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Abstract 
 
Mass spectrometry-based proteomics enables the high-throughput identification and 
quantification of proteins, including sequence variants and post-translational 
modifications (PTMs), in biological samples. However, most workflows require that such 
variations be included in the search space used to analyze the data, and doing so remains 
challenging with most analysis tools. In order to facilitate the search for known sequence 
variants and PTMs, the Proteomics Standards Initiative (PSI) has designed and 
implemented the PSI Extended FASTA Format (PEFF). PEFF is based on the very 
popular FASTA format but adds a uniform mechanism for encoding substantially more 
metadata about the sequence collection as well as individual entries, including support for 
encoding known sequence variants, PTMs, and proteoforms. The format is very nearly 
backwards compatible, and as such, existing FASTA parsers will require little or no 
changes to be able to read PEFF files as FASTA files, although without supporting any of 
the extra capabilities of PEFF. PEFF is defined by a full specification document, 
controlled vocabulary terms, a set of example files, software libraries, and a file validator. 
Popular software and resources are starting to support PEFF, including the sequence 
search engine Comet and the knowledge bases neXtProt and UniProtKB. Widespread 
implementation of PEFF is expected to further enable proteogenomics and top-down 
proteomics applications by providing a standardized mechanism for encoding protein 
sequences and their known variations. All the related documentation, including the 
detailed file format specification and example files, are available at 
http://www.psidev.info/peff. 
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Introduction 
 
Mass spectrometry (MS) based proteomics has become the most commonly used 
technique for detecting the presence of and measuring the abundance of proteins in 
biological samples1. Although there are many variations, in the most common analysis 
workflows, proteins extracted from a sample are digested into peptides using a protease, 
and the resulting peptide mixture is separated by liquid chromatography in a manner that 
gradually introduces charged peptide ions into a mass spectrometer. As the ions stream 
in, the instrument measures the m/z of these precursor peptide ions, fragments them into 
many smaller ions, and acquires mass spectra of the ensemble of fragment ions, thereby 
creating a digital record of the content of each injected sample2. 
 
The interpretation of the mass spectra thus produced from each sample requires advanced 
software to determine putative peptide and protein identifications, confidence metrics for 
those identifications, and abundance measurements based on the signal intensities3. The 
software available for such processing includes free and open-source packages written by 
researchers in the community, commercial offerings from the instrument vendors 
themselves, as well as software tools from independent companies4. In typical analysis 
strategies the spectra are analyzed by matching their peak patterns to a search space of 
peptide ions that may be present in the sample, either in the form of a database of 
possibly present protein sequences or a library of previously identified spectra. In both 
cases, if the exact combination of peptide sequence, amino acid modifications, and 
charge state is not present in the search space, then the spectrum cannot be correctly 
identified. Several groups have demonstrated the ability to open the search space to 
consider unpredicted modifications5–9, but these strategies generally lead to an overall 
decrease in identifications at a given FDR threshold, so are not widely adopted in bottom-
up proteomics. 
 
Sequence database searching is still the most commonly used workflow, in which a 
search engine , such as Comet or X!Tandem, iterates through a list of input spectra, 
selects from a list of protein sequences a set of peptides that have the same precursor m/z 
within a selected tolerance, and scores each spectrum against a theoretical prediction of 
the fragments produced from each candidate peptide10,11. The most common format for 
this protein sequence database is the venerable FASTA format12, a simple format that 
encodes an identifier, a free-text description, and the sequence for each protein. The 
format is very simple, used by most search engines and downstream processing tools, and 
is exported by nearly every purveyor of protein sequence lists. In cases where a sequence 
search engine does not use FASTA, there is a pre-indexing or pre-processing program to 
transform FASTA files into the needed format. 
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However, the FASTA format has several widely-recognized shortcomings. First, FASTA 
files cannot contain metadata about the collection itself: its origin, its production date, 
key assumptions and parameters used in its production, etc. Second, the description line 
for each entry is unstructured free text into which different file producers insert entry 
level metadata in a variety of ways that resists consistent interpretation by reading 
software packages; even the identifier of a single protein is subject to variations of 
parsing, making the mapping of proteins across different versions of a FASTA file 
difficult. Third, there is no mechanism for annotating the locations and nature of known 
post-translational modifications (PTMs) and sequence variants, which are becoming 
increasingly important in comprehensive analyses of datasets and to describe actual 
proteoforms. The UniProtKB/Swiss-Prot .DAT format does allow for encoding of 
variants and PTMs, but is not standardized or commonly used to inform database 
searching. A few software packages have custom mechanisms for searching for variants 
in knowledge bases (e.g. a second, refined search in X!Tandem13), but none of the 
implemented mechanisms are broadly accepted, much less ratified as a standard. 
 
The Human Proteome Organization14 (HUPO) Proteomics Standards Initiative15,16 (PSI) 
has been developing and ratifying community-based standards for over 15 years17. The 
standards developed by the PSI range from formats18 for MS input19, mass spectrometer 
output20, and output from downstream processing tools21–25. As proteogenomics studies 
become more widespread, interest in PTMs grows, and the available computational 
capacity expands, the deficiencies in the FASTA format have become an acute problem 
that would be well remedied with a community-developed enhanced standard from the 
PSI. All proposed standards are first subjected to the PSI Document Process26, a three-
level process of review that must be completed before any proposal is declared a ratified 
standard. 
 
Here we present a new format from the PSI to address these needs, the PSI Extended 
FASTA Format (PEFF). In this article we first present an overview of the format, a brief 
description of its most salient features, and some example applications. We then describe 
the available PEFF resources, including the full specification, example files, format 
validators, software libraries, viewer applications, search engines that implement it, and 
data providers that already produce it. We finish with a discussion of important 
applications and considerations for this new format. 
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Format Description 
 
The PEFF schema has two main sections as depicted in Figure 1. First is the file header 
section, which provides metadata about the collection itself, including support for 
independently describing several source databases that may be merged within one file. 
This section is absent from FASTA files. In PEFF files, each header line is prefixed with 
a “#” character (ASCII 35) so that FASTA readers -that are able to ignore comment lines 
beginning with “#”- can read PEFF files without software changes. In terms of 
readability, a space following the “#” is preferred, but not mandatory. Second is the 
individual sequence entries section, which appears in a similar pattern as FASTA files, 
albeit with more extensive and explicitly constrained annotation. 
 
A crucial component of the PEFF schema is that a controlled vocabulary is used to 
specify the permitted keys in the key-value pairs encoded in a PEFF document27. This 
ensures that all values for the same concept are stored under the same key across all 
PEFF documents, quite unlike FASTA. There is a mechanism for formally defining 
custom keys to support cases where custom pipelines may wish to implement some non-
standard key-value pairs. Custom keys may be tied to concepts in other controlled 
vocabularies by providing a CURIE (compact URI) to that term. This is generally 
discouraged for publicly released files, but is available for judicious use. The PEFF 
controlled vocabulary keywords are stored in a special branch of the main PSI-MS 
controlled vocabulary28 (https://www.ebi.ac.uk/ols/ontologies/ms), which is already 
widely available and extensively used in extant software and PSI formats. PTMs are 
encoded in PEFF with entries from the Unimod29 or PSI-MOD30 controlled vocabularies. 
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Figure 1. Overview of the PEFF schema. The file header section encodes 
metadata about the file itself and about the one or more sequence databases 
contained in the file. The individual sequence entries section encodes each of the 
individual sequences and the metadata associated with each entry. 
 
The file header section has three main components. First, the preamble indicates the 
PEFF format version number. Second, a series of key-value pairs encodes metadata about 
the origin of the file. Third is a series of one or more key-value pair groups that describes 
each of the one or more constituent databases in the file. For example, a PEFF file may 
contain both neXtProt31, RefSeq32 sequences, and an explicit decoy sequence database in 
the same file and describe their origins individually. 
 
The individual sequence entries section is essentially the same as in a FASTA file with 
the two main exceptions that all sequence identifiers must contain a source database 
prefix as defined in the file header section, and the rest of each description line is 
constrained to be a series of key-value pairs, where the keys are defined in the controlled 
vocabulary. This ensures consistent parsing by all readers that properly implement the 
PEFF specification. Table 1 lists an example (non-exhaustive) set of key-value pairs and 
their interpretation. 
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Example key-value Interpretation 
\PName=Tyrosine-protein kinase receptor The full name of the protein is “Tyrosine-

protein kinase receptor” 
\GName=TYRO3 The source gene name for this entry is 

TYRO3 
\TaxName=Homo sapiens 
\NcbiTaxId=9606 

The taxonomy name associated with this 
entry is Homo sapiens and the NCBI Taxon 
ID is 9606 

\PE=1 The UniProtKB protein evidence code for this 
entry is 1 

\Length=890 The length of the protein entry is 890 amino 
acids 

\Processed=(1|40|PEFF:0001021|signal 
peptide) (41|890|PEFF:0001020|mature 
protein) 

The full length protein undergoes post-
translational processing and amino acids 1-40 
(counting 1 as the first) are separated from 
the rest as a signal peptide, while from 41-890 
is the mature protein component 

\ModResPsi=(681|MOD:00048|O4'-phospho-
L-tyrosine) 

Residue 681 has an annotated PTM in the 
source database as a phosphotyrosine, as 
fully defined as MOD:00048 within the PSI-
MOD controlled vocabulary 

\VariantSimple=(21|L)(68|R) The source database annotates potential 
single amino-acid variants (SAAVs) at 
position 21 to leucine and at position 68 to 
arginine 

Table 1. A set of illustrative example key-value pairs that could appear in the 
description line of a PEFF file. All keys are defined in the PSI-MS controlled 
vocabulary (https://www.ebi.ac.uk/ols/ontologies/ms). 
 
PEFF is primarily designed to encode a set of reference protein sequences and the 
associated collection of annotations on each protein, most commonly in the form of 
potential PTMs and sequence variants. However, any of the constituent databases can be 
defined in a PEFF header as being a database comprising proteoforms. A proteoform is 
defined as any one of the multitude of protein forms that can result from a single gene, 
including sequence variations, PTMs, and processing results33. There have been several 
other efforts to define nomenclatures, ontologies and notations for proteoforms34,35, 
including the recent ProForma36, although the latter focuses more on capturing the results 
of experimental analysis than being a mechanism for encoding the contents of a protein 
knowledge base. 
 
There are two methods in which proteoforms can be defined in a PEFF file: the long 
method, wherein each entry is a different proteoform, and the compact method, wherein 
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each entry defines a basic template and set of interchangeable annotations that may be 
assembled in different combinations to create multiple proteoforms per entry. 
 
In the long method (denoted in each database header via the isProteoformDb=true flag), 
each sequence entry is required to be a single proteoform, where all key-value 
annotations that describe variation must apply to that sequence. For example, if five 
PTMs are listed, all are applicable to that specific proteoform entry. Sequence variation-
defining key-value pairs are discouraged for proteoforms; however, if supplied, they must 
be applied. By using this extension, top-down proteomics and other similar applications 
can create and use a PEFF file of known proteoforms for analysis. 
 
A more compact form is also available via the use of the hasAnnotationIdentifiers=true 
flag in the database header (isProteoformDb=true and hasAnnotationIdentifiers=true are 
mutually exclusive in the same database). In this form, as depicted in Figure 2, each 
sequence entry is a basic template with a set of potential variations, plus a special 
\Proteoform keyword that specifies which of the optional PTMs, sequence variants, 
disulfide bonds, and processing events should be applied to the template in combination 
to create individual proteoforms. In this form, the database may be used by ordinary 
bottom-up applications by ignoring the \Proteoform keyword, and also used by top-down 
applications by automatically expanding the proteoforms based on the listed annotation 
combinations. 
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Figure 2. Simplified depiction of how annotation identifiers can be referenced by 
other annotations to link them, such as for disulfide bonds and for proteoform 
definitions. Each annotation has a non-negative integer identifier, and other 
annotations may link to them. This example (somewhat simplified for clarity of 
presentation) for human insulin encodes: A) PTMs and disulfide bonds that link 
two PTMs; and B) a final proteoform that include two separate processed chains 
that are linked together via disulfide bonds. 
 
 

Resources and Implementations 

 
There are many components that help define PEFF in addition to this article, which 
merely provides a brief overview. Further details about PEFF can be obtained at the PSI 
web page for PEFF (http://www.psidev.info/peff) as well as at the GitHub repository 
page (https://github.com/HUPO-PSI/PEFF), where version-controlled files are managed. 
 
The primary document is the official PEFF Format Specification 
(https://github.com/HUPO-PSI/PEFF/tree/master/Specification). This document has been 
jointly developed by the PEFF designers and subjected to the PSI Document Process in 
conjunction with many of the additional resources described below, prior to final 
ratification. The specification document presents all the details needed to implement a 
PEFF reader or writer successfully. 
 
Accompanying the PEFF Format Specification is a series of example files, including a 
smallest possible valid PEFF file, a series of increasingly complex but human digestable 
examples, and a set of invalid files that can be used to test PEFF reading 
implementations. An important component of the PEFF Format Specification is the PEFF 
validator, which is able to read a PEFF file and report any warnings or errors on its 
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adherence to the specification. The validator is available as a web application or can be 
downloaded. 
 
There is also a Perl library available for download for reading, writing, and modifying 
PEFF files. The Proteomics::PEFF Perl library comes with a tool that enables easy 
editing of PEFF files programmatically. For example, it can convert a FASTA file to a 
PEFF file, and it can add a series of additional PTMs or variants to individual proteins to 
an existing PEFF file, based on a simple tab-separated list of changes to make. The 
phpMs37 toolkit (http://pgb.liv.ac.uk/phpMs/) also supports the viewing and creation of 
PEFF files. Pyteomics 4.038, a proteomics software library for the Python language, 
supports PEFF reading. Implementations in other languages are underway. An up-to-date 
summary of implementations is available at http://psidev.info/peff. 
 
The neXtProt knowledge base has been exporting PEFF files of its builds since 2015. 
However, it should be noted that the exports prior to February 2019 did not conform to 
the final PEFF Format Specification, but rather to earlier draft versions of it, which are 
subtly different. This is a natural outcome of the standards development process wherein 
neXtProt exported their data according to the active draft of the PEFF Format 
Specification to enable software testing of the format.  UniProt39 has implemented an 
export of its variation data using PEFF via the Proteins API40 
(https://www.ebi.ac.uk/proteins/api/doc/). 
 
The ultimate utility of PEFF will be in its implementation in proteomics search engines 
and downstream analysis and visualization software. As of this writing, the Comet search 
engine41 has been adapted to read PEFF files (in addition to FASTA files) and process 
input MS data using the encoded variants and PTMs. The Trans-Proteomic Pipeline42–44 
(TPP) will soon implement PEFF in its downstream validation and visualization of data 
searched with Comet using PEFF input. The ProteoMapper45 tool 
(http://www.peptideatlas.org/map/) can search a PEFF file for a set of input peptide 
sequences, taking into account the protein variations encoded in PEFF. Submission of 
datasets to ProteomeXchange46,47 supports the inclusion of the reference database used. 
Currently this usually means FASTA files; going forward, PEFF files should be similarly 
submitted or cited when they are used as a reference. A complete summary of supporting 
software and resources is available and will be maintained as tables of producers and 
consumers of PEFF at http://www.psidev.info/peff. 
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Discussion and Conclusions 
The choice to expand on the basic structure of the FASTA format has not been made 
without dissenting opinions during the design of PEFF. Porting an existing FASTA 
parser to a PEFF parser will be quite easy for the most basic features. However, as the 
more advanced features of PEFF are parsed, the job of parsing a complex free-text format 
becomes considerably more difficult. Alternative encoding strategies such as a single 
XML (Extensible Markup Language) file and a side-car annotations file that is separate 
from a FASTA file were seriously considered. Parsing of complex sequence annotations 
from a PEFF-like XML format in general would be easier via the use of existing XML-
parsing frameworks, but this does require completely new parsers and additional software 
dependencies. The PSI philosophy over the years has generally been to avoid side-car 
implementations since these side-car files have a tendency to become separated from 
their siblings, thus causing information loss. In the end, the predominating opinion that 
PEFF should retain the FASTA format’s basic structure and thereby should enable a 
modest upgrade path for existing FASTA parsers rather than require completely new 
parsers prevailed. 
 
Standard file formats are only as effective at the software that implements them. 
However, this precept can often be a chicken-and-egg problem in that it is often difficult 
to finalize a standard until it has been well tested by several implementations, and yet it is 
difficult to convince software developers to implement a format that has not yet been 
finalized. PEFF has finally achieved critical mass with one major search engine 
implementation (Comet) several major exporters (neXtProt and UniProt) supporting 
PEFF, and emerging research citing the use of PEFF in the workflow48. As a key point, 
several software libraries now support PEFF. Additionally, the Protein Prospector44 
search engine is currently in the process of implementing PEFF support (after previously 
supporting similar functionality with ad hoc formats). Therefore, we expect the number 
of implementing resources to expand rapidly once PEFF has been ratified by the PSI. 
  
One of the driving applications for PEFF is proteogenomics49, in which the variations 
unique to each sample from each distinct individual are important to the data analysis. In 
such scenarios, genomic sequencing, RNA-seq, or ribosome profiling (e.g., using 
PROTEOFORMER50,51; https://github.com/Biobix/proteoformer) will determine the 
variations unique to the sample, and that information will be used to create a custom 
sequence database specifically for that sample. PEFF provides an ideal format for this 
workflow. PEFF provides support for analysis workflows where nucleotide sequences are 
used as the primary sequence information. Each database within a PEFF file can be 
defined as an amino acid database or a nucleotide database. Molecule type can be mixed 
within a file, but not within one database. It is similarly intended that PEFF will enable 
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top-down analysis workflows, as we better understand the full complement of 
proteoforms detectable in biological samples. In this context, the previously mentioned 
notation ProForma36 has been recently developed by the Top Down Proteomics 
Consortium. Proforma uses a different style of notation that embeds the annotations into 
the sequence. We have not incorporated this format into the PEFF sequences component, 
since the proteoforms can equally be described in the PEFF format, and it is preferable 
not to offer several ways to encode the same information, since this increases the 
complexity for parsers.   
 
The PSI is an open consortium of interested parties, and we encourage participation and 
critical feedback, suggestions and contributions to PEFF and other PSI formats via 
participation at PSI annual workshops, conference calls, the GitHub collaboration 
platform, and PSI mailing lists (see http://www.psidev.info/). 
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