because they died before reaching the age of interest, and 268 

these individuals will on average be faster-aging. The resulting bias is known as cohort selection. 269 

Here, we have shown that cohort selection can make a cross-sectional study design spectacularly 270 

ineffective at identifying causal factors of aging.  271 

While we have focused on cohort selection associated with causal locus-induced mortality, a 272 

similar sampling bias can arise from study exclusion criteria. Sicker individuals might be less 273 

likely to enroll in such studies, and may be excluded, e.g. if they have defined diseases whose 274 

prevalence increases with age, such as cardiovascular disease or diabetes (34). In a cross-275 

sectional study, any alleles or epigenetic events that cause a predisposition toward such diseases 276 

will thus be underrepresented in older individuals.  277 
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Even if cross-sectional analyses trained on chronological age cannot identify loci that 278 

contribute to accelerating mortality, such analyses are not without value. Much effort has been 279 

put into quantifying natural variation in the slope and intercept of the aging curve (35) as well as 280 

the impact of interventions (36, 37). Our simulations show that aging biomarkers can provide 281 

prognostic (and hence potentially diagnostic) information regarding variation in the overall rate 282 

of degradation among individuals (24), but not in the basal mortality rate. They may therefore be 283 

useful in identifying factors affecting the overall rate of aging, as suggested by (25).  284 

Biomarker selection enriches not just for non-causal loci, but also for loci with an expected 285 

age of degradation toward the end of human lifespan. To obtain this result, we considered the 286 

degradation rate of a locus to be independent of its causal effect. Whether selection against age-287 

related mortality, which is necessarily subtle (38), can lead to lower degradation rates in age-288 

causing loci than in the rest of the genome is an important theoretical and empirical question. 289 

Degradation rates are a function of evolvable factors such as sequence context, chromatin 290 

structure, or enzyme recruitment (39-41). The evolution of site-specific error rates has been 291 

observed for species with larger population sizes than humans (42-44). Comparing methylation 292 

changes associated with the expression of genes known a priori to play a role in aging to those in 293 

putatively neutral sites may help illuminate whether loci that cause aging are under tighter 294 

regulation than the genome as a whole. 295 

While we have focused on molecular biomarkers of aging, our results apply to non-molecular 296 

markers as well. Indeed, the most commonly used non-molecular markers of aging, such as grip 297 

strength or skin elasticity (45, 46), are non-causal.  298 

Our results show that such physiological measurements, if sufficiently strongly correlated 299 

with mortality, can be used to identify causal loci of aging. However, a longitudinal study is 300 
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required first to identify reliable physiological markers of mortality rates, whether molecular or 301 

non-molecular. What we have shown is that it is possible for a cross-sectional study to “piggy 302 

back” off markers identified from a longitudinal study to identify other, causative, loci of aging. 303 

To better identify causal factors of aging we need a better understanding of what it means 304 

to be “aged”. Regression analyses using subjects’ chronological ages implicitly assume that 305 

“aging” is the process of having survived for a certain duration of time. Alternatively, “age” can 306 

be interpreted as morbidity, with associated mortality rate following a Gompertz curve. 307 

Ultimately, we are interested in the causal factors that prevent survival or decrease quality of life 308 

beyond a certain age. Our results confirm the critical importance of long-term longitudinal 309 

studies, whether directly conducted or indirectly incorporated, in finding both correlates and 310 

causes of aging. 311 

 312 
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Figures: 438 

 439 

Figure 1: The Gompertz mortality curve (solid black) approximates the empirical estimates 440 

of human mortality (dotted black), excluding increased infant and early adult mortality 441 

(48). To include cohort selection, Equation 2 was simulated for a starting population of 442 

1000 individuals using 20,000 loci of which 6,251 loci have an effect size of 0.1% (red) or 443 

301 loci have an effect size of 2.1% (blue).  444 
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 446 

 447 

Figure 2: Biomarkers selected on their ability to predict chronological age tend not to be 448 

causative for aging, and degrade, on average, late in life. Loci whose expected time of 449 

degradation is late in life (age 50+) are chosen as biomarkers of aging (A) more often and 450 

have larger regression coefficients when chosen as biomarkers (B), than loci that degrade 451 

earlier in life. Causative loci (red diamonds) are less likely to be selected as biomarkers (C) 452 

than neutral loci in the same genome (blue circles). Of the loci selected as biomarkers (D), 453 

the magnitude of regression coefficients of causative loci is slightly smaller, on average, 454 

than those of neutral loci, at least when causative loci are of fairly large effect (>2%). 455 

Panels A and B show the outcome of a single simulation in which each of the 20,000 loci 456 
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have expected ages of degradation 1+199(i/20,000) for integers i = 0 through 20,000. All loci 457 

are neutral and mortality is determined by Equation (1). Horizontal lines indicate the y-458 

axis value corresponding to the 200 loci in each bin. A degradation time well above human 459 

lifespans indicates a locus with a low probability of degrading prior to death. Each point in 460 

panels C and D shows the mean outcomes of six independent replicate simulations in which 461 

each of the 20,000 loci are either neutral or have a single causal effect size (non-round-462 

number effect sizes are an artifact of making choices using an alternative effect size 463 

metric). Mortality is determined by Equation (2), with the numbers of causative loci (top x-464 

axis C,D) inversely proportional to the effect size of a causal locus (bottom x-axis C,D). In 465 

C  and D, all loci have an expected age of degradation of 75 years. Error bars show 466 

standard errors; markers for causative loci have been offset slightly to the right. 467 

 468 

  469 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 2, 2019. ; https://doi.org/10.1101/624270doi: bioRxiv preprint 

https://doi.org/10.1101/624270
http://creativecommons.org/licenses/by-nc/4.0/


22 
 

 470 

 471 

Figure 3: The mean number of degraded loci per individual when loci cause aging (grey), 472 

or are neutral (dashed black) out of 301 total loci. We use the largest effect size shown in 473 

Figure 2, where the degradation of one causative locus results in a 2.3% increase in 474 

mortality rates in an otherwise non-degraded individual, and all loci have an expected age 475 

of degradation of 75 years. 476 
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 478 

 479 

Figure 4: When phenotypes can accurately distinguish individual mortality within a cohort 480 

of the same age, regression on biological age (here an optimal function of both 481 

chronological age and phenotype) can preferentially choose loci that cause aging (red 482 

diamonds) over neutral loci (blue circles) as biomarkers of aging. As in Figure 4 and the 483 

rightmost markers in Figure 3, here 301 loci of large effect are causative of aging. 484 
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 486 

 487 

Figure 5: The deviation between an individual’s chronological age and predicted age 488 

informs the rate of aging, as measured by the slope of the Gompertz mortality curve (A), 489 

but not the intercept of the Gompertz mortality curve (B). Mortality depends on causal 490 

biomarker loci according to Equation 2. Markers were chosen by regression on 491 

chronological age in a training dataset, then applied to a separate testing dataset of 492 

independent but identically constructed simulations. In A, each individual’s rate of aging 493 

was drawn at birth from a normal distribution with mean 0.0807 and standard deviation 494 

0.00807. The rate of aging 𝛾i of individual i determines the probability of degradation 𝝆i of 495 

that individuals’ loci, where 𝝆𝒊 = 𝟏 − 𝐞𝐱𝐩(𝜸𝒊 𝐥𝐧(𝟏 − 𝝆) /𝟎. 𝟎𝟖𝟎𝟕)	where ρ=1/76, which  496 

gives an estimated age of degradation of 75 years as in Figure 3; all loci are non-degraded 497 

at birth. In B, a number of loci drawn from a Poisson distribution with mean 10,000 were 498 

degraded at birth, making the mean mortality rate at birth of individuals in the top 499 

quartile roughly 17% higher than those of the bottom quartile. To keep the mean mortality 500 

rate at birth m0=e-10 as above, we make a=6.65×10-7; the rate of degradation of loci is 501 
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constant (ρ=1/76) across all individuals. In both A and B, 301 out of 20,000 loci are 502 

causative of aging. 503 

 504 
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