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Abstract 13 

The size of the pupil depends on light level. Watson & Yellott (2012) developed a 14 

unified formula to predict pupil size from luminance, field diameter, age, and number 15 

of eyes. Luminance reflects input from the L and M cones in the retina but ignores 16 

the contribution of intrinsically photosensitive retinal ganglion cells (ipRGCs) 17 

expressing the photopigment melanopsin, which are known to control the size of the 18 

pupil. We discuss the role of melanopsin in controlling pupil size by reanalysing an 19 

extant data set. We confirm that melanopsin-weighted quantities, in conjunction with 20 

Watson & Yellott’s formula, adequately model intensity-dependent pupil size. We 21 

discuss the contributions of other photoreceptors into pupil control.  22 
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In a paper adequately described as a tour de force, Watson and Yellott [1] developed 23 

a unified formula to predict pupil size from luminance, field diameter, age, and 24 

number of eyes. This letter concerns the parametrisation of the retinal intensity, 25 

which in Watson and Yellott’s model is given in terms of luminance, i.e. the radiance 26 

of the stimulus weighted by the photopic luminosity curve V(λ). V(λ) corresponds to a 27 

mixture of the L and M cones in the retina, thereby largely ignoring the potential role 28 

of S cones, rods, and the intrinsically photosensitive retinal ganglion cells (ipRGCs) 29 

expressing the photopigment melanopsin [2-4]. 30 

The observation that V(λ)-weighted quantities do not predict pupil size is not new [5]. 31 

In 1962, Bouma [6] noted that the spectral sensitivity of pupil control is neither V(λ) 32 

nor the rod-based V’(λ), interjecting that the outcome of his experiments “may turn 33 

out to be related to other adaptive processes in the human eye”. Bouma himself 34 

modelled the spectral sensitivity as a combination of S cones and rods. We know 35 

now that steady-state pupil size is largely controlled by melanopsin. 36 

To test if Bouma’s data is consistent with melanopsin-based pupil control, we 37 

reanalysed the intensity-response curves from Bouma [6] as follows. We first 38 

extracted the data from Bouma’s Figure 1 (Figure 1A, B). For monochromatic lights, 39 

which we assumed Bouma used, it is simple to convert the reported V(λ)-weighted 40 

luminous flux into a melanopsin-weighted radiant flux [7]. As radiant flux describes 41 

the total amount of energy emitted by a source, it is not an appropriate measure to 42 

describe corneal or retinal intensity, so the absolute quantities are not informative 43 

unless a geometry is specified. Allowing for an arbitrary horizontal shift, Watson and 44 

Yellott’s model accounts well for the shape of the pupil response as a function of 45 

melanopic radiant flux, except for long-wavelength lights (Fig. 1C).  46 

There is now a good body of evidence that all photoreceptors can control the 47 

diameter of the pupil. The best evidence comes from studies examining pupil size 48 

using the method of silent substitution, in which pairs of lights are alternated such 49 

that only one photoreceptor class is stimulated [8, 9]. Studies examining pupil control 50 

using this method are given in Table 1. 51 

A key realisation is that while all photoreceptors may contribute to controlling the 52 

pupil size, the when and how is important. For example, due to rod saturation [10], 53 

rods are not expected to contribute to pupil control at photopic light levels. The 54 

temporal regimes in which the photoreceptors contribute are also different. Notably, 55 
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L+M stimulation is band-pass, while S cones and melanopsin are tuned to low 56 

frequencies in driving the pupil [11]. McDougal and Gamlin [12] found that cones and 57 

rods account for pupil constriction between 1 and 10 seconds from the onset of the 58 

light exposure, at 100 seconds, pupil size is largely controlled by melanopsin with 59 

some contribution from the rods. 60 

To what extend does Watson and Yellott’s use of luminance as an input parameter 61 

call into question the generalizability of their model? From first principles, differences 62 

between V(λ)-weighted and melanopic quantities are largest with monochromatic 63 

lights. But we typically do not live under monochromatic illumination. We explored 64 

this question by examining the range of melanopic irradiances at a fixed illuminance. 65 

In other words, how wrong would we be if we continued using V(λ)-weighted 66 

quantities to predict pupil size? Using a database of 401 polychromatic (“white”) 67 

illuminant spectra [13], we calculated the range of melanopic irradiance while 68 

keeping the photopic illuminance fixed at 100 lux (Figure 2). Across all 401 spectra, 69 

a 100 lux light source has a melanopic irradiance of 75.5±23.4 mW/m2. The range of 70 

melanopic irradiances is between 20.4 and 164 melanopic mW/m2, i.e. in the worst 71 

case a factor of ~8. Whether or not this worst-case misprediction by using a V(λ)-72 

weighted quantity has tangible consequences depends on the application. Predicting 73 

pupil size in a psychophysical experiment at mesopic light levels requires less 74 

stringent estimation of retinal intensity than safety-critical calculations. 75 

A recent study reported attempted to derive a formula for predicting pupil size also 76 

from melanopsin activation but only focused on a rather narrow luminance range 77 

(50-300 cd/m2) [14]. While this is a good start, it might be a useful empirical exercise 78 

to collect natural pupil sizes under a large range of illumination conditions (indoors, 79 

outdoors) under natural behaviour with cojoint spectral measurements.  80 
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Figures 81 

 82 

 83 

 84 
 85 

Figure 1. A Original graph from Bouma [6] relating luminous flux to pupil diameter in 86 
milimeters. B Replotted extracted pupil size data (using WebPlotDigitizer, 87 
https://automeris.io/WebPlotDigitizer/). C Re-analysed (in terms of normalised melanopic 88 
radiant flux) and modelled pupil size data. 89 
 90 
 91 

 92 
 93 
Figure 2. Variability of the melanopic irradiance of 401 polychromatic “white” light sources 94 
[13] at 100 lux.  95 
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Table 1: Evidence of photoreceptor contributions to pupil control 96 

 97 

Photoreceptor class Reference 

Melanopsin Tsujimura, et al. [15] 

Vienot, et al. [16] 

Tsujimura and Tokuda [17] 

Spitschan, et al. [11] 

Cao, et al. [18] 

Barrionuevo and Cao [19] 

Spitschan, et al. [20] 

Zele, et al. [21] 

L cone 

 

Spitschan, et al. [11] (L+M) 

Spitschan, et al. [20] (L+M+S) 

Barrionuevo and Cao [19] 

Murray, et al. [22] 

Woelders, et al. [23] 

M cone Spitschan, et al. [11] (L+M) 

Spitschan, et al. [20] (L+M+S) 

Barrionuevo and Cao [19] 

Murray, et al. [22] 

Woelders, et al. [23] 

S cone Spitschan, et al. [11] 

Spitschan, et al. [20] 

Barrionuevo and Cao [19] 

Cao, et al. [18] 

Murray, et al. [22] 

Woelders, et al. [23] 

Rods Barrionuevo, et al. [24] 

Barrionuevo, et al. [25] 

 98 

  99 
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