New Results
A flexible simulation toolkit for designing and evaluating ChIP-sequencing experiments
An Zheng, Michael Lamkin, Yutong Qiu, Kevin Ren, View ORCID ProfileAlon Goren, Melissa Gymrek
doi: https://doi.org/10.1101/624486
An Zheng
1Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA USA
Michael Lamkin
2Department of Bioengineering, University of California San Diego, La Jolla, CA USA
Yutong Qiu
1Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA USA
3School of Computer Science, Carnegie Mellon University, Pittsburgh, PA USA
Kevin Ren
4Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA USA
Alon Goren
5Department of Medicine, University of California San Diego, La Jolla, CA USA
Melissa Gymrek
1Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA USA
5Department of Medicine, University of California San Diego, La Jolla, CA USA

Article usage
Posted May 01, 2019.
A flexible simulation toolkit for designing and evaluating ChIP-sequencing experiments
An Zheng, Michael Lamkin, Yutong Qiu, Kevin Ren, Alon Goren, Melissa Gymrek
bioRxiv 624486; doi: https://doi.org/10.1101/624486
Subject Area
Subject Areas
- Biochemistry (13856)
- Bioengineering (10543)
- Bioinformatics (33509)
- Biophysics (17283)
- Cancer Biology (14351)
- Cell Biology (20322)
- Clinical Trials (138)
- Developmental Biology (10964)
- Ecology (16168)
- Epidemiology (2067)
- Evolutionary Biology (20500)
- Genetics (13501)
- Genomics (18780)
- Immunology (13903)
- Microbiology (32448)
- Molecular Biology (13517)
- Neuroscience (70748)
- Paleontology (532)
- Pathology (2219)
- Pharmacology and Toxicology (3771)
- Physiology (5947)
- Plant Biology (12125)
- Synthetic Biology (3400)
- Systems Biology (8225)
- Zoology (1864)