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ABSTRACT

Properties of synaptic release dictates the core of information transfer in neural circuits. Despite
decades of technical and theoretical advances, distinguishing bona fide information content from
the multiple sources of synaptic variability remains a challenging problem. Here, we employed a
combination of computational approaches with cellular electrophysiology, two-photon uncaging of
MNI-Glutamate and imaging at single synapses. We describe and calibrate the use of the fluorescent
glutamate sensor iGluSnFR and found that its kinetic profile is close to that of AMPA receptors,
therefore providing several distinct advantages over slower methods relying on NMDA receptor ac-
tivation (i.e., chemical or genetically encoded Calcium indicators). Using an array of statistical
methods, we further developed, and validated on surrogate data, an expectation-maximization al-
gorithm that, by biophysically constraining release variability, extracts the quantal parameters n
(maximum number of released vesicles) and p (unitary probability of release) from single-synapse
iGluSnFR-mediated transients. Together, we present a generalizable mathematical formalism which,
when applied to optical recordings, paves the way to an increasingly precise investigation of infor-
mation transfer at central synapses.

I. INTRODUCTION

Our understanding of the factors that contribute to
the stochastic and variable process of synaptic trans-
mission has improved steadily over the last few decades
[10, 28, 40]. It is now generally agreed that, at most glu-
tamatergic synapses, quantal release does not saturate
postsynaptic receptors [26, 27, 32, 33, 49] and that vari-
ability in trial-to-trial neurotransmission arises primarily
from differences in the profile of glutamate released into
the synaptic cleft [40]. Several presynaptic mechanisms
have been proposed to account for such amplitude fluc-
tuations – uneven packaging of glutamate into synaptic
vesicles, differences in release location within a synaptic
terminal, diffusion process in the synaptic cleft and mode
of exocytosis [12, 19, 41, 52]. As an additional factor,
multiquantal release has been observed at many central
synapses [1, 13, 15, 22, 35, 42, 50], where two or more vesi-
cles are released quasi simultaneously at single synapses
in response to the same electrical stimulus. Since each
of these sources of variability impact the transmission of
information differently, it is therefore important to parse
out the relative proportion of different sources of vari-
ability at central synapses.

Several experimental methodologies have been devel-
oped to monitor transmission at single synapses [17, 18,
30, 35, 42]. Here we describe an optical-based technique
and provide a number of validation and calibration ex-
periments for the intensity-based optical glutamate sen-
sor, iGluSnFR [31], for optical quantal analysis at central
synapses. We further provide a detailed theoretical and
quantitative analysis for estimating fundamental features

of quantal glutamate release. Leveraging experimental
and statistical techniques, combined with a theoretically
sound model, we present a formalism that is well poised
to parse out the structure of variability and information
content at central synapses.

II. RESULTS

To study quantal features of glutamate release at
central synapses, we turned to a genetically encoded
intensity-based glutamate sensing florescent reporter
(iGluSnFR). The versatility and usefulness of iGluSnFR
as an optical reporter of glutamate release has been
demonstrated in both microscopic and macroscopic brain
compartments [9, 31, 36, 37, 53], although it has rela-
tively seldom been used to study features of glutamate
release at single spines [45] . To this end, we introduced
iGluSnFR along with the morphological marker mCherry
to CA1 neurons in hippocampal organotypic slices us-
ing biolistic transfection several days prior to the exper-
iments (Figure 1A) [45, 46]. A detailed description of
these procedures is available in [46]. This overall ap-
proach was favoured since it allows for sparse transfec-
tion thereby allowing us to resolve optical signals from
single spines with high contrast. Transfected neurons
were imaged by two-photon microscopy using an excita-
tion wavelength of 950 nm (Figure 1B) which we found
to allow detection of both the iGluSnFR and mCherry
fluorescent signal simultaneously. Dendritic spines in the
apical dendritic arbor of transfected CA1 neurons were
targeted for optical quantal analysis experiments. These
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contacts are likely the postsynaptic targets of Schaffer’s
collateral axons.

A. iGluSnFR-mediated monitoring of endogenous
glutamate release

Pyramidal neurons were identified by their localiza-
tion in the slice and morphology. Namely imaging tar-
geted to the CA1 region and we sought the clear presence
of basal and apical spinous dendritic arborisation. The
morphological identification was typically carried out by
solely monitoring mCherry fluorescence. However, the
baseline iGluSnFR fluorescence was typically fairly high,
homogenously distributed across neuronal compartments
and spines were readily observable, thereby readily al-
lowing for broad cell-type identification. A typical ex-
periment began by randomly surveying the apical arbor
of an iGluSnFR-expressing cell for dendritic spines that
exhibit a time-locked fluorescent responses to electrical
stimuli delivered via a glass pipette positioned in stratum
radiatum. In a few experiments, Alexa 594 was included
in the internal solution of the stimulating electrode for
direct visualization (Figure 1B), however, in the major-
ity of experiments this dye was omitted and the stimu-
lating electrode was maneuvered in the slice under visual
guidance solely using differential interference contrast mi-
croscopy.

The optical detection of synaptic events that are emi-
nently short-lived, spatially distributed and scarce is in-
herently challenging and deserves attention. In princi-
ple, imaging in frame scanning mode would be ideal to
monitor synaptic fluorescent events from large dendritic
regions, but it is hindered by limited signal to noise ra-
tio and temporal resolution (Figure 1C). We thus carried
out line scan experiments wherein multiple neighboring
spines were monitored simultaneously (Figure 1D). This
approach offered the ability to survey multiple spines
at once with a scanning frequency (>500 Hz) sufficient
to visually identify rapid glutamate transients. To cir-
cumvent the relative paucity of synaptic events due to
the probabilistic nature of release, paired-pulse electri-
cal stimulation (50-100 ms inter-stimulus interval) were
delivered to increase the likelihood of release. Lastly,
a realistic range of stimulus intensities was determined
by parallel and historical whole-cell electrophysiological
recordings by the same experimenter. Once a respon-
sive spine was identified, a short line scan was redrawn
through the spine and its parent dendritic compartment
to capture the spatial profile of glutamate release. The
electrical stimulation was then gradually reduced to the
minimal intensity that still evoked time-locked respon-
siveness. This last step was taken in order to reduce the
potential of signal contamination by glutamate spillover
from neighbouring synapses. The identified spines rou-
tinely stayed responsive to electrical stimulation for long
durations (> 1 hour), opening the door to the repetitive
low frequency sampling methodology required for build-

ing a dataset sufficient for optical quantal analysis.

B. Extraction of regions of interest

Spatial discrimination of iGluSnFR signals emanating
from either spine or dendritic compartments was achieved
by analyzing the intensity profile across the line scan,
which was drawn orthogonal to the parent dendrite. The
trough between spine and dendrite peaks was used to
split the signal of the line scan into the two compart-
ments (Figure 1E) to isolate spine- and dendrite-specific
iGluSnFR transients (Figure 1D, right). Larger ampli-
tude iGluSnFR transients were generally observed in the
spine compartment, indicating that the density of glu-
tamate release was mostly concentrated at the spine.
When present, the dendritic fluorescence transients were
of smaller amplitudes and co-varied with that recorded
from the spine compartment, suggesting that dendritic
signals were likely the result of spillover from the parent
spine rather than from release from a distinct, neigh-
bouring synapse (Figure 1F). As such, we used only the
spine compartment signal for all subsequent analyses. Fi-
nally, and consistent with the probabilistic release of glu-
tamate vesicles at these synapses, release failures were
readily observed (Figure 1G). These results demonstrate
that iGluSnFR is a useful optical reporter for single-spine
quantal analysis.

C. Glutamate vs post-synaptic calcium sensors for
opto-quantal analysis

A difficulty in unambiguously and routinely study
neurotransmitter release from a single synapse arises
from the lack of spatial resolution afforded by electro-
physiological recordings. By providing spatial informa-
tion, optically-based approaches for quantal analysis of-
fers promise of a solution to this problem, yet are lim-
ited by temporal resolution generally poorer than that
afforded by cellular electrophysiology. By using two-
photon uncaging of MNI-glutamate to precisely control
the amount and timing of glutamate released onto sin-
gle spines, we next sought to examine the kinetic perfor-
mances of iGluSnFR by a side-by-side comparison with
other commonly used reporters of glutamate release for
quantal analysis. Specifically, we sought to compare
electrophysiological monitoring of synaptic AMPAR ac-
tivation and optical recordings of quantal analysis us-
ing NMDAR-mediated calcium influx by calcium indica-
tors. Since optical recordings of calcium influx using the
GCaMP family of genetically encoded calcium-indicators
are becoming increasingly popular, we turned our atten-
tion to GCaMP6f, a fast variant of the GCaMP family.

We obtained whole-cell recordings from CA1 neurons
transfected with either iGluSnFR of GCaMP6f (Figure
II CA) and voltage-clamped the cell at -70 mV. While
continuously imaging the spine of interest (at ≈ 715
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FIG. 1. Optical detection of glutamate release at single synapse using an genetically encoded glutamate sensor A Biolistic
transfection of CA1 hippocampal neurons with the intensity based glutamate sensor, iGluSnFR. B Experimental setup. A glass
electrode filled with a fluorescent dye (Alexa 594) was positioned in the stratum radiatum adjacent to an iGluSnFR-expressing
cell and was used to deliver electrical stimuli to the slice to evoke endogenous glutamate release. Neurons were typically
transfected with both iGluSnFR and mCherry and expressed variable amount of the fluorescent proteins. C A comparison of
iGluSNFR transients recorded at the same spine using either a frame-scan (spatial resolution > time resolution) or a line-scan
(time resolution > spatial resolution) configuration. The fastest frame scan sampling rate of our optical system is 65 ms
per frame, whereas rates of ≈ 1.4 ms perline were typically obtained in line-scan mode. D A line scan experiment is shown
where multiple adjacent spines are surveyed simultaneously for evoked iGluSnFR transients. Shown at right is the time series
resulting from a continuous line scan before and after an electrical stimulation. Spines 3 and 4 showed responsiveness to the
electrical stimulus in this trial. E Isolation of spine and dendrite specific signals from a line scan is achieved by averaging pixels
in their respective compartments, which was inferred by the presence of a dip in the mCherry signal. F The amplitude of
spine iGluSnFR signals (same spine as in panel D) plotted against the corresponding amplitude of dendritic signals. A linear
regression results in a significant positive correlation (slope 0.21, adjusted R-squared = 0.496). G Clearly distinguishable spine
successes and failures demonstrate the probabilistic nature of vesicular release at these synapses.

Hz), a second laser line tuned to 720 nm delivered a 1
ms light pulse to the tip of the spine in the presence
of MNI-Glutamate (2.5mM), to induce uncaging-evoked
optical transients recorded simultaneously with EPSCs
(Figure II CB-C). In response to repetitive presentation
of nominally constant concentration of glutamate by 2P
uncaging at single synapses (Figure II CD), we com-
pared the performance of 3 distinct reporters of gluta-
mate transients at single synapses: i) iGluSnFR tran-
sients; ii) GCaMP6f transients (i.e., NMDAR-dependent
calcium influx) and, iii) AMPAR activation (uncaging-
evoked EPSCs; uEPSCs). We found that the trial-to-
trial variability of the iGluSnFR responses was remark-
ably low, even lower than that of uEPSCs (Figure II CE).
In keeping with the more complex and convolved nature
of the NMDAR- and calcium-mediated optical detection
of glutamate release, the GCaMP6f signal displayed the
largest variability of the 3 approaches (Figure II CE).

iGluSnFR transients also displayed much faster decay ki-
netics (Figure II CF) and rise time (Figure II CG) com-
pared to GCaMP6f (p<0.001, unpaired student’s t-test),
and were remarkably close to the kinetics of uEPSCs.
The kinetic properties of iGluSnFR in response to gluta-
mate uncaging therefore favorably compares to those of
the calcium-sensitive organic dyes Alexa 4FF (Lee et al.,
2016) and Oregon Green BAPTA-1 (unpublished obser-
vations) that are significantly slower. The fast kinetics
of iGluSnFR enable discrimination of successive stimulus
peaks at higher stimulus frequencies (50-100 ms Inter-
stimulus interval; Figure II CH) without the need of sig-
nal deconvolution. Moreover, neither the amplitude nor
the kinetics of the iGluSnFR responses were affected by
the competitive AMPA receptor antagonist NBQX (n =
4, Figure II CI), indicating that iGluSnFR-based quantal
analysis could be performed in the presence of a glu-
tamate receptor antagonists. This possibility may offer
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some flexibility to avoid specific experimental complica-
tions, such as minimizing excitability for experiments in
highly recurrent networks or minimize plasticity induc-
tion by repetitive and prolonged stimulation paradigms.
Altogether, the iGluSnFR method for quantal analysis
offers more experimental flexibility and faster kinetics
than that afforded by NMDAR-mediated Calcium influx
detected by GCaMP6f, with a temporal resolution that
nears that of cellular electrophysiology.

D. Biophysics of glutamate release variability

The goal of quantal analysis is to infer release proper-
ties of glutamate release from a distribution of recorded
release magnitudes. Quantal analysis of synaptic release
has been performed for decades and the formalism has
evolved and adapted as new and improved recording tech-
nologies were developed. For didactic purposes, we re-
visited here some of the basic assumptions commonly
held for performing quantal analysis of glutamate release
events at single synapses. We started exploring the most
appropriate continuous distribution to describe the in-
herent variability expected of a glutamate quantum. Our
aim was to derive from the biophysical features of synap-
tic vesicles a mathematical description of the expected
distribution of glutamate release amplitudes, along with
their expected variability.

Based on previous theoretical studies, we expect that
the variability of inner vesicular volumes (Figure 3A) will
be a potent determinant of the variability in the amount
of glutamate molecules per quantum [4]. What variabil-
ity of glutamate release do we expect from fluctuations
in vesicle diameters only? In order to find this, we first
constrain the concentration of glutamate within synaptic
vesicles to be constant across the many synaptic vesicles
of a given neuron. Next, we assume faithful release of a
single vesicle and that the relative location and loading of
vesicles does not introduce a significant amount of vari-
ability in the activation of post-synaptic receptors. We
will revisit these assumptions sequentially as we assemble
the mathematical synapse model.

Electron microscopy studies have shown that the vari-
ability in vesicle diameters at hippocampal synapses is
normally distributed. Using the measurements obtained
from one such study (mean vesicle diameter 38.7 nm,
CVd = 0.13 [38]) we generated a simulated distribution
of 10,000 inner vesicle diameters (Figure 3B) and a corre-
sponding distribution of the inner vesicle volumes (Figure
3C), assuming the shape of synaptic vesicles is approxi-
mated by a sphere. Inner vesicle diameters and volumes
were calculated by first subtracting the thickness of the
plasma membrane (12 nm [38]). This volume distribu-
tion can be readily calculated by a change in variable of
the diameter distribution [2, 4]. In line with the cubic
relationship between volume and diameter, the resulting
distribution (Fig. 3C) is non-Gaussian as it displays an
important rightward skew.

To compare the possible distributions of volumes em-
anating from a range of experimentally derived vesicular
diameter, we explored a set of continuous distributions
(normal, gamma, Weibull, lognormal) that could accu-
rately describe the skewed distribution of inner vesicle
volumes simulated. Using the Bayesian Information Cri-
teria (BIC) as a scoring metric, we could rank the distri-
butions with their degree to which they fit the simulated
distribution (Figure 3D). We found that the gamma dis-
tribution provided the best approximation of the empir-
ical distribution of vesicle volumes, p(v), followed by the
Weibull, lognormal, and finally the normal distribution.
This finding is intriguing when we consider that many
previous studies of quantal analysis have reported using
a Gaussian mixture model of release events [21, 23, 29],
although at least one study has used skewed distributions
[2] and at least one study a gamma distribution [6].

The gamma distribution is described by two parame-
ters: a shape parameter γ and a scale parameter λ and it
is expressed in terms of the gamma function Γ(·). When
used to approximate the distribution of vesicle volumes
arising from normally distributed diameters, we write

p(v) ≈ g(v|γv, λv) =
vγv−1e−v/λv

λγvv Γ(γv)
(1)

where λv and γv are the parameters for the volume distri-
bution. These paremeter values can be found by match-
ing the first two moments of simulated (Fig. 3) and theo-
retical (Eq. 1) distributions. Equation 1 has a right-skew
controlled by the parameter γv. Conveniently, its mean
(E[v] = γvλv), its variance (V ar[v] = γvλ

2
v), its skew-

ness (skewness = 2/
√
γv) and its coefficient of variation

( CVv=1/
√
γv) are simple expressions of these param-

eters. Also of considerable practicality, the addition of
two independent gamma-distributed variables results in
a random variable that is itself gamma-distributed with
shape parameter equal to the sum of the shape parame-
ters. As pointed out by Bhumbra and Beato (2013) [6],
these properties allow for a clearer treatment glutamate
release variability without explicitly compromising the
validity of the gamma-release model.

To relate the parameters of the gamma distribution
with vesicle dimensions, we calculated the expected range
of γv and λv as a function of the mean vesicle diame-
ter (µd, Figure 3E) and diameter coefficient of variation
(CVd; Figure 3F) for simulated vesicle volume distribu-
tions. The shape parameter is unaffected by changes in
mean diameter, but the scale parameter increases nonlin-
early with increasing diameters. In addition, the shape
parameter decreases and the scale parameter increases
when the CV of vesicle diameter increases. It is therefore
possible to interpret an increase of the scale parameter
as an increase in the mean vesicle diameter, but only if
the shape parameter shows no concomitant changes.

What are the theoretical predictions of vesicle volume
variability for optical measurements of cleft glutamate?
Using the mean diameter µd and the variability of diame-
ters CVd from electron microscopy recordings, we predict
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FIG. 2. Features of iGluSnFR-mediated
responses. A Whole-cell recording of
an IGluSnFR-expressing CA1 neuron.
B Optically-evoked iGluSnFR transients
were generated at a single spines by two-
photon uncaging of MNI-glutamate. A
continuous line scan was imaged at 950 nm
while a second laser line tuned at 720 nm
was used to deliver the uncaging events (1
ms; red arrow). C Spine iGluSnFR flu-
orescence transients from 10 consecutive
stimuli are displayed on the right panel,
along with the corresponding uncaging
evoked EPSCs. D A kinetic compari-
son of iGluSnFR and GCaMP6. In re-
sponse to an identical 1 ms light pulse
used to uncage MNI-glutamate at a sin-
gle spines, the decay (F) and rise (G) ki-
netics of iGluSNFR transients were much
faster than calcium transients recorded
from GCaMP6f-transfected neurons, but
still slower than corresponding uncaging-
evoked excitatory postsynaptic currents.
H The rapid kinetics of iGluSNFR enables
peak-detection at stimulation frequencies
that are suitable for studying synaptic fa-
cilitation and depression. I NBQX, an an-
tagonist of AMPA-type glutamate recep-
tors, has no effect on the amplitude or ki-
netics of evoked iGluSnFR transients (n =
50 stimuli in each condition; p > 0.05 in all
cases, paired students t-test) and can be
administered during optical quantal anal-
ysis to dampen plasticity that might be
induced by repetitive sampling. Time to
peak (after stimulus) was used to quan-
tify rise times in this scenario rather than
the 20-80% rise time method used previ-
ously on uncaging-evoked iGluSNFR tran-
sients (G) since a subset of evoked tran-
sients with small amplitudes were signif-
icantly impacted by optical noise leading
to misleading measurements using the 20-
80% rise time method.

λv = 0.15 and γv = 6.8. Importantly, these parameters
give rise to a variability of volumes CVv of 0.38. In the-
ory, unequal loading, diffusion and observational noise
should increase the coefficient of variation once we con-

sider the glutamate reported on the post-synaptic mem-
brane instead of vesicle volumes. Since these factors
are likely to be captured by another skewed distribution
[6, 8, 19] such as the gamma distribution, it is appropri-

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 3, 2019. ; https://doi.org/10.1101/624692doi: bioRxiv preprint 

https://doi.org/10.1101/624692
http://creativecommons.org/licenses/by-nc/4.0/


6

ate to use a gamma distribution to capture the total vari-
ability of univesicular releases. To consider a possible dis-
crepancy between the variability of univesicular releases
and that of vesicle volumes, we use γ and λ to parame-
terize the distribution of univesicular releases, not to be
confused with the parameters of the theoretical volume
distribution γv and λv. In fact, since additional source
of variability can only increase the CV, our γv should
be considered an upper bound on γ. To summarize, we
derived biophysical constraints for the parameters of a
gamma-distributed set of univesicular glutamate release
events (UVR) using previous measurements of the distri-
bution of inner vesicular volumes and the assumption of
equal glutamate concentration across vesicles.

E. Observational error and iGluSNFR transduction

In principle, the experimental readout expected from
the non-uniform distribution of cleft glutamate will arise
in part from the cubic transform outlined above but
it can be corrupted by loading, diffusion and by non-
optimality of the iGluSnFR signal transform. In order
to begin addressing the issue of iGluSnFR transform, we
sought to experimentally interrogate as directly as pos-
sible the relationship between the quantity of glutamate
release at single spines and the amplitude of iGluSNFR-
mediated transients. By varying the amount of gluta-
mate released onto dendritic spines through step-wise in-
crements in uncaging laser power during simultaneous
optical and electrophysiological recordings (Figure 3E),
we found that the relationship between uncaging laser
power and iGluSnFR amplitude was linear (Figure 3F)
within the expected physiological range of glutamate re-
lease, as determined by the average amplitude of uEPSCs
[3, 25, 45, 46]. Thus, the iGluSNFR-mediated optical sig-
nal appears to linearly report glutamate concentration.

We then estimated a convolved metric of observa-
tional error CVopt to be 0.15, by measuring the vari-
ability of the iGluSNFR transients upon presentation
of nominally fixed amounts of glutamate concentrations
following repetitive uncaging at a fixed laser intensity
(around 30 mW; Figure II CE) ; while uEPSC ampli-
tudes were within an expected physiological range (Fig-
ure 3E). At most, adding this measurement noise brings
the combination of diameter and optical variability to√
CV 2

v + CV 2
opt = 0.40. The formalism outlined above

therefore predicts the distribution of optical signals when
glutamate is released from a presynaptic terminal. We
next considered the variability imposed by the stochastic
nature of vesicle releases.

F. Release failures

A large part of the variability is attributed to the
stochastic failure of vesicle release [11] upon action po-

tential arrival. To formally include this process in our
predicted distribution of optical signals, we considered a
mixture model wherein we stochastically sampled from
one of many independent sub-distributions, which are
called components. Since in certain conditions, mul-
tiple vesicle release (MVR) occurs at central synapses
[13, 15, 35, 50], we consider a MVR model for which uni-
vesicular release (UVR) is a special case. When n vesi-
cles are docked and ready to be released and when each
of these vesicles is released independently with proba-
bility p, the number of vesicles released will follow the
binomial distribution. At times, we will expect that all
vesicles have failed to release, in which case we will sam-
ple from the failure distribution. Assuming a Gaussian
measurement (here called optical) noise for the failure
distribution, we obtain the gamma-Gaussian mixture

p(x) = (1− p)nG(x|0, σ2
opt) +

n∑
k=1

pk(1− p)n−kg(x|kγ, λ)

(2)
where σ2

opt is the variance of the optical noise, G(x|µ, σ2)
is a Gaussian distribution and x is an observation of cleft
glutamate here in units of fluorescence ∆F/F0 but could
be generalized to measures of post-synaptic current am-
plitudes. In Eq. 2, k ranges from 1 to n and refers
to the possible number of vesicle released. The bino-
mial coefficient pk(1 − p)n−k establishes the probability
of observing k vesicles, while each time that k vesicles
are released, the cleft glutamate is obtained as a sample
from a gamma distribution g(x|kγ, λ) with a shape pa-
rameter corresponding to k times the univesicular shape
parameter γ.

We make three observation on this gamma-Gaussian
mixture. Firstly, we distinguish the vesicular release
probability p from the probability of any vesicle being
released P = 1 − (1 − p)n. Secondly, the mean and the
variance of this distribution now depend on the maxi-
mum number of vesicles released n, namely µ = npγλ and
σ2 = σ2

opt(1−p)n+λ2γnp (1 + γ(1− p)). Lastly, it can be
useful to analyze the measured variability, CV , in terms
of the variability of univesicular releases CVUVR = 1/

√
γ,

the variability due to observational error σopt and the
variability of a binomial process CV 2

bin = (1− p)/np. In
this way we can parse the variability in three terms

CV 2 =
σ2
opt(1− p)n

(npγλ)2
+

1

np
CV 2

UVR + CV 2
bin. (3)

This expression allows us to parse out the variability in
terms of distinct sources.

Overall, for the experiments described in Fig. 1, the
gamma-Gaussian mixture should capture the variability
of glutamate-dependent optical events originating from:

1. Optical: various optical measurement noise,

2. Binomial: the stochastic behaviour of releasing n
vesicle independently,
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FIG. 3. Modelling Synaptic Glutamate Transients Following Vesicle Release. A A schematic description of the measurements
and calculation used to infer synaptic vesicle volumes. This analysis was based on the assumptions that: i) the distribution of
synaptic vesicle diameters is uniform and; ii) the shape of a synaptic vesicle is roughly spherical. B A theoretical distribution
of synaptic vesicle diameters using electron microscopy measurements described in Qu et al. 2009 (outer vesicle diameter =
38.7 nm; CV = 0.13; n = 10,000 vesicles, [38]). The inner diameter of SVs was calculated by subtracting the thickness of
the vesicular membrane (2 x 6 nm). C A distribution of the inner volume of SVs assuming that each is approximated by the
volume of a sphere. D Fitting of various continuous distributions to the modeled volume distribution, ordered in the legend
based on the Bayesian Information Criteria (BIC). E iGluSnFR transients generated at a single spine by two-photon glutamate
uncaging at different uncaging laser powers (mW = milliwatts of power after the objective). E A positive linear relationship
between uncaging laser power and the amplitude of iGluSNFR transients at a single spines (Adjusted r2 = 0.997) indicates
that the transduction is linear within this range. G-H Thoertical relationship between the parameters of a gamma distribution
and the properties of the vesicle dimensions. Shape and scale parameter values are shown against the mean vesicle diameter
for CVv = 0.13 (G) and as a function of CVv for mean vesicle diameter of 38.7 nm (H).

3. Unitary: release variability associated with each
vesicle release.

The latter comprises variability from vesicle sizes, loading
and diffusion. It has a total of five parameters: σ2

opt the
variance of the optical noise, n the number of vesicles, p
the probability of each vesicle being released, λ the scale
and γ the shape parameters of the gamma distribution.

G. Inferring release parameters from quantal peaks

An intuitive approach to discriminate release events
from failures lies in classifying a trial as a failure of re-
lease if the observed peak fluorescence is less than twice
the standard deviation of the optical noise, and success
otherwise (Fig. II FA). From the distribution of success
amplitudes, one then extracts the mean and coefficient
of variation, called potency and CVsuc, respectively. It
is not immediately clear, however, how false positives
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FIG. 4. Dependence of success distribution on synap-
tic release properties. A Peak amplitude probability in
the univesicular release model. All peak amplitudes oc-
curring below the detection threshold (vertical dotted
line) are classified as failures. The underlying distri-
bution of successes (dashed black curve) shows a small
portion of false negatives. B Peak amplitude probabil-
ity in the multivesicular release model with n = 2 vesi-
cles. The distribution underlying one- and two-vesicle
released are shown as dashed black curves. In A-B
the probability distributions are drawn as histograms
with bin size of 0.01. The mean amplitude of successes
(potency) is shown as a function of the C the release
probability for fixed shape (γ = 2) and scale (λ = 0.15)
D as a function of the shape paramater γ for fixed re-
lease probability (p = 0.65) and scale (λ = 0.15) and E
as a function of the scale parameter λ for fixed release
probability (p = 0.65) and shape (γ = 2). The CV of
successes is shown as a function of F the probability of
release, G the shape parameter, and H the scale pa-
rameter. In C-H, three curves are shown for n = 1, 2, 3
vesicles. The dashed curve (black) shows the potency
under the univesicular model in the absence of optical
noise and with a detection threshold at zero.

and false negatives arising from a thresholded detection
method influence the estimates of potency and CVsuc. In
this section, we use computer simulations to determine
the bias introduced by optical noise on these measures.

To quantify the bias arising from classification errors,
we generated surrogate amplitudes and calculated the po-
tency and CVsuc using a threshold corresponding to two
standard deviations of the optical noise (Fig. II FA,B).
We compared these estimates to potency and CVsuc cal-
culated without classification errors. We found that for
γ = 2 and λ = 0.15, classification errors leads to an
over-estimation of the potency for all release probabili-
ties (Fig. II FC). This overestimate was restricted to the
lower range of shape-parameter (Fig. II FD) and scale
parameter values(Fig. II FE). These biases are overall
relatively small, but the effects of optical noise are more
dramatic on the calculation of CVsuc. Given γ = 2 and
λ = 0.15, we found that CVsuc is drastically underesti-
mated for all p (Fig. II FF). This underestimate arises in
a range of shape and scale parameters in the low range
(Fig. II FG-H). In the case of threshold classification of
successes and failures, we conclude that CVsuc will be
heavily underestimated when the skewness is noticeable
and the quantal size (γλ) is small.

Next we investigated the consequence of skewed dis-
tribution on the identification of quantal parameters n
and p. Common approaches to estimate quantal param-
eters are based on the identification of quantal peaks
[21, 23, 24, 29]. These approaches assume that the obser-
vation of a peak in the release-amplitude histogram can
be read off as a quantal mode, an assumption that is of-
ten difficult to justify [14, 34, 51]. Peak identification can
be even more problematic when the release components
show an important skew. Indeed, we noted that mixtures

of skewed distributions rarely show quantal peaks (Fig.
5). For instance, a gamma-Gaussian mixture with n = 2
will transition from the absence of quantal peaks (Fig.
5A) to the presence of quantal peaks (Fig. 5B) only if the
skewness of the components is reduced beyond the range
predicted from biophysics (Fig. 5C). These observations
extend the limitations previously raised [14, 34, 51] and
shows that analysis of quantal peaks is problematic es-
pecially when the distribution of univesicular release is
skewed or only for a very narrow range of release prob-
ability. Since we expect a significant skew from known
vesicle diameters (Fig. 3), we sought a different method
for extracting release properties.

H. Inferring release properties using likelihood
maximization

Maximizing the likelihood function provides an ap-
pealing alternative to feature-based approaches [6, 43]
or quantal-peaks approaches [24]. This approach does
not rely on a trial by trial classification of successes and
failures. Instead, the task is to find the set of param-
eters (n, p, γ, λ, σopt) that maximize the probability
of observing all recorded amplitudes given our gamma-
Gaussian model. In the case of the likelihood written in
Eq. 2, there is no guarantee that only one such maximum
exists, which means that it can be difficult to find the
global maximum. Likelihood maximization algorithms
can greatly help in solving this type of tasks.

For our problem, the Expectation-Maximization (EM)
algorithm appears a natural choice since it was devel-
oped to improve parameter inference in mixture models
[16]. The EM algorithm has been used previously to in-
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FIG. 5. Quantal peaks are rarely apparent in mixtures of skewed distributions. A Peak amplitude probability density function
(green curve) of the gamma-mixture with n = 2 vesicles, a biophysical skewness γ = 6 and release probability p = 0.6. No dip
is apparent between the individual components (dashed curves). B Peak amplitude distribution (green curve) of the gamma-
mixture model with reduced skewness, γ = 10. A dip (indicated) can be observed between the quantal peaks (dashed curve). C
Phase portrait of the presence, or absence, of a dip for a model with two vesicles (n = 2). The presence of a dip is restricted to
small skewness (i.e. large γ) and a narrow range of release probability (white region). The shaded region represents parameter
value combinations not associated with a dip in the probability density function. The parameter values used in A and B are
indicated with red dots.

fer synaptic properties, but using different experimental
and computational methodologies [2]. For efficient use of
this algorithm, it is critical to derive estimation formu-
las specific to a given problem. Since we are not aware
of any such estimation formulas for the gamma-Gaussian
mixture (Eq. 2), we next describe our adaptation of the
EM algorithm to this context.

The likelihood maximization in the EM algorithm is
associated with the principle of gradient ascent [54]. Ac-
cordingly, it begins with an initial guess, and then itera-
tively updates these estimates to gradually maximize the
likelihood L(F|θ, n, σ2

opt) of observing the N observations
of fluorescence amplitude denoted by the vector F given
the parameters θ = (p, γ, λ). Given an initial guess θ0 =
(p0, γ0, λ0), the algorithm will find the optimal value of

each parameter θ̂ = (p̂, γ̂, λ̂). The parameter n will be
treated as a meta-parameter to the EM algorithm, whose
optimum is obtained by finding the n̂ with its own op-

timal θ̂ that maximizes the likelihood L(F|θ̂, n, σ2
0), or

equivalently, minimize the negative log-likelihood. The
variance of the optical noise, σ2

0 , can be estimated inde-
pendently by calculating the variance of the null distri-
bution (see Methods).

Typically, a good initial estimate of the parameters can
greatly speed up the inference process. In the present
case, we have argued that a good prior on the shape pa-
rameter can be obtained from the biophysics of vesicle
release with known, Gaussian distributed, vesicle diam-
eters [38]. We initialize the shape parameter to a value
of γ0 = 4. To initialize the probability of release, we
observe that only optical noise can capture fluorescence
amplitudes smaller than zero. Therefore, we compute the
fraction, c, of the total number of observations falling be-
low zero and equate this to half the failure probability.

This suggests the initialization p0 = 1 − (2c)1/n. There
remains the initial value of the scale parameter. Given
that the mean of fluorescence amplitude of the model
is npγλ, we use the mean of the observed fluorescence
amplitudes µF to initialize λ0 = µF /np0γ0.

The EM algorithm is iterative and variational. That
is, it first approximates the likelihood by an auxiliary
function, which we will call Q. It then iterates between a
maximization of this auxiliary function (the maximiza-
tion step) and an improvement to the approximation
by generating a new auxiliary function (the expectation
step). Using b(k|N, p) to denote the kth binomial coeffi-
cient, the likelihood over N observations

L(F|θ) =
N∏
i=1

b(0|n, p)G(Fi|0, σ2
opt)

+
n∑
k=1

b(k|n, p)g(Fi|kγ, λ) (4)

is replaced by

Q(θ, θ(t)) =
N∑
i=1

µ
(t)
i,0 log

(
b(0|n, p)G(Fi|0, σ2

opt)
)

+
n∑
k=1

µ
(t)
i,k log (b(k|n, p)g(Fi|kγ, λ)) (5)

This auxiliary function relies on N(n+ 1) variables µ
(t)
i,k.

These are the posterior probabilities of sampling from the
kth component given a guess of the parameters θ(t).

In the expectation step, we compute the posterior
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probabilities for k > 0

µ
(t)
i,k ≡ p(ki = k|Fi, θ(t)) =

b(k|n, p(t))g(Fi|kγ(t), λ(t))
L(Fi|θ(t))

.

(6)

The posterior probabilities for k = 0, µ
(t)
i,0, would need to

be considered only if we were to use the EM algorithm
to determine σopt. Importantly, these are computed us-

ing the previous guess θ(t) = (γ(t), λ(t), p(t)). Initially,
the calculation is performed using an initial guess of the
parameters, θ0.

In the maximization step, we compute the new param-
eter set, which maximizes the auxiliary function θ(t+1) =
argmaxθQ(θ, θ(t)). This is done via three re-evaluation
formulas, obtained by setting the gradient of Q to zero.
In what follows, we will use H(·) to denote the Heaviside
function. The first formula gives an update of p

p(t+1) =
1

nN

N∑
i=1

n∑
k=1

kµ
(t)
i,k. (7)

To compute the second, we first calculate the model mean

m(t) =
1

nN

N∑
i=1

n∑
k=1

µ
(t)
i,kFiH(Fi) (8)

and then maximize the terms of Q that depend on γ(t+1)

γ(t+1) = arg max
γ

N∑
i=1

n∑
k=1

µ
(t)
i,k log

(
g

(
Fi|kγ,

m(t)

γp(t+1)

))
,

(9)
The third formula updates the scale factor

λ(t+1) =
m(t)

γ(t+1)p(t+1)
. (10)

The expectation and maximization step are then re-
peated in alternation until convergence, which is defined
by a tolerance value on the likelihood update.

We use these parameter estimates to compute the log-
likelihood using Eq. 4. Repeating the EM-method for n
within a physiological range of 1-10 allows us to find the
number of vesicles n̂ which maximizes the log-likelihood

n̂ = argmaxn logL(F|θ̂, n). (11)

Since the results may depend on the initialization point,
we repeat the procedure with ten different initialization
points. The parameter values associated with the highest
likelihood become our parameter estimates.

I. Statistical inference on surrogate data

To determine the precision and the validity of the EM
method for extracting release properties, we apply the
method on simulated data. We assume that the fluores-
cence amplitude are sampled from the gamma-Gaussian

distribution. Once a sample is drawn, we will use the
EM method to extract the release properties, namely the
parameters γ, λ, N and p. Knowing the true parame-
ters allows us to calculate the average difference between
estimated and true parameters (bias) and the size of ran-
dom fluctuations in the estimated parameters (variance).
Since these estimator bias and variance will depend on
the specific set of parameter values used to generate sur-
rogate data, we must explore different types of parame-
ter values. For the sake of illustration, we consider three
cases: i) Univesicular release (Fig. 6A), ii) multivesicular
release with a low value of the shape parameter corre-
sponding to the absence of dip in the probability distri-
bution (Fig. 6B) and; iii) multivesicular release with a
high value of the shape parameter leading to well resolved
quantal peaks but inconsistent with the biophysical con-
straints (Fig. 6C).

We computed the bias and standard deviation of
the estimates using 500 surrogate experiments and
the expectation-maximization algorithm of the gamma-
Gaussian mixture (see Methods Sect. IV E). Since both
the bias and the standard deviation are expected to de-
pend on the number of samples per dataset, N , we re-
port the bias and standard deviation as a function sample
size. The correlation coefficients shown in Figure 6D re-
veal two interactions. Firstly, release probability as well
as the shape and scale parameter estimates are strongly
correlated. Secondly, these three parameter estimates
are anti-correlated with the estimate of the number of
vesicles. These compensations are also reflected in the
sample-size dependent biases, where an underestimate
(overestimate) in n is accompanied by an overestimate
(underestimate) in the other parameters, (Fig. 6E-H).
This reflects the fact that n is determined in a separate
step from the other parameters and that for a larger n the
other parameters must decrease to keep the same mean
amplitude.

Next, we consider the bias and variance of estimators
for a sample sizes of 50, which represents a realistic sam-
ple size for our experimental conditions. At those sam-
ple sizes, we find that our method underestimates release
probability, shape parameter and scale parameter (Fig.
6E-G, red lines). These biases reflect the fact that the
number of vesicles can only be overestimated (Fig. 6H).
Still considering sample size of 50 but for surrogate data
with two vesicles, we see that the bias in the number of
vesicles is much reduced (<0.25), and so is the bias in
the release probability and the scale parameter. There
remains a small underestimation of the shape parameter
(Fig. 6E-G, green lines). These biases are much reduced
and become negligible in the less realistic situation where
quantal peaks can be identified (Fig. 6E-H, blue lines).
Lastly, we note that the estimator standard deviations at
N = 50 are sufficiently substantial to require averaging
over multiple synapses in order to make precise parame-
ter estimates.
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FIG. 6. Validation of the Expectation-Maximization method on simulated gamma-mixtures. Count histograms for simulated
data (gray bars) and best fit probability density function (full line) for a gamma mixture with A n = 1 vesicles, a skew γ = 7,
scale λ = 0.12 and release probability p = 0.6, B n = 2 vesicles, skew γ = 6, scale λ = 0.1 and release probability p = 0.55,
C n = 2 vesicles, skew γ = 15, scale λ = 0.1 and release probability p = 0.51. D Correlation coefficient between parameter
estimates of simulated data B with sample size = 100. The bias of estimates for E release probability (p), F shape parameter
(γ), G scale parameter (λ), and H number of vesicles (n) is shown as a function of number of samples. Error bars show
parameter estimates s.d.

J. Statistical inference on experimental data

We next apply this EM algorithm on experimental data
from iGluSNFR-mediated optical recordings of gluta-
mate release. We used recordings of iGluSNFR-mediated
signal induced by trains of ten axonal electrical stimu-
lation at low frequencies (1,2,4 and 8Hz), from which
we extracted a distribution of fitted release amplitudes
(see Methods). Amplitude distribution from an exemplar
spine is shown in Figure 7A. This distribution is captured
very well by the gamma-Gaussian mixture model (Eq.
2). The best fit for this recording was achieved for shape
parameter γ= 1.4, scale parameter λ= 0.2, release prob-
ability p= 0.42 and 2 vesicles. Figure 7A shows that the
theoretical distribution fits the empirical histogram well.
This fit arises from individual components having an im-
portant skew. The inset of Figure 7A shows the negative
log-likelihood as a function of the number of vesicles. Al-
though there is a clear minimum at n = 2 vesicles, the
curvature is fairly large, as is predicted by the small es-
timator variance (Fig. 6H) under Cramer-Rao inequal-
ity. Importantly, the likelihood is considerably worse for
the n = 1 model compared to any n > 1 models. Al-
together, parameter inference using this EM algorithm
on iGluSNFR-based analysis of glutamate release at sin-

gle synapse argues that an action potential stochastically
triggers the fusion of a few vesicles releasing a variable
and highly skewed amount of glutamate.

We repeated this analysis on a set of experiments from
18 different spines (Figure 7B). Here, the average number
of vesicles fitted by the algorithm was 2.10 ± 0.3, while
individual spines were best fit by n ranging between 1
and 3 vesicles. The average shape parameter value was
1.42±0.08. This parameter regulates the univesicular re-
leases, the univesicular CVUV R, described in the biophys-
ical predictions. In principle, the average shape param-
eter fitted by the EM algorithm should correspond to a
univesicular CVUV R of 0.84, but we recall that our es-
timates of the shape parameter were shown to bear a
small-sample bias, which we estimated to negative 0.2
(Fig. 6F). As a consequence, our bias-corrected estimate
of univesicular CV is 0.77. In comparison, we predicted
that a CVv = 0.38 (Fig. 3) would arise from known vesicle
dimensions, thus a difference of 0.39. To see how our es-
timate of univesicular CV depends on the number of vesi-
cles in the model, we fixed n and inferred CVUV R for each
spine (Fig. 7C). We find that increasing n increases the
CVUV R inferred. This CVUV R remained high and above
both the variability expected from volumes (CVv) and
the variability of thresholded successes (CVsuc). This is
consistent with the view that CVv is a lower bound and
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CVsuc is underestimated (Fig. II F). In sum, statistical
inference of our gamma-Gaussian model suggests CA3-
CA1 synapses stochastically release 1-3 vesicles with vari-
able quantum.

The formalism outlined above allows to begin pars-
ing out the variability of synaptic transmission at single
synapses. Using the average parameters extracted us-
ing the expectation-maximization algorithm, Eq. 3 can
be used to separate the variability of observed evoked
amplitudes in three terms. The first term captures the
variability due to the glutamate sensor itself and to con-
current optical measurements The second term captures
the fluctuations in release amplitude attributable to a
single vesicle release and scaled by the average number
of vesicle released (i.e. diffusion, loading and vesicle vol-
ume). The last term captures the variability of releasing
sometimes two, one or zero vesicles (with zero unitary
variability). We named these sources of variability op-
tical, unitary and binomial, respectively. As shown in
Figure 7D, we estimate that that 4% of the variability
was optical, 30% binomial and 66% was unitary. Thus
the results suggests that, despite the fluctuating num-
ber of vesicles being released, the variability of synaptic
transmission arises mostly from the variability in unitary
vesicle content released.

III. DISCUSSION

The use of the glutamate fluorescent reporter iGluS-
nFR provides a valuable proxy of glutamate release at
single central synapses. To interpret the variability of
glutamate release observed in our recordings, we built a
gamma-Gaussian mixture model based on stochastic re-
lease of vesicles, each with a variable diameter size and
additional sources of variability. We highlighted impor-
tant biases measures of the variability of successes based
from threshold classification methods and provided an al-
ternative method based on the expectation-maximization
algorithm. Surrogate data analysis revealed that our sta-
tistical method has relatively small biases and allows in-
ference of estimates of quantal parameters. Together,
these experimental and analytical tools allow to resolve
the dynamic structure of synaptic transmission.

Several experimental methodologies have been devel-
oped in order to monitor transmission at single synapses.
One main advantage of optical methods over classical
electrophysiological techniques is that the experiment
is localized to an unambiguous source spine and, pre-
sumably, synaptic contact. While strong criteria have
been developed in the past to classify electrophysio-
logical experiments that are likely to arise from a sin-
gle synaptic contact (i.e., minimal stimulation criteria)
[17, 18, 30, 39, 47], some of these criteria may intro-
duce selection bias in population sampling, favouring
against synapses that display multi-quantal and/or a
high probability of release. Another distinct advantage
of using iGluSNFR, in particular, as a postsynaptic re-

porter of synaptic release is the non-reliance on post-
synaptic glutamate receptor activation. iGluSnFR can
report glutamate release events in the presence of gluta-
mate receptor antagonists (Figure 2I), which offers exper-
imental flexibility. Moreover, interpretation of quantal
events recorded using either calcium-based optical meth-
ods or electrophysiological methods are confounded by
issues such as the non-linear relationship between gluta-
mate concentration and glutamate receptor conductance
[44], the non-uniform distribution of glutamate receptors
in the postsynaptic membrane[7], and the distance be-
tween the release site location and the postsynaptic nan-
odomain of glutamate receptor density [19] . iGluSnFR,
being plasma membrane localized without anchoring do-
mains, is presumably evenly distributed in the postsy-
naptic membrane and present in close proximity to the
site of glutamate release. Also, as demonstrated in Figure
3F, iGluSnFR provides a linear report of physiologically-
relevant glutamate release. Although only superficially
dealt with here, the faster kinetics of iGluSNFR tran-
sients widens the ability to study dynamic regulation
of release during trains of stimulation, when compared
to the convolved proxy of glutamate release based on
NMDAR-dependent calcium detection. Altogether, this
method addresses a number of historical limitations and
provides a welcome complement to existing methodolo-
gies to study basic features of synaptic transmission and
plasticity.

Synaptic transmission is variable. Obtaining an accu-
rate estimate of the size of this variability is an oblig-
atory step in order to parse information content from
noise during neural communication. Applying a tra-
ditional threshold-based classification of successes and
failures on iGluSnFR transientsm we obtained a fairly
low average variability CVsuc ≈0.5 (Fig. 7C). Some of
our recordings showed CVsuc in the 0.2-0.4 range, which
closely matches the values reported for putative single-
synapse electrophysiological recordings using either man-
ual or threshold-based classification of failures and suc-
cesses [5, 17, 20]. We however readily observed synapses
that showed a higher CVsuc (up to 0.8) when optically
probed. It is likely that these synapses would have been
ignored when applying selection criteria commonly used
for minimal stimulation experiments. Such threshold-
based classification, however, inherently introduces clas-
sification errors, which can dramatically alter estimates
of CVsuc. The statistical methodology presented here
should circumvent this issue. Consistent with our esti-
mates on surrogate data (Fig. II F), we observed that
the variability of individual synaptic release can be much
higher CVUV R =0.8. Further consistent with the effect
of classification errors, our estimate of the average re-
lease probability of individual release is higher using the
expectation algorithm (p = 0.69; Fig. 7B ) than using
a threshold-based approaches (previous estimates were
<0.61 [20], 0.4 [5] and 0.2-0.4 [17]). While further studies
are required to further validate these estimates, our re-
sults suggest that individual synaptic release often yields
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FIG. 7. Inferring quantal parameters from IgluSNFR recordings. A Evoked fluorescence amplitude histogram for one exemplar
spine (gray bars) and probability distribution of the gamma-Gaussian model with properties inferred using the EM algorithm
(full red line). Individual release components for k = 1 andk = 2 are also shown (dashed red lines). Inset shows the negative log
likelihood calculated by the EM algorithm versus number of vesicles released, n, for the spine shown.B Mean release properties
obtained from the spine shown in A and a set of 18 spines. Bars left of dashed line use left axis scale, bars right of dashed line
use right axis scale. Error bars represent s.e.m. The averages are 0.194 ±0.003 for λ, 0.69 ± 0.08 for p, 2.1 ± 0.3 for n and
1.42 ± 0.08 for γ (mean ± SEM). Error bars show SEM. C Univesicular CV when n is the chosen vesicular release by the EM
algorithm (blue), and averaging over all estimates at that n (green). The black dashed line shows the theoretical univesicular
CV. D Factors explaining the variance in synaptic transmission. Based on average parameters obtained in Fig. 7 and Eq. 3,
we can parse out the variability in terms of optical noise (optical; green), the stochastic release of 0, 1 or 2 vesicles (binomial;
orange) and the unequal potency of each vesicle (UVR; blue).

very small but non-zero release and a variability consid-
erably higher than previously thought.

IV. METHODS

The essential elements of optical quantal analysis are
described in the main text. In this section, we give ad-
ditional precisions on both experimental and computa-
tional methods.

A. Organotypic Slices and Biolistic Transfection

A detailed description of our methodology for hippoca-
mal organotypic slice preparation and biolistic transfec-
tion is described in Soares et al. (2014) [46]. Briefly,
organotypic slices were prepared from Sprague Daley
rats (Charles River Laboratories, MA, USA) using the
interface method originally described in Stoppini et al.
1991[48]. Animals were anesthetized in an isofluorane
infused chamber, decapitated, and hippocampi were re-
moved in ice cold cutting solution containing (in mM):
119 choline chloride, 2.5 KCl, 4.3 MgSO4, 1.0 CaCl2,
1.0 NaH2PO4–H2O, 1.3 Na-ascorbate, 11 glucose, 1
kynurenic acid, 26.2 NaHCO3, saturated with 95% O2

and 5% CO2 (pH = 7.3; 295-310 mOsm/L). Transverse
slices were cut at 400 µm thickness using a MX-TS tis-
sue slicer (Siskiyou, Grants Pass, OR) and cultured on
0.4 mm millicell culture inserts (EMD Millipore, Etobi-
coke, Canada) at a temperature of 37oC. Hippocampal

slices were transfected at 6-7 DIV using a hand held gene
gun (Biorad, Hercules, CA). Cartridges for the gene gun
were prepared in advance by precipitating 50 µg of
cDNA plasmid onto 8-10 mg of gold microparticles (1.0
µm diameter; Biorad) at a ratio of 80/20 by weight of
either iGluSNFR or GCaMP6f and mCherry cDNA plas-
mid, respectively. The precipitation step was performed
in a 0.1 M KH2PO4 buffer solution containing 0.05 mM
protamine sulfate (rather than spermine, as per previous
protocols). The DNA-gold precipitate was washed and
suspended (3 times) in 100% ethanol before loading in
the tubing station. Once the cartridges were dried and
cut, they were placed in a sealed container with desiccant
pellets at 4 oC until used. The DNA-coated gold particles
were delivered to the slice using ∼180 psi of helium air
pressure. A modified gene gun barrel was used to protect
slices from helium blast [46]. Imaging experiments were
performed 3-5 days after biolistic transfection.

B. Optical Recording of IGluSNFR transients

Slices were removed from culture and placed in a cus-
tom recording chamber under a BX61WU upright micro-
scope (60X, 1.0 NA objective; Olympus, Melville, NY).
Slices were continuously perfused with a Ringer’s solu-
tion containing (in mM): 119 NaCl, 2.5 KCl, 4 MgSO4-
7H20, 4 CaCl2, 1.0 NaH2PO4, 11 glucose, 26.2 NaHCO3

and 1 Na-Ascorbate, saturated with 95% O2 and 5% CO2

(295-310 mOsm/L). For evoked stimulation experiments,
a glass monopolar electrode filled with Ringer’s solution
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was positioned adjacent to transfected cells in the direc-
tion of CA3. Simultaneous two-photon imaging of iGluS-
nFR and mCherry was performed using a Ti:Sapphire
pulsed laser (MaiTai-DeepSee; Spectra Physics, Santa
Clara, CA) tuned to 950 nm. Emission photons were
spectrally separated using a dichroic mirror (570 nm)
and the emitted light was additionally filtered using two
separate bandpass filters (iGluSNFR: 495-540; mCherry:
575-630). The sampling frequency of our line-scan exper-
iments depended on length of the imaged line segment
(drawn over a spine and its parent dendrite), but was
typically in the range of 1.2 - 1.5 ms / line for all opti-
cal quantal analysis experiments. This sampling rate was
more than sufficient to fully capture and quantify the rise
and falling phases of iGluSnFR transients. In our hands,
an optimal trade-off between signal-to-noise, sampling
frequency, and reduced bleaching, was obtained by using
a 4 µs pixel dwell time. In the frame scan configuration,
the sampling limit of our optical system was 65 ms/frame
(2 µs pixel dwell time; 256 x 256 pixel frame) when scan-
ning bidirectionally, which was sub-optimal for optical
quantal analysis.

Surveying methodology was designed to increase the
probability of finding dendritic spines that were respon-
sive to the electrical stimulus. While our frame scan
configuration offered the spatial resolution to monitor
several spines at once, we found it difficult in practice
to identify rapid iGluSnFR-mediated transients due to
a low signal to noise ratio an infrequent sampling rate.
As a result, line scans were exclusively used to survey
the dendritic arbor for responsive spines. Short dura-
tion (0.1 ms) low intensity (5-25 mA) stimuli were de-
livered to the slice at low-frequency (0.1 Hz) while ran-
domly surveying dendritic spines in the apical arbor of
transfected cells. To facilitate the process of finding a re-
sponsive spine, line scans were performed simultaneously
through multiple nearby dendritic spines and, generally,
a paired-pulse stimulus (50-100 ms inter stimulus inter-
val) was delivered to increase the probability of detecting
glutamate release. Dendritic spines that were unrespon-
sive to an initial probing phase consisting of 5-10 paired
pulse stimuli, were not considered for further analysis,
while spines demonstrating responsiveness to these ini-
tial probing stimuli were selected for quantal analysis ex-
periments. Fluorescent transients were resolvable by eye
and on-line analysis was not necessary. Prior to starting
an optical quantal analysis experiment at a responsive
spine, the stimulus intensity was gradually reduced up
to a minimum where time-locked responsiveness was still
observed. The process of identifying a responsive spine
was generally not trivial and often necessitated several
re-positioning of the stimulating electrode. Once a re-
sponsive spine was found, however, it was extremely rare
to lose fluorescent responsiveness in response to electrical
stimulation during an experiment.

C. Whole-cell electrophysiology and two-photon
glutamate uncaging

Whole-cell recordings were carried out using an Axon
Multiclamp 700B amplifier. Electrical signals were sam-
pled at 10 kHz, filtered at 2 kHz, and digitized us-
ing an Axon Digidata 1440A digitizer (Molecular De-
vices, Sunnyvale, CA). Transfected CA1 pyramidal neu-
rons were targeted and patched using borosilicate glass
recording electrodes (World Precision Instruments, Sara-
sota, FL) with resistances ranging from 3-5 MΩ . All
uncaging evoked currents were recorded at a holding
potential of −70 mV. The intracellular recording solu-
tion contained (in mM): 115 cesium methane-sulfonate,
0.4 EGTA, 5 tetraethylammonium-chloride, 6.67 NaCl,
20 HEPES, 4 ATP-Mg, 0.5 GTP, 10 Na-phosphocreatine
(all purchased from Life Technologies, Carlsbad, CA)
and 5 QX-314 purchased from Abcam (pH = 7.2-7.3;
280-290 mOsm/L). The extracellular solution was simi-
lar to the one described above but also contained 2. mM
MNI-glutamate-trifluoroacetate (Femtonics, Budapest,
Hungary) and a reduced concentration of MgSO4-7H20
(1.3 mM) and CaCl2 (2.5 mM). For glutamate uncaging
experiments, a second laser line tuned to 720 nm was
used to deliver 1 ms light pulses to the tips of dendritic
spines while the other laser was tuned to 950 nm to image
the uncaging-evoked iGluSnFR transients.

D. Regression for amplitude extraction

We describe the use of a template to extract the am-
plitude of the evoked responses. The method involves
two steps. First we extract a template time-course k by
computing the trial-averaged fluorescence response that
is triggered by the electrical stimulation. This template
is discretized, starts at the stimulation time and ends at a
pre-defined time T after it. Trial averaging is performed
on responses sufficiently isolated in time to be exempt
from other synaptic events. For each trial i the template
is scaled by β chosen so as to minimize the mean-squared

error with the observed fluorescence F
(i)
0:T in the corre-

sponding time window indicated by the subscript 0 : T .
The solution of this least-square problem is well known
and follows

βi = (kTk)−1kTF
(i)
0:T (12)

In order to report the maximum of the evoked waveform,
we scale βi by the maximum value of the template. This
is the value reported in Fig. 5. We calculated the null
distribution by fitting the template on fluorescence mea-
surements without electric stimulation. The variance of
the null distribution serves as our estimate of measure-
ment noise σ2

opt = 0.07.
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E. Surrogate data analysis

To generate surrogate data, we simulate n surrogate
fluorescence amplitudes and estimate the parameter val-
ues. Each surrogate experiment is repeated M times in

order to have M sets of parameter estimates θ̂j . Using
this set of surrogate experiments, we can compute the
bias, the variance and the correlation coefficients of the
estimates. The bias is calculated by averaging the differ-
ence between the estimated parameter and the simulated
parameters

estimator bias =
1

M

M∑
j=1

(θ̂j − θ).

In this way, a bias greater than zero means that the pa-
rameter tends to be overestimated, and a bias smaller
than zero means that the inferred parameters are erro-
neously small.

To estimate the precision of the estimates, we calculate
the variance.

estimator variance =
1

M

M∑
j=1

(
θ̂j −

1

M

M∑
i=1

θ̂i

)2

.

A small variance means that the estimate is precise, al-
though it may or may not be valid.

In addition, we compute the correlation coefficient be-
tween different parameter estimates. The correlation co-
efficient between a parameter θ(r) and θ(q) is simply

1
M

∑M
j=1

(
θ̂
(r)
j −

∑M
i=1 θ̂

(r)
i

)(
θ̂
(q)
j −

∑M
i=1 θ̂

(q)
i

)
σrσq

where σr and σq are the square root of the estimator

variances for θ(r) and θ(q), respectively. When the cor-
relation coefficient is positive, it means that estimation
errors tend to covary with the same sign, and when the
correlation coefficient is negative, it means that an esti-
mation error in parameter r is associated with an esti-
mation error of opposite sign in parameter q.
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(2014). A cost-effective method for preparing, maintain-
ing, and transfecting neurons in organotypic slices. In

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 3, 2019. ; https://doi.org/10.1101/624692doi: bioRxiv preprint 

https://doi.org/10.1101/624692
http://creativecommons.org/licenses/by-nc/4.0/


17

Patch-Clamp Methods and Protocols (Springer). 205–219
[47] Stevens, C. F. and Wang, Y. (1995). Facilitation and

depression at single central synapses. Neuron 14, 795–
802

[48] Stoppini, L., Buchs, P.-A., and Muller, D. (1991). A
simple method for organotypic cultures of nervous tissue.
Journal of neuroscience methods 37, 173–182

[49] Umemiya, M., Senda, M., and Murphy, T. H. (1999). Be-
haviour of nmda and ampa receptor-mediated miniature
epscs at rat cortical neuron synapses identified by cal-
cium imaging. The Journal of physiology 521, 113–122

[50] Wadiche, J. I. and Jahr, C. E. (2001). Multivesicular
release at climbing fiber-purkinje cell synapses. Neuron
32, 301–313

[51] Walmsley, B. (1995). Interpretation of ‘quantal’peaks in
distributions of evoked synaptic transmission at central

synapses. Proc. R. Soc. Lond. B 261, 245–250
[52] Wu, L.-G., Ryan, T. A., and Lagnado, L. (2007).

Modes of vesicle retrieval at ribbon synapses, calyx-type
synapses, and small central synapses. Journal of Neuro-
science 27, 11793–11802

[53] Xie, Y., Chan, A. W., McGirr, A., Xue, S., Xiao, D.,
Zeng, H., et al. (2016). Resolution of high-frequency
mesoscale intracortical maps using the genetically en-
coded glutamate sensor iglusnfr. Journal of Neuroscience
36, 1261–1272

[54] Xu, L. and Jordan, M. I. (1996). On convergence prop-
erties of the em algorithm for gaussian mixtures. Neural
computation 8, 129–151

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 3, 2019. ; https://doi.org/10.1101/624692doi: bioRxiv preprint 

https://doi.org/10.1101/624692
http://creativecommons.org/licenses/by-nc/4.0/

