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Translational Relevance 

Compared to continuous androgen deprivation therapy, intermittent androgen deprivation 

(IADT) has been shown to reduce toxicity and delay time to progression in prostate cancer. 

While numerous mathematical models have been developed to study the response to both 

continuous and intermittent androgen deprivation, very few have identified actionable 

biomarkers of resistance and exploited them to predict how patients will or will not respond to 

subsequent treatment. Here, we identify prostate-specific antigen (PSA) dynamics as the first 

such biomarker. Mechanistic mathematical modeling of prostate cancer stem cell dynamics that 

dictate prostate-specific antigen serum levels predicts individual responses to IADT with 90% 

overall accuracy and can be used to develop patient-specific adaptive treatment protocols, and 

potentially identify patients that may benefit from concurrent chemotherapy. Model results 

demonstrate the feasibility and potential value of adaptive clinical trials guided by patient-

specific mathematical models of intratumoral evolutionary dynamics continuously updated with 

each treatment cycle.    
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Abstract 

Background Intermittent androgen deprivation therapy (IADT) is an attractive treatment 

approach for biochemically recurrent prostate cancer (PCa), whereby cycling treatment on and 

off can reduce cumulative dose, limit toxicities, and delay development of treatment resistance. 

To optimize treatment within the context of ongoing intratumoral evolution, underlying 

mechanisms of resistance and actionable biomarkers need to be identified. 

Methods We have developed a quantitative framework to simulate enrichment of prostate cancer 

stem cell (PCaSC) dynamics during treatment as a plausible mechanism of resistance evolution. 

Results Simulated dynamics of PCaSC and non-stem cancer cells demonstrate that stem cell 

proliferation patterns correlate with longitudinal serum prostate-specific antigen (PSA) 

measurements in 70 PCa patients undergoing multiple cycles of IADT.  By learning the 

dynamics from each treatment cycle, individual model simulations predict evolution of resistance 

in the subsequent IADT cycle with a sensitivity and specificity of 57% and 94%, respectively 

and an overall accuracy of 90%. Additionally, we evaluated the potential benefit of docetaxel for 

IADT in biochemically recurrent PCa.  Model simulations based on response dynamics from the 

first IADT cycle identify patients who would or would not benefit from concurrent docetaxel in 

subsequent cycles. 

Conclusion Our results demonstrate the feasibility and potential value of adaptive clinical trials 

guided by patient-specific mathematical models of intratumoral evolutionary dynamics 

continuously updated with each treatment cycle.    
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Introduction 

Prostate cancer (PCa) is the most common type of cancer in American men and the second 

leading cause of cancer mortality (1). Following surgery or radiation, the standard treatment for 

hormone-sensitive PCa is continuous androgen deprivation therapy (ADT) at the maximum 

tolerable dose (MTD) with or without continuous abiraterone acetate (AA) until the tumor 

becomes castration resistant (2). Importantly, advanced PCa is not curable because PCa routinely 

evolves resistance to all current treatment modalities. Continuous treatment approaches fail to 

consider the evolutionary dynamics of treatment response where competition, adaptation and 

selection between treatment sensitive and resistant cells contribute to therapy failure (3). In fact, 

continuous treatment, by maximally selecting for resistant phenotypes and eliminating other 

competing populations, may actually accelerate the emergence of resistant populations – a well-

studied evolutionary phenomenon termed “competitive release”.   

 

In part to address this issue, prior trials have used intermittent ADT (IADT) to reduce 

toxicity and delay time to progression (TTP). However, these trials were typically not designed 

with a detailed understanding of the underlying evolutionary dynamics. For example, a 

prospective Phase II trial of IADT for advanced PCa included an 8-month induction period in 

which the patients were treated at MTD prior to beginning intermittent therapy (4). We have 

previously postulated that only a small number of ADT-sensitive cells would typically remain 

after the induction period, thereby significantly reducing the potential of intermittent treatment to 

take advantage of the evolutionary dynamics (3). 
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Fully harnessing the potential of intermittent PCa therapy requires identifying ADT 

resistance mechanisms, predicting individual responses, and determining potentially highly 

patient-specific, clinically actionable triggers for pausing and resuming IADT cycles. Progress in 

integrated mathematical oncology may make such analysis possible. Many mathematical models 

based on a variety of plausible resistance mechanisms have been proposed to simulate IADT 

responses (3, 5-13). While these models can fit clinical data, they often rely on numerous model 

variables and parameters that in combination fail to adequately predict responses and outcomes 

for individual patients (9). We hypothesize that prostate cancer stem cells (PCaSCs) may be, at 

least in part, responsible for tumor heterogeneity and treatment failure due to their self-renewing, 

differentiating and quiescent nature (14-16). Simulating longitudinal prostate-specific antigen 

(PSA) levels in early IADT treatment cycles could help identify patient-specific PCaSC 

dynamics to computationally forecast individual disease dynamics and reliably predict IADT 

response or resistance in subsequent treatment cycles.   

 

The first evidence of stem cells in the prostate was provided by Isaacs and Coffey (17), 

who used androgen cycling experiments in rodents to show that castration resulted in involution 

of the prostate, while restored androgen levels resulted in complete regeneration of the prostate.  

These findings demonstrated that normal prostate depends on androgens for maintenance. A 

small population of androgen-independent stem cells within the prostate epithelium divide to 

give rise to amplifying cells, which do not directly depend on androgen for their continuous 

maintenance but respond to androgens by generating androgen-dependent transit cells. 

Approximately 0.1% of cells in prostate tumors express the stem cell markers CD44+/ 

𝛼2𝛽1hi/CD133+ (18), and mice as well as patients treated with ADT have significantly increased 
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PCaSC populations (19, 20). This suggests that evolution of or selection for pre-existing 

androgen-independent PCaSCs contributes to treatment resistance.  

 

The purpose of this study is to evaluate individual PSA dynamics in early IADT 

treatment cycles as a predictive marker of response or resistance in subsequent treatment cycles. 

We hypothesize that patient-specific PCaSC division patterns underlie the measurable 

longitudinal PSA dynamics, and that a mathematical model of PCaSCs can be trained to predict 

treatment responses on a per-patient basis. Here, we present an innovative framework to simulate 

and predict the dynamics of PCaSCs, androgen-dependent non-stem PCa cells (PCaCs), and 

blood PSA concentrations during IADT. Our mathematical model of PCaSC enrichment is 

calibrated and validated with longitudinal PSA measurements in individual patients to identify 

model dynamics that correlate with treatment resistance. The model’s predictive power to 

accurately forecast individual patients’ responses to IADT cycles is evaluated in an independent 

patient cohort. These analyses suggest that PCaSC and PSA dynamics may potentially be used to 

personalize IADT, maximize time to progression, and ultimately improve PCa outcomes. The 

calibrated and validated model is then used to generate testable hypotheses about patients that 

may benefit from concurrent chemotherapy.  

 

Materials and Methods 

IADT Clinical Trial data 

The Bruchovsky prospective Phase II study trial was conducted in 109 men with biochemically 

recurrent prostate cancer (21). IADT consisted of 4 weeks of Androcur as lead-in therapy, 
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followed by a combination of Lupron and Androcur, for a total of 36 weeks. Treatment was 

paused if PSA has normalized (< 4 𝜇g/L) at both 24 and 32 weeks, and resumed when PSA 

increased above 10 𝜇g/L. PSA was measured every four weeks. Patients whose PSA had not 

normalized after both 24 and 32 weeks of being on treatment were classified as resistant and 

taken off of the study. We analyzed the data of 79 patients who had completed more than one 

IADT cycle. One patient was omitted for inconsistent treatment, seven were omitted due to the 

development of metastasis and/or local progression, and one was omitted due to taking multiple 

medications throughout the trial, resulting in 70 patients included in the analysis (Fig. S1). To 

calibrate and assess the accuracy of our model, the data was divided into training (n = 35, 27 

responsive, 8 resistant) and testing (n = 35, 28 responsive, 7 resistant) cohorts, respectively 

matched for clinical response to treatment.  

 

Mathematical Model of IADT Response 

We developed a mathematical model of PCaSC (S), non-stem (differentiated) cells (D), and 

serum PSA concentration (P) (Fig. S2). PCaSCs divide with rate 𝜆 (day-1) to produce either a 

PCaSC and a non-stem PCa cell with rate 1-ps (asymmetric division) or two PCaSCs at rate ps 

(symmetric division) with negative feedback from differentiated cells (15). Differentiated cells 

exclusively produce PSA at rate 𝜌 (𝜇g/L day-1), which decays at rate 𝜑	(day-1). Unlike androgen-

independent PCaSCs, differentiated cells die in response to androgen removal at rate 𝛼	(day-1) 

(33). IADT on and off cycles are described with parameter Tx, where Tx = 1 when IADT is given 

and Tx = 0 during treatment holidays.  

The coupled mathematical equations describing these interactions are shown below. 
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𝑑𝑆
𝑑𝑡 = -

𝑆
𝑆 + 𝐷0𝑝2𝜆𝑆,										

𝑑𝐷
𝑑𝑡 = -1 −	

𝑆
𝑆 + 𝐷 𝑝20 𝜆𝑆 − 𝛼𝑇7𝐷,																	

𝑑𝑃
𝑑𝑡 = 𝜌𝐷 − 𝜑𝑃 (1) 

 

Mathematical Model Training and Validation 

We assume uninhibited PCaSCs divide on average once per day and set 𝜆	= ln(2). To reduce 

model complexity and prediction uncertainty, we assume PSA production rate (𝜌) and decay rate 

(𝜑) to be uniform between patients. PCaSC self-renewal rate (ps) and differentiated cell ADT 

sensitivity (𝛼)	are correlated and assumed to be patient-specific. We used particle swarming 

optimization (PSO) (34) to identify population uniform and patient-specific model parameters 

that minimize the least squares error between model simulation and patient data in the training 

cohort. The trained mathematical model is assessed for accuracy in the validation cohort. The 

learned population uniform parameters are kept constant for all patients, and PSO is performed 

to find appropriate values for ps and 𝛼 to produce accurate data fits.	 

 

Adaptive Bayesian Response Prediction 

In order to predict the evolution of resistance, we started by fitting the model to each cycle of the 

training cohort data individually. That is, finding the optimal values of ps and 𝛼, while allowing 

𝜑 and 𝜌 to remain fixed at the values previously found, to fit one cycle of data at a time (Fig. 

S3A). We then measured the relative change in ps between cycles and used this to generate 

cumulative probability distributions as shown in Fig. S3B. Sampling from the 95% confidence 

interval around the exponential curve relating ps to 𝛼 in cycle i+1 (Fig. S3C), we found a 

corresponding 𝛼i+1. This ps,i+1 and 𝛼i+1 were used to predict the response in cycle i+1. This 

process was repeated 1000 times to generate 1000 predictions.  In line with the trial by 
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Bruchovsky et al. (21), resistance was defined as PSA increasing during treatment and/or a PSA 

level above 4 𝜇g/L at both 24 and 32 weeks after the start of a cycle of treatment. Simulations 

that satisfied either of these conditions were classified as resistant. Thus, for each cycle 

prediction we obtained a probability of resistance (P(Ω) = number of resistance predictions out 

of 1000 simulations). 

To determine whether to categorize a patient as responsive or resistant based on our 

predictions, we used the results from the training cohort data to find a cycle-specific threshold 𝜅i 

for each cycle (Fig. S3D). If P(Ω)>	𝜅i, then the patient was predicted as resistant in cycle i. For 

each cycle, a value of 𝜅 was chosen that would maximize the sensitivity (predicting resistance 

when a patient is indeed resistant), and specificity (predicting resistance when a patient is 

actually responsive) of the training cohort. Each resistance threshold was used to predict 

response or resistance in the training cohort. 

 

Modeling concurrent docetaxel 

Unlike ADT, docetaxel can induce cell death in both PCaSCs and non-stem cells, though to a 

lesser degree in PCaSCs compared to non-stem cells (35). To model this, we extended the 

current model to include death of each cell type at rates 𝛿= (day-1) and 𝛿> (day-1). That is, 

𝑑𝑆
𝑑𝑡 = -

𝑆
𝑆 + 𝐷0𝑝2𝜆𝑆 − 𝛿=𝑇7>𝑆,										 

𝑑𝐷
𝑑𝑡 = -1 −	

𝑆
𝑆 + 𝐷 𝑝20 𝜆𝑆 − 𝛼𝑇7𝐷 − 𝛿>𝑇7>𝑆,																	 

(2) 

where TxD = 1 when docetaxel is on and TxD = 0 otherwise. Each cycle of docetaxel was 

simulated as a single dose on day n (TxD = 1) followed by three weeks without docetaxel (TxD = 
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0). The parameters 𝛿= = 0.0027 and 𝛿> = 0.008 were chosen such that approximately three times 

more non-stem cells died than PCaSCs (35). 

 

Results  

Mathematical model accurately simulates patient-specific IADT response dynamics 

The model was calibrated to and assessed for accuracy on longitudinal data from a prospective 

Phase II study trial conducted in 109 men with biochemically recurrent prostate cancer treated 

with IADT (21) (see Materials and Methods, Fig. S1). Stratified random sampling was used to 

divide the data into training and testing cohorts. Assuming that uninhibited PCaSCs divide 

approximately once per day (22), 𝜆	(day-1)  was set to ln(2) and parameter estimation was used 

to find the remaining parameters. The model was calibrated to the training cohort data with two 

population-uniform parameters (PSA production rate 𝜌	=	1.87E-04	(𝜇g/L day-1), decay rate 𝜑	=	

0.0856	(day-1))	and two patient-specific parameters (median PCaSC self-renewal rate ps = 

0.0278  [2.22E-14,0.2583] (non-dimensional), ADT cytotoxicity rate 𝛼	= 0.0360 [0.0067,1] (day-

1)). The model results captured clinically measured longitudinal PSA dynamics of individual 

responsive and resistant patients (Fig. S4A, S4B) and the population as a whole (R2 = 0.74 Fig. 

S4C). The corresponding PCaSC dynamics demonstrated a rapid increase in the PCaSC 

population in patients that became castration resistant compared to patients that remained 

sensitive throughout the trial. Model simulations also showed that emergence of resistance is a 

result of selection for the PCaSCs during on-treatment phases. Coinciding with this transition to 

castration resistance, analysis of model parameters revealed that resistant patients had 

significantly higher PCaSC self-renewal rates than responsive patients (median ps  = 0.0249 

[1.18E-13,0.0882] for responsive patients vs. ps = 0.0820 [2.2E-14,0.2583] for resistant patients, 
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p < 0.001, Fig. S4D). As shown in Fig. S4D, analysis revealed an exponential relationship 

between ps and 𝛼	and therefore these parameters are not independent. This relationship allows 

prediction of future cycles based on PCaSC self-renewal rate ps as the single, identifiable, 

independent patient-specific parameter. 

To assess the accuracy of our model, we set the PSA production rate 𝜌 and decay rate 𝜑 

to the values obtained from the training cohort and identified patient-specific values for ps and 

corresponding 𝛼 in the testing cohort. With these, the model was able to fit the data equally well 

(R2=0.69) and the resulting parameter distributions and relationships were similar to those found 

in the training cohort (Fig. 1A-D). 

 

PCaSC self-renewal rates underlying observable PSA dynamics can predict subsequent IADT 

cycle responses 

To predict the evolution of resistance in subsequent treatment cycles, we fit the model to single 

treatment cycles for patients in the training set, again setting the PSA production rate 𝜌 and 

decay rate 𝜑 to the values previously found. The self-renewal and ADT cytotoxicity rates 

maintained the exponential relationship, previously obtained when optimizing over all IADT 

cycles. The distributions of the self-renewal rate ps and the corresponding ADT cytotoxicity rate 

𝛼,	as well as their relative change from cycle to cycle, were used to predict responses in 

subsequent cycles of patients in the training cohort (see Materials and Methods). An appropriate 

resistance threshold was obtained for each cycle based on the forecast simulations of the training 

set. Using these thresholds, model forecasting was completed on the testing set and the patient 

was classified as either responsive or resistant in the subsequent treatment cycle. Representative 

examples of second and third cycle predictions for one responsive patient and one resistant 
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patient from the testing cohort are shown in Fig. 1E-F. Patient 017 was a continuous responder 

who underwent three cycles of IADT before the end of the trial. The model correctly predicted 

responsiveness in cycles two and three based on the parameters fitted in cycles one and two, 

respectively. Patient 054 became resistant in the third IADT cycle and the model was able to 

correctly predict response in cycle two and resistance in the third cycle based on the thresholds 

learned in the training set. The model yielded a sensitivity of 57% and specificity of 94% over all 

subsequent IADT cycles for patients in the test cohort. The overall accuracy of the model was 

90%. 

 

IADT without induction period significantly increases TTP 

In a study by Crook et al., continuous ADT was compared to IADT in localized PCa patients and 

they found that IADT was non-inferior to ADT using overall survival as the clinical endpoint (4). 

A similar study by Hussain et al. conducted in metastatic, hormone sensitive PCa patients found 

that neither regimen proved superior (23). These findings are likely the result of the 7-8 months 

induction period, which resulted in the competitive release of the resistant phenotype once the 

androgen sensitive subpopulation was eliminated (3). Administering IADT without such an 

induction period would allow sufficient time for the sensitive subpopulation to efficiently 

compete with the resistant subpopulation and prolong time to progression and ultimately, overall 

survival. 

 

To test these hypotheses, we simulated continuous ADT and IADT without the 36-week 

induction period and compared predicted TTP against the trial by Bruchovsky et al. (21) For 

IADT simulations, treatment was administered until PSA fell below 4 𝜇g/L and resumed again 
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once it rose above 10 𝜇g/L at simulated measurements every 4 weeks. Both protocols were 

simulated until PSA progression or for 10 years (end of simulation, EOS), with progression 

defined as three sequential increases in PSA during treatment. For the IADT protocol, 

progression was also defined as PSA > 4 𝜇g/L at both 24 and 32 weeks on treatment, as used in 

the Bruchovsky trial. Comparing the TTP from the trial results against simulated continuous 

ADT showed that IADT with an induction period resulted in significantly longer TTP (Fig. 2A). 

Though median TTP was not reached for either IADT protocol, Fig. 2B shows that the average 

TTP was approximately 5 months longer for IADT without the induction period when compared 

to the actual trial data and the continuous ADT simulations. Fig. 2C shows TTP could be 

increased by more than 7 months in selected patients.  

 

Alternative treatment decision thresholds can further increase TTP 

In the ongoing pilot study (NCT02415621) of IADT in metastatic, castration resistant PCa 

patients, IADT is paused after a decline in PSA to below 50% of pre-treatment PSA levels and is 

resumed once PSA returns to the pre-treatment level. At the time of writing, of the 18 patients 

currently enrolled for more than 12 months, four have developed PSA and radiographic 

progression.  The median time to progression has not been reached, but is at least 20 months 

greater than a contemporaneous cohort treated continuously with MTD until progression, as well 

as published cohorts. The treatment group has received an average cumulative dose of less than 

half that of standard of care treatment (3).  

 

To test the validity of our model, we simulated IADT using a 50% threshold, as well as 

10% and 70% and compared the results against those obtained in the Bruchovsky trial. Pausing 
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treatment once PSA falls below 70% and 10% of the pre-treatment PSA, checking every two 

weeks, results in significantly longer TTP when compared to the Bruchovsky trial protocol (Fig. 

3). Additionally, the average cumulative dose could be significantly reduced depending on the 

threshold used. With a 10% threshold, the average cumulative dose is ~50% of that of the 

Bruchovsky study. A 50% threshold results in ~22% of the cumulative dose used in the 

Bruchovsky study, while 70% results in ~20%. Controlling for the total time that each patient 

participated in the trial results in about 30%, 15%, and 13% of the comulative dose used in the 

Bruchovsky study for thresholds of 10%, 50%, and 70%, respectively (Fig. S5). 

 

Concurrent docetaxel administration provides favorable TTP 

We sought to investigate the effect of docetaxel (DOC) in IADT in biochemically recurrent PCa 

patients by simulating six cycles of DOC with concurrent ADT, followed by IADT (as defined in 

the Materials and Methods section). Model analysis showed that patients with higher stem cell 

self-renewal rates would benefit the most from DOC in a castration naïve setting (prior to 

progression, Fig. 4A). Comparing progression free survival showed that castration naïve 

docetaxel could increase TTP (Fig. 4B). We also tested the ability of DOC to increase survival 

after the development of resistance to IADT. To do this, we simulated IADT, following the 

Bruchovsky trial protocol, and then added ten cycles of DOC plus continuous ADT after 

resistance developed. As shown in Fig. 4C, this increased mean TTP from 41.18 months 

observed in the Bruchovsky trial to model-predicted 50.14 months. 

 

First cycle PCaSC self-renewal rate stratifies patients who can benefit from docetaxel 
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As shown above, the stem cell self-renewal rate plays a significant role in IADT and could 

accurately predict a patient’s response in subsequent cycles after just the first cycle. With this, 

we used the first cycle ps value to simulate six cycles of DOC with concurrent ADT followed by 

IADT and found that patients with ps ≥ med(ps) could benefit from DOC after the first cycle of 

IADT (Fig. 5A). There was a significant difference in TTP between patients with a high ps and 

those with a low ps both when simulating IADT with and without DOC after the first cycle (Fig. 

5B). Though the difference in TTP was not significantly higher with DOC given after the first 

cycle (Fig. 5C), median TTP increased from 35 to 41.5 months in those patients with ps ≥ 

med(ps), as shown in Fig. 5B. 

 

Discussion  

Androgen deprivation therapy is not curative for advanced prostate cancer, as patients 

often develop resistance. IADT is a promising approach to counteract evolutionary dynamics by 

reducing competitive release of the resistant subpopulation during treatment holidays.  Since 

IADT is highly dynamic, maximum efficacy requires continuous, accurate estimates of sensitive 

and resistant subpopulations.  

 

Here we present a simple mathematical model of evolutionary dynamics within 

biochemically recurrent prostate cancer during IADT. The model has been trained with two 

parameters that are uniform across all patients and only two patient-specific parameters, which 

are interconnected, allowing us to further reduce them to a single, measurable parameter for each 

patient.  Model simulations support the central hypothesis that the evolution of PCaSCs is highly 

correlated with the development of resistance to IADT. Resistant patients are likely to have 
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higher PCaSC self-renewal rates than responsive patients, leading to increased production of 

PCaSCs and ultimately differentiated cells, thereby accelerating PSA dynamics with each 

treatment cycle. Our results are similar to prior studies in glioblastoma that cancer stem cell self-

renewal is likely to increase during prolonged treatment (24). 

 

Using longitudinal PSA measurements and observed clinical outcomes from the IADT 

trial by Bruchovsky et al., the model was calibrated to clinical data and predicted the 

development of resistance with a 90% accuracy.  The theoretical study produced three important 

clinical findings: (1) IADT outcomes in prior studies were adversely affected by the 8-month 

induction period, which reduced IADT overall survival comparable to that of continuous ADT. 

(2) With IADT, applying a PSA treatment threshold that depends on pre-treatment PSA levels 

(rather than a fixed value for all patients) can significantly increase TTP. (3) Early treatment 

response dynamics during IADT can identify patients that may potentially benefit from 

concurrent docetaxel treatment, particularly patients with a large stem cell self-renewal rate after 

one cycle of IADT. 

 

Our study also demonstrated the value of ongoing model simulations in predicting 

outcomes from each treatment cycle throughout the course of therapy.  By accumulating data 

from each cycle to continuously estimate the current tumor population dynamics, model 

simulations could predict the response to the next cycle with a sensitivity and specificity of 57% 

and 94%, respectively and an overall accuracy of 90%. This ability to learn from prior treatments 

and predict future outcomes adds an important degree of flexibility to a cancer treatment 
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protocol– a game theoretic strategy termed “Bellman’s Principle of Optimality” that greatly 

increases the physician’s advantage (25). 

 

  For those predicted to become resistant in the next cycle of IADT, an ideal model would 

also predict alternative treatments that could produce better clinical outcomes.  The role of 

docetaxel in metastatic, hormone-sensitive PCa has been investigated in three studies in the past 

five years. The GETUG-AFU15 study found a non-significant 20% increase in overall survival 

in high volume disease (HVD) patients who received DOC concurrently with continuous ADT, 

but no survival benefit in those with low volume disease (LVD) (26). Subsequently, the results 

of the STAMPEDE trial found that DOC administration resulted in a more than 12 months 

overall survival benefit with a median follow-up of 43 months (27). Finally, the CHAARTED 

trial showed a statistically significant overall survival benefit from adding DOC in patients with 

HVD; however, no statistically significant survival benefit was found in LVD patients (28).  

Here we explored the option of adding docetaxel in the treatment of biochemically recurrent 

PCa. We found that estimating the PCaSC self-renewal rate ps using data from the first cycle of 

IADT could stratify patients who would receive the most benefit from concurrent administration 

of docetaxel. These results emphasize the critical heterogeneity within patients that affect 

response to therapy and the important role of quantitative models in identifying patient-specific 

parameters and defining appropriate treatment protocols based on model predictions. 

 

Our study has some limitations in both the clinical data set and quantitative models.  

Since only 21% of the 70 patients progressed before the conclusion of the trial (21) (Fig. S1), the 

clinical data included more responsive than resistant patients in both the training and testing 
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cohorts. Additionally, the majority of patients progressed within their second or third cycle, with 

only 24 patients entering the fourth cycle. The scarcity of available data during the fourth cycle 

made finding an appropriate resistance threshold challenging. A larger training data set would 

increase the sensitivity and overall accuracy of the model. 

 

A limitation of the quantitative model is the use of dynamic PSA values as the sole 

biomarker of PCa progression. PCa can become aggressive and metastatic despite low levels of 

serum PSA (29, 30) with development of androgen independent prostate cancer, most notably 

neuroendocrine prostate cancer. Additional serum biomarkers such as circulating tumor cells 

(CTCs) and cell-free DNA (cfDNA) may prove useful in estimating intratumoral evolutionary 

dynamics in subsequent trials. With the CellSearch platform, higher CTCs enumeration >5cells 

per 7.5mL of peripheral blood has been shown to be prognostic and portend worse overall 

survival in metastatic CRPC patients (31); however detecting CTCs in biochemically recurrent 

patients has been labor-intensive with low yield (32).  

 

In conclusion, our study demonstrates that a simple mathematical model based on cellular 

dynamics in prostate cancer can have a high predictive power in a retrospective data set from 

patients with biochemically recurrent PCa undergoing IADT.  In particular, we demonstrate the 

model can use data from each treatment cycle to estimate intratumoral subpopulations and 

accurately predict the outcome of subsequent cycles. Furthermore, in patients who are predicted 

to fail therapy in the next cycle, alternative treatments for which a response is more likely can be 

predicted. We conclude that PSA dynamics can prospectively predict treatment response to 

IADT, suggesting ways to adapt treatment to delay TTP.  
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Fig. 1. Model validation on testing patients. (A and B) Model fits to PSA data and corresponding PCaSC dynamics 
for (A) a continuous responder and (B) a patient who developed resistance during his third cycle of treatment. PCaSC 
population is rapidly increasing in resistant patient and slowly in responsive patient due a significantly higher self-
renewal rate (ps = 0.0201 and 0.1118 for patients 091 and 033, respectively). (C) Simulated vs. measured PSA. 
Linear regression obtains an R2 of 0.69. (D) Parameter distributions for the stem cell self-renewal 𝑝2 and ADT 
cytotoxicity 𝛼, with 𝜑 and 𝜌 learned from training patients show similar trend found in training cohort. (E) The model 
predicted responsiveness in cycles two (98% of simulations) and three (90.3% of simulations) for Patient 017. The 
probability of resistant (𝑃(Ω)) was less than its respective 𝜅 (𝜅N = 0.45, 	𝜅O = 0.29) for each cycle. He completed the 
trial on day = 2202. (F) The model predicted resistance in 23.5% of cycle 2 simulations and in 46.6% of cycle 3 
simulations for Patient 054. The predicted probability of resistance in cycle three was greater than 𝜅O so he would be 
advised to stop the trial. Data showed that he became resistant on day = 1384 during the third cycle, as predicted. 
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Fig. 2. Administering IADT without induction period increases TTP when 
compared to IADT with induction and continuous ADT. (A) Kaplan-Meier estimates 
of progression comparing the Bruchovsky IADT protocol with induction (black curve) 
against simulated IADT without induction (blue) and continuous ADT (gray)  
(§ indicates predictive model simulation). With and without induction period, IADT TTP 
significantly increases when compared to continuous therapy TTP. (B) TTP comparison 
between Bruchovsky IADT with induction (black), continuous therapy (gray), and IADT 
without induction (blue). Bruchovsky patients who were lost to follow up are shown in 
red. Open circles denote end of simulation (EOS). Solid lines denote mean TTP (41.18, 
42.83, and 46.9 months for Bruchovsky IADT with induction, continuous therapy, and 
Bruchovsky without induction, respectively). Though median TTP was not reached for 
either IADT protocol (A), the average TTP is longer with IADT without induction, 
compared to IADT with induction and continuous ADT. (C) Model fit to Patient 054 
(Bruchovsky IADT protocol with induction, black curve), simulation without induction 
(blue curve), and simulation of continuous ADT (gray). On the Bruchovsky protocol, the 
patient became resistant after 1384 days. Simulating continuous ADT would result in 
progression after 728 days. Simulating IADT without the induction would increase TTP 
by 7 months. PCaSC dynamics show that treatment selects for PCaSC population, 
accelerating resistance development. Dashed line represent time when ADT is off. 
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Fig. 3. Alternative threshold therapy can significantly improve TTP. (A) Kaplan-
Meier estimates of progression comparing the Bruchovsky IADT protocol (black curve) 
with alternative therapy protocol using a threshold of 10% (maroon), 50% (green), and 
70% (blue) (§ indicates predictive model simulation). A 50% or 70% threshold can 
significantly increase TTP when compared to the Bruchovsky IADT protocol. (B) TTP 
comparison between Bruchovsky IADT (black) and thresholds of 10%, 50%, and 70%. 
Bruchovsky patients who were lost to follow up are shown in red. Open circles denote 
end of trial/simulation (EOS). Solid lines denote mean TTP (41.18 and 41.92 for 
Bruchovsky IADT and 10% trigger, respectively). (C) Alternative threshold therapy 
simulations for Patient 054. On the trial protocol, the patient became resistant after 1384 
days. With a threshold of 10%, resistance could be delayed for 1554 days. With a 
threshold of 50% and 70%, the patient could continue on the protocol for more than 
3600 days. 
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Fig. 4. Docetaxel administration applied prior to or after IADT progression can increase TTP. (A) In those 
patients given docetaxel prior to IADT progression, patients with high 𝑝2 receive the highest benefit. (B) Kaplan-Meier 
estimates of progression comparing Bruchovsky IADT protocol (black) against castration naïve (maroon) and 
castration resistant (blue) docetaxel simulations (§ indicates predictive model simulation). Castration naïve and 
resistant refer to docetaxel given prior to IADT and after IADT progression, respectively. Six cycles of docetaxel prior 
to IADT increased TTP by 21.8 months on average. Ten cycles of docetaxel after IADT progression increased TTP 
by 17.5 months on average. (C) TTP comparison between Bruchovsky IADT (black) and castration naïve (maroon) 
and castration resistant (blue) docetaxel simulations. Bruchovsky patients who were lost to follow up are shown in 
red. Open circles denote end of trial/simulation (EOS). Administering docetaxel after IADT progression significantly 
increases TTP. Solid lines denote mean TTP (41.18, 43.92, and 50.14 months for Bruchovsky IADT, castration naïve, 
and castration resistant, respectively). Comparison of TTP shows that late DOC administration can significantly 
extend TTP when compared to IADT alone. (D-E) Castration naïve (red) and castration resistant (blue) simulations. 
(D) On the Bruchovsky IADT protocol, Patient 012 developed resistance after 839 days. Administering docetaxel 
prior to IADT delayed progression for an additional 27 months, while docetaxel given after progression allowed the 
patient to remain on treatment for an additional 16 months.  (E) Though the trial concluded after 6.5 years, simulations 
shows that Patient 024 could have remained on the Bruchovsky IADT protocol for at least 10 years. Giving docetaxel 
prior to IADT produced similar results. 
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Fig. 5. First cycle 𝒑𝒔 stratifies patients who could benefit from docetaxel after first cycle of IADT. (A) 𝑝2 
distributions between patients who may benefit from docetaxel after first cycle of IADT and those who may not. 
Median 𝑝2 stratifies patients who could benefit from docetaxel after first cycle of IADT. (B) Kaplan-Meier estimates 
of progression with and without docetaxel after first cycle of IADT (§ indicates predictive model simulation). Stratifying 
by median 𝑝2 shows that patients with 𝑝2 ≥ med(𝑝2) (red) experience greatest benefit from docetaxel (gain of 6 
months). For patients with with 𝑝2 < med(𝑝2) (green), there was not a significant benefit in TTP. (C) TTP comparison 
between Bruchovsky IADT with and without docetaxel. Open circles denote end of simulation (EOS). TTP was 
significantly lower in patients with 𝑝2 ≥ med(𝑝2) both with and without docetaxel. Solid lines denote median TTP 
(62.98, 62.27, 34.13, and 38.15 months (left to right) for patients with low 𝑝2 (green) and high 𝑝2 (red), respectively). 
D-E. Simulation results of Bruchovsky IADT with (gray) and without (black) docetaxel after first cycle.  (D) Patient 
084 (𝑝2 = 0.0386 > med(𝑝2)) gains at least 18 months with docetaxel after first cycle. (E) Patient 016 (𝑝2 = 0.0017 <
med(𝑝2)) did not progress with or without docetaxel. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 2, 2019. ; https://doi.org/10.1101/624866doi: bioRxiv preprint 

https://doi.org/10.1101/624866
http://creativecommons.org/licenses/by-nc-nd/4.0/

