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Abstract Recent reports have identified differences in the mutational spectra across human13

populations. While some of these reports have been replicated in other cohorts, most have been14

reported only in the 1000 Genomes Project (1kGP) data. While investigating an intriguing putative15

population stratification within the Japanese population, we identified a previously unreported16

batch effect leading to spurious mutation calls in the 1kGP data and to the apparent population17

stratification. Because the 1kGP data is used extensively, we find that the batch effects also lead to18

incorrect imputation by leading imputation servers and suspicious GWAS associations.19

Lower-quality data from the early phases of the 1kGP thus continues to contaminate modern20

studies in hidden ways. It may be time to retire or upgrade such legacy sequencing data.21
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Introduction25

Batch Effects in Aging Reference Cohort Data26

The last 5 years have seen a drastic increase in the amount and quality of human genome sequence27

data. Reference cohorts such as the International HapMap Project (International HapMap Con-28

sortium, 2005), the 1000 Genomes Project (1kGP)(1000 Genomes Project Consortium, 2010, 2012;29

Consortium et al., 2015), and the Simons Diversity project (Mallick et al., 2016), for example, have30

made thousands of genome sequences publicly available for population and medical genetic analy-31

ses. Many more genomes are available indirectly through servers providing imputation services32

(McCarthy et al., 2016) or summary statistics for variant frequency estimation (Lek et al., 2016).33

The first genomes in the 1kGP were sequenced 10 years ago (van Dijk et al., 2014). Since34

then, sequencing platforms have rapidly improved. The second phase of the 1kGP implemented35

multiple technological and analytical improvements over its earlier phases (1000 Genomes Project36

Consortium, 2012; Consortium et al., 2015), leading to heterogeneous sample preparations and37

data quality over the course of the project.38

Yet, because of the extraordinary value of freely available data, early data from the 1kGP is still39

widely used to impute untyped variants, to estimate allele frequencies, and to answer a wide range40
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of medical and evolutionary questions. This raises the question of whether and how such legacy41

data should be included in contemporary analyses alongside more recent cohorts. Here we point42

out how large and previously unreported batch effects in the early phases of the 1kGP still lead to43

incorrect genetic conclusions through population genetic analyses and spurious GWAS associations44

as a result of imputation using the 1kGP as a reference.45

Mutational Signatures46

Different mutagenic processes may preferentially affect different DNA motifs. Certain mutagens47

in tobacco smoke, for example, have been shown to preferentially bind to certain genomic motifs48

leading to an excess of G to T transversions (Pfeifer et al., 2002; Pleasance et al., 2010). Thus,49

exposure of populations to different mutational processes can be inferred by considering the DNA50

context of polymorphism in search of signatures of different mutational processes (Alexandrov51

et al., 2013; Shiraishi et al., 2015). Such genome-wide mutational signatures have been used as52

diagnostic tools for cancers (e.g., Alexandrov et al. (2013); Shiraishi et al. (2015)).53

In addition to somatic mutational signatures, there has been recent interest in population54

variation in germline mutational signatures which can be revealed in large sequencing panels.55

In 2015, Harris reported 50% more TCC → TTC mutations in European populations compared56

to African populations, and this was replicated in a different cohort in 2017 (Harris, 2015; Harris57

and Pritchard, 2017;Mathieson and Reich, 2017). Strong population enrichments of a mutational58

signature suggests important genetic or environmental differences in the history of each population59

(Harris, 2015; Harris and Pritchard, 2017). Harris and Pritchard further identified distinct mutational60

spectra across a range of populations, which were further examined in a recent publication by61

Aikens et al. (Harris and Pritchard, 2017; Aikens et al., 2019).62

In particular, the latter two studies identified a heterogeneous mutational signature within 1kGP63

Japanese individuals. This heterogeneity is intriguing because differences in germline signatures64

accumulate over many generations. A systematic difference within the Japanese population would65

suggest sustained environmental or genetic differences across sub-populations within Japan with66

little to no gene flow. We therefore decided to follow up on this observation, by using a newly67

sequenced dataset of Japanese individuals from Nagahama.68

While wewere unable to reproduce themutational heterogeneity within the Japanese population,69

we could trace back the source of the discrepancy to a technical artefact in the 1kGP data. In addition70

to creating biases in mutational signatures, this artefact leads to spurious imputation results which71

have found their way in a number of recent publications.72

The results section is organized as follows. We first attempt to reproduce the original signal and73

identify problematic variants in the JPT cohort from the 1kGP. Next, we expand our analysis to the74

other populations in the 1kGP and identify lists of variants that show evidence for technical bias.75

Finally, we investigate how these variants have impacted modern genomics analyses.76

Results77

A peculiar mutational signature in Japan78

Harris and Pritchard reported an excess of a 3-mer substitution patterns *AC→*CC in a portion79

of the Japanese individuals in the 1kGP (Harris and Pritchard, 2017). While trying to follow up on80

this observation in a larger and more recent Japanese cohort from Nagahama, we did not find this81

particular signature. When comparing the allele frequencies between the Japanese individuals from82

the 1kGP and this larger dataset, we observed a number of single nucleotide polymorphisms (SNPs)83

private to one of the two groups (Figure 1). Given the similarity of the two populations, this strongly84

suggests a technical difference rather than a population structure effect. These mismatches were85

maintained despite only considering sites that satisfied strict quality masks and Hardy-Weinberg86

equilibrium in both cohorts.87

When mismatch sites are removed from the 1kGP data, the *AC→*CC signal disappears (Figure88
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Figure 1. Suspicious mutations carried by individuals with low quality data have distinct mutational profiles,
reproduce poorly across studies, and are distributed across the genome. AMutation spectrum of the 1034
variants that associated with Q in the JPT(p < 10−6), compared to a random set of SNPs. The majority of the
variants with significant associations to Q have the *AC→*CC mutational pattern. There is also a slight
enrichment in GA*→GG* and GC*→GG* mutations. These three enrichments can be summarized as G**→GG*.B Joint frequency spectrum plot of the Japanese from the 1000 Genomes Project and a more recent Japanese
dataset from Nagahama. Crosses (+) are variants that associate with Q in the JPT. The histogram on the left of
the plot is the distribution of significant variants. C Genome wide association of the average quality of mapped
bases Q for the 104 Japanese individuals included in the 1000 Genomes Project. This GWAS identified
587 p < 10−8 and 1034 p < 10−6 SNPs that were associated to the average Q of SNPs mapped for an individual
The same analysis was performed independently for each of the populations in the 1000 Genomes Project.
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1). To identify possible technical reasons for the difference, we performed regressions of the89

prevalence of the *AC→*CC mutational signature against different individual-level quality metrics90

provided by the 1kGP (see Figure S14). The average quality of mapped bases Q per individual91

stood out as a strong correlate : Individuals with low Q show elevated rates of the signature. Thus,92

sequences called from low-Q data contain variants that reproduce poorly across studies and exhibit93

a particular mutational signature.94

To identify SNPs that are likely to reproduce poorly across cohorts without having access to a95

second cohort, we performed an association study in the JPT for SNPs that associate strongly with96

low Q (Figure 1). Traditionally, genome wide association studies use genotypes as the independent97

variable. Here we perform a “reverse GWAS”, in the sense that genotypes are now the dependent98

variable that we attempt to predict using the continuous variable Q as the independent variable99

(Song et al., 2015). We use logistic regression of the genotypes on Q and identify 587 SNPs with100

p < 10−8 and 1034 SNPs with p < 10−6. While identifying putative low-quality SNPs to exclude, using101

a higher p-value threshold increases the stringency of the filtering (i.e., excluding SNPs with p < 10−6102

is more stringent than excluding SNPS with p < 10−8). The variants that are associated to Q have an103

enrichment in *AC→*CC mutations, GA*→GG*, and GC*→GG* mutations (Figure 1A). These three104

enrichments can be summarized as an excess of G**→GG* in individuals with low Q.105

Thus, this mutational signal is heavily enriched in Q-associated SNPs, but residual signal remains106

in non-significant SNPs, presumably because many rare alleles found in individuals with low Q107

remain unidentifiable using association techniques (Figure S15). The removal of individuals with108

Q below 30 successfully removes the *AC→*CC signal, however other signals identified by Harris109

and Pritchard appear unchanged (Figure S15). For population genetic analyses sensitive to the110

accumulation of rare variants, the removal of individuals with low Q appears preferable to filtering111

specific low-quality SNPs. For other analyses where quality of imputation matters, identifying112

Q-associated variants may be preferable.113

Identifying suspicious variants in the 1000 Genomes Project114

The distribution of Q across 1kGP populations shows that many populations have distributions115

of Q scores comparable to that of the JPT, especially populations sequenced in the phase 1 of the116

project: sequencing done in the early phases of the 1kGP was more variable and overall tended to117

include lower quality sequencing data (Figure 2). This variability could result from evolving sequence118

platform and protocols or variation between sequencing centres. By 2011, older sequencing119

technologies were phased out, and methods became more consistent, resulting in higher and more120

uniform quality.121

We therefore performed the same reverse GWAS approach in all populations independently,122

and similarly identified Q-associated SNPs in 23 of the 26 populations in the 1kGP, with the phase 1123

populations being most affected, with on average four times as many significantly associated sites124

compared to the phase 3 populations. Over 812 variants were independently associated to low Q125

in at least two populations with p < 10−6 in each (Figure 3).126

To build a test statistic to represent the association across all populations simultaneously, we127

performed a simple logistic regression predicting genotype based on Q with the logistic factor128

analysis (LFA) as an offset to account for population structure or Genotype-Conditional Association129

Test (GCAT) as proposed by (Song et al., 2015). We also considered two alternative approaches to130

account for confounders, namely using the leading five principal components, and using population131

membership as covariates. These models were broadly consistent (See Figure S1).132

This method identifies a total of 24,390 variants associated to Q distributed across the genome133

with 15,270 passing the 1kGP strict mask filter (Figures S9,S10, S11, and S12). Most analyses below134

focus on the 15,270 variants satisfying the strict mask, since these variants are unlikely to be filtered135

by standard pipelines. To account for the large number of tests, we used a two-stage Benjamini &136

Hochberg step-up FDR-controlling procedure to adjust the p-values using a nominal Type-I error137

rate � = 0.01 (Benjamini et al., 2006). We tested SNPs, INDELs and repetitive regions separately as138
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Figure 2. Sampling and sequencing technologies over time in the 1000 Genomes Project. A The average quality
of mapped bases Q for each individual per population included in the 1000 Genomes Project. Populations are
ranked by mean sequencing date (the earliest sequencing date was used for individuals with multiple dates). B
The x-axis is sorted by the sequencing date per individual. The colours indicate the sequencing centres that

produced the data for each individual and the shape indicates whether the individual belongs to Phase 1 or

Phase 3 of the 1000 Genomes project. The bottom plot indicates the sequencing technologies used over time.

5 of 24

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 3, 2019. ; https://doi.org/10.1101/624908doi: bioRxiv preprint 

https://doi.org/10.1101/624908
http://creativecommons.org/licenses/by-nc/4.0/


they may have different error rates (Table 1). Lists of Q-associated variants and individuals with low139

Q are provided in Supplementary Data.140

Q-associated variants are distributed across the genome, with chromosome 1 showing an excess141

of such variants, and other chromosomes being relatively uniform (Figure S2). At a 10kb scale, we142

also see rather uniform distribution with a small number of regions showing an enrichment for such143

variants (Figure S3). An outlying 10kb region in chromosome 17 (bases : 22,020,000 to 22,030,000)144

has 35 Q-associated variants. Distribution of association statistics in this region is provided in Figure145

S4. By contrast, variants that do not pass the 1kGP strict mask are more unevenly distributed across146

the genome(Figure S3).147

Repeat Non-Repeat Total

SNP 3,369 11,059 14,428

INDEL 181 657 838

Total 3,550 11,716 15,270

Table 1. Number of statistically significant variants passing the 1000 Genomes Project strict mask per category.
Variants that are flagged by the 1000 Genomes Project nested repeat mask file were analyzed separately for

FDR calculation. SNPs and INDELs were also analyzed separately. A total of 15,270 are statistically significantly

associated to Q. The number of variants included in the analysis for SNPs, SNPs in repeat regions, INDELs and
INDELs in repeat regions are 19,846,786, 6,312,620, 1,770,315 and 586,342 respectively.

Cell line or technical artifact148

In 2017, Lan et al. resequenced 83 Han Chinese individuals from the 1kGP (Lan et al., 2017). To149

assess consistency between the two datasets, we consider consistency of genotype calls for Q-150

associated variants that are predicted to be polymorphic in these 83 individuals according to the151

1kGP. Among the 296 such variants that were Q-associated in the CHB or CHS, only 6 are present152

in the resequenced data (Figure S7). This is more than our nominal false positive rate of 1% of153

the sites. Thus a small number of variants associated to Q are present in the population but with154

somewhat biased genotypes.155

We did a similar analysis using all variants identified in the GCAT model (rather than only156

variants significantly associated to Q within the CHB and CHS). Of the 15,270 Q-associated variants157

identified globally, 6,307 are polymorphic in the 1kGP for the 83 resequenced individuals (See158

Figure S5). From this subset, only 1,139 (or 18%) are present in the resequenced data. The allele159

frequencies of these variants are nearly identical between datasets suggesting that among these160

83 individuals, these variants are properly genotyped in the 1kGP. There are 5 alleles that show161

differing frequencies between both datasets that are likely explained by biased genotypes. The vast162

majority of polymorphisms associated with Q are not present at all in the resequencing dataset,163

supporting sequencing rather than cell line artifacts.164

Among the 15,270 Q-associated variants, 613 are present on Illumina’s Omni 2.5 chip (See Figure165

S13). These are likely among the small number of variants that are present in the data but exhibit166

biased genotyping in 1kGP.167

Suspicious variants impact modern genomics analyses168

State of the art imputation servers use a combination of many databases including some that169

are not freely available. From the perspective of researchers, they act as black-box imputation170

machines that take observed genotypes as input and return imputed genotypes.171

To investigate whether suspicious calls from the 1kGP are imputed into genotyping studies, we172

submitted genotype data for the first two chromosomes of the 1kGP genotype data to the Michigan173

Imputation Server. We found that all of the variants associated with Q were imputed back in the174

samples. This suggests that the imputation reference panel still includes individuals with low Q,175
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Figure 3. Variants associated with average quality of mapped bases Q in more than one population. The size of
the vertical bars ( I ) are proportional to the -log10(p) value of that SNP. The x axis is ranked by the frequency of

occurrence of a SNP, then by genomic position. Phase 1 populations are marked by a star ( * ). The line plot

underneath shows the number of populations for which a variant has reached significance. The populations

that tend to have the most individuals with low Q also tend to have the most variants associated to Q.
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and the dubious variants will be imputed in individuals who most closely match the low-quality176

individual.177

We searched the literature for any GWAS that might have reported these dubious variants as178

being significantly associated with some biological trait, even though there is no particular reason179

for these variants to be associated with phenotypes. The NHGRI-EBI Catalog of published genome-180

wide association studies identified seventeen recent publications that had reported these variants181

as close to or above the genome-wide significant threshold (Table 2).182

Eleven of these studies included the 1kGP in their reference panel for imputation (Xu et al.,183

2012; Lutz et al., 2015; Park et al., 2015; Astle et al., 2016; Herold et al., 2016; Suhre et al., 2017;184

López-Mejías et al., 2017; Tian et al., 2017; Spracklen et al., 2017; Nagy et al., 2017; Gao et al.,185

2018) and another used the 1kGP sequence data and cell lines directly (Mandage et al., 2017). One186

study used an in-house reference panel for imputation (Nishida et al., 2018), two studies genotyped187

individuals and imputed the data using the HapMap II as a reference database for imputation (Kraja188

et al., 2011; Ebejer et al., 2013) and two studies used genotyping chip data (Yucesoy et al., 2015;189

Ellinghaus et al., 2016).190

These articles used a variety of strict quality filters, including Hardy-Weinberg equilibrium test,191

deviations in expected allele frequency and sequencing data quality thresholds. They also removed192

rare alleles and alleles with high degrees of missingness. Despite using state-of-the-art quality193

controls, these variants managed not only to be imputed onto real genotype data, but they also194

reached genome wide significance for association with biological traits.195

These associations are not necessarily incorrect – a weak but significant bias in imputation196

may still result in a correct associations. To distinguish between variants with weak but significant197

association with Q from variants with strong biases, we distinguished between variants where198

the allele frequency difference between individuals with low- and high-Q is larger than a factor of199

two (which naturally separates two clusters of variants on Figure S5). The majority (92.7%) of the200

Q-associated variants are strongly biased in that they are more than twice as frequent in individuals201

with low-Q compared to high-Q data. By contrast, most Q-associated variants reported in the GWAS202

catalogue had weak bias (See Figure S6), with three exceptions. One study reports associations203

with seven Q-associated variants that we find to be highly biased (Mandage et al., 2017). That study204

considered copy number of Epstein-Barr virus sequence in the 1kGP as a phenotype. Thus the205

phenotype in that study is likely confounded by the same technical artefacts that lead to biased206

SNP calling.207

Discussion208

The variants identified in this study are likely to be technical artifacts from legacy technologies.209

Different sequencing technologies will have different error profiles. A report comparing the Genome210

Analyzer II (GAII) to the Illumina HiSeq found that the GAII had much higher rates of reads below a211

quality score of 30 (Minoche et al., 2011) with, for instance, different patterns of quality decrease212

along reads. Differences in read quality and error profiles in turn require different calling pipelines.213

To pinpoint the precise technical source of the discrepancy would require further forensic214

inquiries into the details of the heterogeneous sample preparation and data processing pipelines215

used throughout the 1kGP. Given the progress in sequencing and calling that occurred since the216

early phases of the 1kGP (Figure 2), it is likely that the source of these biases is not longer being217

actively introduced in recent sequence data.218

However, because the 1kGP data is widely used as a reference database, these variants are219

still being imputed onto new genotype data and can then impact association studies for a variety220

of phenotypes. Even though significant association of a variant with a quality metric is not in221

itself an indication that the variant is spurious, we would recommend to carefully examine GWAS222

associations for such variants, e.g. by repeating the analysis without the 1kGP as part of the223

imputation panel.224
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Pubmed ID Journal rsID GWAS

-log10 p
Q

-log10 p
(adjusted)

28654678 PLoS One rs201761909 5.7 78.11

rs201130852 5.05 72.28

rs201255786 5.7 68.97

rs200655768 6.52 66.67

rs184202621 5.52 60.45

rs80274284 6 56.15

rs200699422 5.3 7.43

23527680 Twin Research and

Human Genetics

rs6057648 5.4 20.5

28928442 Nature

Communications

rs201471471 6.52 7.87

26053186 PLoS One rs60136336 5.7 2.25

28270201 Genome Medicine rs453755 7.52 5.29

23023329 Nature Genetics rs103294 *15.3 4.32

28334899 Human Molecular

Genetics

rs103294 *29.3 4.32

28240269 Nature

Communications

rs103294 *72.7 4.32

27863252 Cell rs3794738 *13.15 3.73

29534301 Hepatology rs9273062 *9.7 3.36

21386085 Diabetes rs301 *10.52 3.02

26830138 Molecular Psychiatry rs77894924 6.7 2.77

29617998 Human Molecular

Genetics

rs4963156 *22.4 2.52

28698626 Scientific Reports rs11015915 5.05 2.45

26974007 Nature Genetics rs3124998 *8.05 2.33

26634245 BMC Genetics rs451000 6 2.28

rs443874 5.3 2.26

rs400942 6 2.2

25918132 Toxicological

Sciences

rs76780579 6 2.09

Table 2. Recent publications that reported Q-associated variants as close to or above the genome-wide
significant threshold. The variants reaching genome wide significance have a star ( * ). The black text colour

indicates that this variant is twice as frequent in individuals with Q < 30, grey text colour indicates that these
variants are less than twice as frequent in individuals with Q < 30 (See Figure S6).

For analyses where individual variants cannot be examined individually (mutation profiles,225

distributions of allele frequencies, polygenic risk scores), we would recommend to simply discard the226

Q-associated SNPs or the individuals with Q < 30 (lists of such variants and sample IDs are provided227

in the Supplementary Data). We also recommend that imputation servers discard individuals with228

low Q (or at least provide the option of performing the imputation without). Given the value of freely229

accessible data, resequencing individuals with low Q would also likely be a worthwhile investment230

for the community.231
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Conclusion232

On a technical front, we were surprised that strong association between variants and technical233

covariates in the 1kGP project had not been identified before. The genome-wide logistic regression234

analysis of genotype on quality metric is straightforward, and should probably be a standard in235

a variety of -omics studies. The logistic factor analysis is more computationally demanding but236

produces more robust results (Song et al., 2015). Both approaches produce comparable results.237

More generally, to improve the quality of genomic reference datasets, we can proceed by238

addition of new and better data and by better curation of existing data. Given rapid technological239

progress, the focus of genomic research is naturally on the data generation side. However, cleaning240

up existing databases is also important to avoid generating spurious results. The present findings241

suggest that a substantial fraction of data from the final release of the 1kGP project is overdue for242

retirement or re-sequencing.243

Methods244

Code and data availability245

Since this data is primarily performed using publicly available data, we provide fully reproducible and246

publicly available on GitHub. This repository includes scripts used for data download, processing,247

analysis and plotting.248

Metadata249

The metadata used in this analysis was compiled from each of the index files from the 1kGP file250

system. Average quality of mapped bases Q per sample was obtained from the BAS files associated251

with each alignment file. Each BAS file has metadata regarding each sequencing event for each252

sample. If a sample was sequenced more than once, we took the average of each Q score from253

each sequencing instance. The submission dates and sequencing centres for each sample in the254

analysis was available in the sequence index files.255

Quality Controls256

For the mutation spectrum analysis, we reproduced the quality control and data filtering pipelines257

used by Harris et al. as they applied the current state of the art quality thresholds to remove258

questionable sequences for detecting population level differences. Several mask files were applied259

to remove regions of the genome that might be lower quality, or might have very different mutation260

rates or base pair complexity compared to the rest of the genome. The 1kGP strict mask was used261

to remove low quality regions of the genome, highly conserved regions were removed using the262

phastCons100way mask file and highly repetitive regions were removed using the NestedRepeats263

mask file from RepeatMasker. Furthermore, only sites with missingness below 0.01, MAF less than264

0.1, and MAF greater than 0.9 were considered. In total, 7,786,023 diallelic autosomal variants265

passed our quality controls for the mutation spectrum analysis. We calculated the mutation266

spectrum of base pair triplets for the list of significant variants for the JPT population using a similar267

method as described in (Harris and Pritchard, 2017).268

For the reverse GWAS, the only filtration used was the application of an minor and major269

allele frequency cutoff of 0.000599 (removing singletons, doubletons and tripletons) resulting in270

a total of S=28,516,063 variants included in the test. We also used the NestedRepeats mask file271

to flag variants inside repetitive regions as these were analyzed separately for false discovery272

rate estimation. Variants flagged by the 1kGP strict mask are included in the association test and273

included in the FDR adjustment. These variants are only removed after the FDR and excluded from274

downstream discussion of error patterns, since most population genetics analyses use the strict275

mask as a filter, and we expect to find problematic variants in filtered regions.276
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Testing the association of quality to genotype277

When conducting a statistical analysis of population genetics data, we must account for population

structure. In a typical GWAS, we are interested in modelling the phenotype as a function of the

genotype. Here we have the opposite situation, where the quantitative variable (Q) is used as an
explanatory variable. So we consider models where the genotype y is a function of an expected
frequency �si, based on population structure, and Q. The null model is

ysi ∣ �si ∼ Binomial
(

2, �si
)

. (1)

The expected frequency for a SNP s and individual i can be estimated using principal component278

analysis, categorical population labels, or logistic factor analysis (Song et al., 2015). The alternative279

model then takes in Q as a covariate:280

ysi ∣ qi,h
(i) ∼ Binomial

(

2, logit−1
(

logit(�si) + �sqi
)

)

. (2)

Under the null hypothesis the slope coefficient �s is zero and Model (2) reduces to Model (1).281

�s denotes the association to average quality of mapped bases Q to genotype ys. To test the null282

hypothesis, we use the generalized likelihood ratio test statistic, whose deviance is a measure of283

the marginal importance of adding Q in the model. The deviance test statistic under the null model284

is approximately chi-square distributed with one degrees of freedom.285

We run a total of S regressions, where S is the total number of genomic loci. Given the large286

number of tests, the large proportion of expected null hypotheses and the positive dependencies287

across the genome, we used the two-stage Benjamini & Hochberg step-up FDR-controlling proce-288

dure to adjust the p-values (Benjamini et al., 2006). By using a nominal Type-I error rate � = 0.01, a289

total of 15,270 variants were found to be statistically significance. See Supplementary Data for a list290

of variants and adjusted p-values.291

Individual-specific allele frequency292

Examples of models that are widely used to account population structure include the Balding-

Nichols model (Balding and Nichols, 1995), and the Pritchard- Stephens-Donnelly model (Pritchard
et al., 2000). These and several other similar models used in GWAS studies can be understood in
terms of the following matrix factorization.

L = AH (3)

where the ith column (h(i)
) of theK×I matrixH encodes the population structure of the ith individual

and the sth row of the S ×K matrix A determines how that structure is manifested in SNP s. When
Hardy-Weinberg equilibrium holds, observed genotype can be assumed to be generated by the

following Binomial model.

ysi ∣ �si ∼ Binomial
(

2, �si
)

(4)

for s = 1…S and i = i,⋯ , I , where ysi ∈ {0, 1, 2} and logit(�si) is the (s, i) element of the matrix L293

such that �si is the individual-specific allele frequency.294

To test whether quality is associated to genotype while adjusting for population structure, we

performed the Genotype-Conditional Association Test (GCAT) proposed by (Song et al., 2015). The
GCAT is a regression approach that assumes the following model.

ysi ∣ qi,h
(i) ∼ Binomial

(

2, logit−1
(

K
∑

k=0
askℎki + �sqi

)

)

(5)

for s = 1…S and i = i,⋯ , I (S = 28, 516, 063 and I = 2, 504) and where ℎ̂0i = 1 so that as0 is the295

intercept term and logit(�si) =
∑K

k=0 askℎki. The vectors h
i
of the matrix H are unobserved but can296

be estimated using Logistic Factor Analysis (LFA) (Song et al., 2015) and are therefore used directly297
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in the model. We approximated the population structure using K = 5 latent components from a298

subsampled genotype matrix consisting ofM = 2, 306, 130 SNPs (we picked SNPs from the 1kGP299

OMNI 2.5). To avoid possible biases in computing PCA from the biased variants, we considered the300

genotype matrix L obtained by downsampling 1kGP variants the positions from the OMNI 2.5M301

chip.302

Imputation303

Using the Michigan Imputation Server, we imputed the genotype data from 1kGP for chromosomes304

1 and 2. We used the genotyped data from the 1kGP Omni 2.5M chip genotype data. The VCF file305

returned from the server was then downloaded and used to search for the number of significant306

variants successfully imputed.307
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Supplementary Figures436

Figure S1. Comparison of three logistic regression models for testing association to Q. These methods model
each genotype as a logistic function using principal components (PC), Population membership (Pop) or LFA as

an offset. In these plots we are comparing the deviance from the null model in the 15,270 variants identified

using the LFA model.
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Figure S2. The proportion of Q-associated variants per chromosome.

Figure S3. The number of Q-associated variants per 10kb window across the genome. Grey bars indicate
regions within and black bars indicate regions outside the 1000 Genomes Project strict mask. One region not

flagged by the 1000 Genomes Project strict mask in chromosome 17 has more than 10 variants per window.

Figure S4. Manhattan plot of the − log10(p) values for the reverse GWAS logistic regression analysis for the 10kb
window with the most Q-associated variants per 10kb across the genome.
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Figure S5. Site frequency spectrum plot comparing the allele frequency difference between individuals with
low- and high-Q. The black dashed lines indicates equal allele frequencies while the red dotted line for variants
twice as frequent in individuals with Q scores below 30. Two clusters of are visible, where the majority (92.7%)
of the Q-associated variants are more than twice as frequent in individuals with low-Q.
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Figure S6. Site frequency spectrum plot comparing the frequency of Q-associated variants identified in
publications, for individuals with Q scores above and below 30. The black dashed lines indicates equal allele
frequencies while the red dotted line for variants twice as frequent in individuals with Q scores below 30. Each
of the rsIDs of the variants are labelled for clarity.
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Figure S7. Site frequency spectrum plot comparing the original 1000 Genomes Project data to the high depth
resequence data for variants that, in the 1000 Genomes Project, are both associated with Q and polymorphic in
the 83 individuals that were resequenced. Among the 296 variants associated with Q in the single population
tests within the 1000 Genomes Project CHB and CHS, 6 are present in the resequenced data (Lan et al., 2017).

Figure S8. Site frequency spectrum plot comparing the original 1000 Genomes Project data to the high depth
resequence data for variants that, in the 1000 Genomes Project, are both associated with Q and polymorphic in
the 83 individuals that were resequenced. Among the 6,307 variants associated with Q in the GCAT model
including all populations, 1,139 are present in the high depth resequenced individuals.
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Figure S9. Association of SNPS in non-repetitive regions with Q. AManhattan plot of the − log10(p) values for the
reverse GWAS logistic regression analysis for SNPs in non repetitive regions. There are 15,018 SNPs that reach p
values greater than p < 0.01 after performing a two-stage Benjamini and Hochberg FDR adjustment. The circles (
o ) are variants that reached values greater than 20, for clarity we implemented hard ceiling at 20. B QQ plot of
the unadjusted p values for the reverse GWAS logistic regression analysis for SNPs in non repetitive regions.
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Figure S10. Association of indels in non-repetitive regions with Q. AManhattan plot of the − log10(p) values for
the reverse GWAS logistic regression analysis for INDELs in non repetitive regions. There are 2,121 INDELs that

reach p values greater than p < 0.01 after performing a two-stage Benjamini and Hochberg FDR adjustment. The
circles ( o ) are variants that reached values greater than 20, for clarity we implemented hard ceiling at 20. B QQ
plot of the unadjusted p values for the reverse GWAS logistic regression analysis for INDELs in non repetitive

regions.
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Figure S11. Association of SNPS in repetitive regions with Q. AManhattan plot of the − log10(p) values for the
reverse GWAS logistic regression analysis for SNPs in repetitive regions. There are 4,405 SNPs that reach p
values greater than p < 0.01 after performing a two-stage Benjamini and Hochberg FDR adjustment. The circles (
o ) are variants that reached values greater than 20, for clarity we implemented hard ceiling at 20. B QQ plot of
the unadjusted p values for the reverse GWAS logistic regression analysis for SNPs in repetitive regions.
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Figure S12. Association of indels in repetitive regions with Q. AManhattan plot of the − log10(p) values for the
reverse GWAS logistic regression analysis for INDELs in repetitive regions. There are 642 INDELs that reach p
values greater than p < 0.01 after performing a two-stage Benjamini and Hochberg FDR adjustment. The circles (
o ) are variants that reached values greater than 20, for clarity we implemented hard ceiling at 20. B QQ plot of
the unadjusted p values for the reverse GWAS logistic regression analysis for INDELs in repetitive regions.
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Figure S13. Estimated frequency and association strength of Q- associated variants present on Illumina’s Omni
2.5 chip. Variants highly associated to Q tend to have low global allele frequencies.

Figure S14. Sequencing metrics against the prevalence of the *AC→*CC mutational signature in 1000 Genomes
Project. The average quality per mapped bases Q per individual shows some clustering with individuals with
low-quality data showing elevated rates of the signature.

Figure S15. Comparing mutational signatures after removing Q-associated variants and after removing
individuals with low Q. A The *AC→*CC mutational signature in JPT remains despite removing variants
associated to quality. B Removing individuals with average quality per mapped bases Q below a threshold of 30
removes the mutational signature completely.
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