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24 Abstract

25 The wealth of information deliverable from transcriptome sequencing (RNA-seq) is 

26 significant, however current applications for variant detection still remain a challenge due to the 

27 complexity of the transcriptome. Given the ability of RNA-seq to reveal active regions of the 

28 genome, detection of RNA-seq SNPs can prove valuable in understanding the phenotypic diversity 

29 between populations. Thus, we present a novel computational workflow named VAP (Variant 

30 Analysis Pipeline) that takes advantage of multiple RNA-seq splice aware aligners to call SNPs in 

31 non-human models using RNA-seq data only. We applied VAP to RNA-seq from a highly inbred 

32 chicken line and achieved >97% precision and >99% sensitivity when compared with the matching 

33 whole genome sequencing (WGS) data. Over 65% of WGS coding variants were identified from 

34 RNA-seq. Further, our results discovered SNPs resulting from post translational modifications, 

35 such as RNA editing, which may reveal potentially functional variation that would have otherwise 

36 been missed in genomic data. Even with the limitation in detecting variants in expressed regions 

37 only, our method proves to be a reliable alternative for SNP identification using RNA-seq data. 

38

39 Introduction

40 Detection of single nucleotide polymorphisms (SNPs) is an important step in 

41 understanding the relationship between genotype and phenotype. The insights achieved with next 
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42 generation sequencing (NGS) technologies provide an unbiased view of the entire genome, exome 

43 or transcriptome at a reasonable cost (1). Most methods for variant identification utilize whole-

44 genome or whole-exome sequencing data, while variant identification using RNA-seq remains a 

45 challenge because of the complexity in the transcriptome and the high false positive rates (2). 

46 However, having access to RNA sequences at a single nucleotide resolution provides the 

47 opportunity to investigate gene or transcript differences across species at a nucleotide level. 

48 RNA-seq is applicable to numerous research studies, such as the quantification of gene 

49 expression levels, detection of alternative splicing, allele-specific expression, gene fusions or RNA 

50 editing (3). Workflows have been developed to address identifying SNPs from RNA-seq reads in 

51 human, including SNPiR and eSNV-detect. SNPiR (4) employs BWA aligner and variant calling 

52 using GATK UnifiedGenotyper, eSNV-detect (5) relies on combination of two aligners (BWA and 

53 TopHat2) followed by variant calling with SAMtools and Opposum + Platypus (6). Opposum 

54 reconstructs RNA alignment files to make them suitable for haplotype-based variant calling with 

55 Platypus (7). These workflows require adequate sampling of RNA-seq reads and accurate mapping 

56 of the RNA-seq reads to the reference genome to avoid false positive SNP calls. In addition to the 

57 limitation of these workflows being specifically designed for human samples, they either rely on 

58 outdated variant calling procedures, or preprocessing RNA-seq data to make it suitable for variant 

59 calling, thus making it difficult to sufficiently compare their performance. 

60 Due to the aforementioned limitations, we designed a workflow, called VAP (Variant 

61 Analysis Pipeline), to reliably identify SNPs in RNA-seq in non-human models. VAP takes into 

62 consideration current state-of-the-art RNA-seq mapping, variant calling algorithms and the GATK 

63 best practices recommended by the Broad Institute (8), Our workflow consists of (i) multiple 

64 splice-aware reference-mapping algorithms that make use of the transcripts annotation data, (ii) 
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65 variant calling following the Genome Analysis Toolkit (GATK) best practices, and (iii) stringent 

66 filtering procedures. We propose that calculating specificity will estimate the likelihood of 

67 detecting a true variant in RNA-seq and sensitivity will determine how likely RNA-seq is able to 

68 detect an expressed SNP if it is present in a transcribed gene (9). Overall the results indicate that 

69 RNA-seq can be an accurate method of SNP detection using our VAP workflow.

70

71 Materials and methods

72 VAP Workflow

73 Fig 1 shows the flowchart of the VAP workflow. Read quality was assessed using FastQC 

74 and preprocessed using Trimmomatic (10) and/or AfterQC (11) when required. Pre-processed 

75 RNA-seq reads were mapped to the reference genome and known transcripts employing three 

76 splice-aware assembly tools; TopHat2 (12), HiSAT2 (13) and STAR (14). All three programs are 

77 open-source and are highly recommended for reliable reference mapping of RNA-seq data (15). 

78 SAMtools was used to convert the alignment results to BAM format (16). The mapped reads 

79 undergo sorting, adding read groups, and marking of duplicates using Picard tools package 

80 (https://broadinstitute.github.io/picard/). The SNP calling step uses the GATK toolkit for splitting 

81 “N” cigar reads (i.e. splice junction reads), base quality score recalibration and variant detection 

82 using the GATK HaplotypeCaller (17). Lastly, the filtering steps entail assigning priority to SNPs 

83 found in all three mapping plus SNP calling steps, to minimize false positive variant calls. The 
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84 priority SNPs were filtered using the GATK Variant Filtration tool and custom Perl scripts. SNPs 

85 were filtered using the set of read characteristics summarized in Table 1; low quality calls (QD < 

86 5), or variants with strong strand bias (FS > 60), or low read depth (DP < 10) and SNP clusters (3 

87 SNPs in 35bp window) were excluded from further analysis. Custom filtering was described as 

88 follows: nucleotide positions with less than 5 reads supporting alternative allele and nucleotide 

89 positions with heterozygosity scores < 0.10 are eliminated to prevent ambiguous SNP calls. 

90 Alternative-allele ratio (Het) is calculated by Heti = aai / ti ; where i is the nucleotide base pair, aai 

91 is the alternate read depth at the location i, and ti is the total number of reads at location i. After 

92 filtering, the variants were annotated using the ANNOVAR (18) and VEP (19) software. 

93

94 Fig 1. Flow chart of the VAP workflow. FastQ files are QC using FastQC, mapped using three 

95 aligners. BAM files are pre-processed by Picard and GATK, then merged, annotated and filtered 

96 to achieve high-confident SNPs.

97

98 Table 1. Criteria used in the VAP filtering workflow.

Criteria Threshold

GATK - VariantFiltration tool

ReadRankPosSum (RRPS)

Quality by depth (QD)

Read depth (DP)

Fisher’s exact test p-value (FS)

Mapping Quality (MQ)

SnpCluster

RRPS < -8

QD < 5

DP < 10

FS > 60

MQ < 40

3 SNPs in 35bp
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Mann-Whitney Rank-Sum (MQRankSum) MQRankSum < -12.5

Alternative allele supporting read depth ALTreads < 5

Alternative allele ratio (Het) aa / t  0.10

99

100 DNA and RNA Sequencing data

101 We obtained RNA-seq and whole genome sequencing (WGS) data for highly inbred 

102 Fayoumi chickens from previously published works. For RNA-seq, samples were collected from 

103 the brain and liver generating of 2 chicken embryos at day 12, generating 117 million 75bp pair-

104 end reads (Zhuo et al., 2017; the NCBI Sequence Read Archive Accession number SRP102082) 

105 (20). For WGS, pooled DNA samples were constructed from individual DNA isolates from blood 

106 from 16 birds, contributing to 241 million 100bp pair-end reads (Fleming et al., 2016; the NCBI 

107 Sequence Read Archive Accession number SRP192622) (21). Both samples were sequenced on 

108 the Illumina HiSeq platform. The transcriptome and whole genome of these samples have been 

109 deeply sequenced to provide sufficient coverage for accurate identification of variants from RNA 

110 and DNA of the same line. Having matched RNA and DNA samples allows for suitable 

111 verification of RNA SNP calls, making our datasets good candidates for evaluating the accuracy 

112 of our VAP methodology.

113

114 600K Genotyping data

115 Samples were genotypes individually and included 96 samples from two purebred (23 

116 samples) and one crossbred (73 samples) commercial broiler populations. The samples were 
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117 genotyped with the ThermoFisher Axiom Chicken Genotyping Array (22). The raw genotyping 

118 data (cel files) was analyzed with the Gallus gallus 5.0 genome (from Axiom server) using the 

119 Axiom Analysis Suite Software (version 3.0.1) following the software’s Best Practices Workflow 

120 using recommended settings for agricultural animals. The final results were exported, including a 

121 raw VCF of all the genotype calls and a txt file of all variants with >= 97% call rate. The txt file 

122 was utilized to filter low quality variants from the raw VCF.

123

124 RNA-seq Mapping, Variant Calling and Filtering

125 RNA-seq samples were mapped with the three RNA-seq mapping tools; TopHat2 (v 2.1.1), 

126 HiSAT2 (v 2.1.0) and STAR (v 2.5.2b) 2-pass method using default parameters to the NCBI Gallus 

127 gallus Build 5.0 reference genome and the mapping files were converted to BAM using SAMtools 

128 (v 1.4.1). The BAM files were processed, and variants were called using Picard tools (v 2.13.2) 

129 and GATK (v 3.8-0-ge9d806836) through the VAP pipeline. We used ANNOVAR (v 2017Jul16) 

130 and VEP (v 91) to annotate variants on the basis of gene model from RefSeq, Ensembl and the 

131 UCSC Genome Browser. We retained SNPs found with all three mapping tools and those that 

132 fulfilled the filtering criteria in Table 1. SNPs found in WGS data or present in dbSNP (Build 150) 

133 are identified as “verified” variants, while those not found are tagged as “novel”. The precision of 

134 the VAP workflow was determined as the number of all known RNA-seq variants divided by the 

135 total number of known and novel RNA-seq variants, i.e. Precision = verifiedSNPs / (verifiedSNPs + 

136 novelSNPs).

137

138 WGS Mapping, Variant Calling and Filtering
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139 We mapped the WGS data with BWA-mem (v 0.7.16a-r1181) (23) using default 

140 parameters to the NCBI Gallus gallus Build 5.0 reference genome. Variant calling was performed 

141 using Picard and GATK HaplotypeCaller, following the recommendations proposed by Van der 

142 Auwera et al (24) and Yiyuan Yan et al (25). Similar filtering parameters for RNA-seq as 

143 previously described were applied using the GATK Variant Filtration tool and custom scripts 

144 (Table 1). To allow a fair comparison between RNA-seq and WGS variants, we estimated 

145 specificity with the fraction of coding exonic variants identified from WGS.

146

147 Sensitivity and Specificity of Verified RNA-seq SNPs

148 To determine the accuracy of detecting a true variant from RNA-seq using our VAP 

149 workflow, we calculated the specificity and sensitivity of the verified RNA-seq SNPs. Because we 

150 are using transcriptome data, we should only be theoretically able to detect SNPs at sites expressed 

151 in our data. Sensitivity analysis will evaluate the accuracy of our pipeline to correctly detect known 

152 SNPs using RNA-seq, and specificity analysis will assess how likely a SNP is detected by RNA-

153 seq compared to WGS. To do this, we further characterized our verified RNA-seq SNPs as “true-

154 verified” and “non-verified” SNPs. A true-verified SNP (TS) is a SNP with the same 

155 corresponding dbSNP and/or WGS data, and a non-verified SNP (NS) is where the genotype does 

156 not match the dbSNP/WGS data. Also, SNPs not detected in RNA-seq but found in WGS and 

157 validated using dbSNP are called “DNA-verified” SNPs (DS). Sensitivity is calculated as the 

158 number of TS divided by the number of TS plus the number of PS (i.e. Sensitivity = TS / (TS + 

159 NS)). While specificity is estimated as the number of TS divided by the number of TS plus the 

160 number of DS (i.e. Specificity = TS / (TS + DS)) (4,9).  
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161

162 Gene Expression Analysis

163 Variants in expressed regions were identified by gene quantification analysis using 

164 StringTie v1.3.3 (26) on the TopHat2, HISAT2 and STAR BAM files. The average FPKM 

165 (fragments per kilobase of transcript per million fragments mapped) was calculated for specificity 

166 analysis.

167

168 RESULTS

169 The Multi-Aligner Concept

170 VAP uses a multi-aligner concept to call SNPs confidently. The application of multiple 

171 aligners reduces false discovery rates significantly, as shown in the eSNV-detect pipeline (5,27). 

172 However, we do not assign a confidence hierarchy on candidate SNP calls, rather SNP detected 

173 from all three aligners are weighted equally, thus all consensus SNPs are obtained and filtered 

174 based on the filtering criteria listed above. High percentages of similar SNPs were observed 

175 between all three tools, which shows that using a splice-aware read mapper is appropriate for 

176 reference mapping using RNA-seq, unlike with BWA. Table 2 provides the summary of mapping 

177 and variant calling statistics from the multiple aligners.

178
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179 Table 2. Summary from the multiple aligners; read mapping statistics and variant calls.

Tools % reads 

mapped

% reference 

covered

Variants SNPs % similar 

SNPs

TopHat 87.7 23.07 578655 535505 96.12

HiSAT 90.53 23.44 636948 583547 88.21

STAR 87.81 23.7 798696 708391 72.66

180

181 SNPs detected in RNA-seq data.

182 Our method identified 514,729 SNPs from all 3 aligners before filtering, which assures 

183 reduction of false positives calls (Fig 2). After filtering, 282,798 (54.9%) high confidence SNPs 

184 remain, of which 97.2% (274,777 SNPs) were supported by evidence from WGS or dbSNP v.150 

185 (Fig 3). The verified sites exhibited a transition-to-transversion (ts/tv) ratio of 2.84 and estimated 

186 ts/tv ratio of ~5 for exonic regions and thus a good indicator of genomic conservation in transcribed 

187 regions. For the remaining (novel) 8,021 SNPs, we observed slightly lower ts/tv ratio (2.81) than 

188 for the verified sites. The variant sites showed a clear enrichment of transitions, inclusive of A>G 

189 and T>C mutations (73.9%), indicative of mRNA editing and the dominant A-to-I RNA editing 

190 (28) (Fig 4). 

191

192 Fig 2. Comparison of RNA-seq SNPs Identified in the different mapping tools.

193 Fig 3. Comparison of RNA-seq SNPs found in either dbSNP or WGS.

194 Fig 4. The mutational profile of RNA-seq variants.

195
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196 SNPs Allele Frequencies

197 The 282,798 SNPs called, were grouped based on their variant allele frequencies 

198 (VAF).  VAFs were calculated by dividing the number of reads supporting the variant allele by 

199 the total number of reads obtained. SNPs were grouped as homozygous to the alternative allele 

200 with , and heterozygous with . We found 264,790 (93.6%) and 18,008 𝑉𝐴𝐹 ≥  0.99 𝑉𝐴𝐹 <  0.99

201 (6.4%) SNPs were classified as homozygous alternate and heterozygous, respectively. Not 

202 surprisingly, most of the predicted SNPs were homozygous to the non-reference allele, suggesting 

203 the large genetic difference of the Fayoumi breed compared to the reference genome Gallus gallus 

204 (Red Jungle Fowl) is influenced by polymorphisms (29,30). This will aid in identifying the 

205 genomic regions/loci enriched by selection.

206

207 Precision and Sensitivity of RNA-seq SNPs

208 A high proportion of SNPs detected in RNA-seq data are true variants. The sensitivity of 

209 SNP calls are similar for both heterozygous and homozygous sites (Fig 5). With the high number 

210 of calls verified via dbSNP, the precision is much higher for homozygous variants compared to 

211 heterozygous variants, indicating that a high proportion of expected variants can be detected using 

212 RNA-seq with adequate coverage. The decreased precision in heterozygous SNPs may suggest 

213 expression of the non-reference allele, and this provides the opportunity to study the effects of 

214 genetic variation on the different transcriptional events, such as RNA editing, alternate splicing 

215 and allelic specific expression, which cannot be explained using DNA sequencing data (31).

216

217 Fig 5. Comparison of SNPs identified as homozygous and heterozygous in RNA-seq.
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218

219 Functional classification of RNA-seq and WGS variants

220 Thirteen percent of the RNA-seq SNPs were predicted to be within protein-coding regions 

221 while >1% of the WGS SNPs were in coding regions when annotated against both the NCBI and 

222 ENSEMBL gene database for chicken; the remaining SNPs were found in non-coding or 

223 regulatory regions (Table 3). Due to difficulty in annotating and determining the impact of 

224 polymorphisms on non-coding or regulatory regions, only polymorphisms found on coding regions 

225 were further evaluated.

226

227 Table 3. SNPs belonging to different annotation categories.

Annotation 

categories

Number (%) Mean VAF ( SD) No. homozygous (VAF 

0.99) a≥

Intergenic 162240 (57) 0.99 (0.06) 152732 (94%)

Up/downstream 11793 (4) 0.99 (0.07) 10817 (92%)

Intronic 58028 (20) 0.99 (0.05) 55744 (96%)

Exonic 36702 (13) 0.99 (0.08) 33051 (90%)

Non-

synonymous

8599 (3) 0.98 (0.11) 7664 (89%)

Synonymous 28094 (10) 0.99 (0.07) 25353 (90%)

RN
A

Stop-

gain/loss

39 (<1) 0.96 (0.16) 34 (87%)
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Splicing 8 (<1) 1 (0) 8 (100%)

UTR3/UTR5 13421 (5) 0.98 (0.09) 11895 (88%)

ncRNA 106 (<1) 0.97 (0.13) 100 (94%)

Intergenic 2865498 (82) 0.99 (0.07) 2659382 (92%)

Up/downstream 30741 (<1) 0.99 (0.08) 28558 (93%)

Intronic 565323 (16) 0.99 (0.07) 522577 (92%)

Exonic 34294 (1) 0.98 (0.09) 31875 (92%)

Non-

synonymous

8946 (<1) 0.97 (0.11) 8283 (86%)

Synonymous 25274 (<1) 0.99 (0.08) 23526 (93%)

Stop-

gain/loss

74 (<1) 0.98 (0.11) 66 (69%)

Splicing 17 (<1) 0.97 (0.13) 17 (100%)

UTR3/UTR5 12476 (<1) 0.99 (0.07) 11515 (92%)

W
GS

ncRNA 302 (<1) 0.99 (0.07) 277 (91%)

Intergenic 125218 (58) 1 (0.04) 112462 (89%)

Up/downstream 9787 (4) 0.99 (0.04) 6908 (87%)

Intronic 47894 (22) 1 (0.04) 43636 (91%)

Exonic 22551 (10) 0.99 (0.05) 19533 (87%)

Non-

synonymous

5165 (2) 0.99 (0.06) 4486 (87%)

O
ve

rl
ap

 R
N

A 
&

 W
GS

 b

Synonymous 17363 (8) 0.99 (0.05) 15030 (86%)
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Stop-

gain/loss

23 (<1) 1 (0.01) 17 (39%)

Splicing 5 (<1) 1 (0) 5 (100%)

UTR3/UTR5 9943 (5) 0.99 (0.04) 8475 (85%)

ncRNA 73 (<1) 0.99 (0.03) 63 (86%)

228 a The percentages are in relation to the number of SNPs within the annotation category.

229 b The percentages are in relation to the number of SNPs within the annotation category in RNA.

230

231 Specificity of RNA-seq SNPs

232 To calculate specificity of our VAP methodology, we focused on variants in coding regions 

233 to allow for fair comparison between RNA-seq and WGS data. Approximately 66% of the coding 

234 variants identified by WGS were discovered using RNA-seq alone (Fig 6). Given that RNA-seq 

235 required less sequencing effort and computational requirements (e.g. 234 million for RNA-seq 

236 compared to the 482 million for WGS sequencing reads used in our case study). Using RNA-seq 

237 data is advantageous because it enriches for expressed genic regions compared to WGS and 

238 therefore will increase the power to detect functionally important SNPs impacting protein 

239 sequence.

240

241 Fig 6. Overlap of SNPs found in coding regions from RNA-seq and WGS. 66% of the coding 

242 variants identified in WGS data were found in RNA-seq. However, the remaining WGS coding 

243 variants were not detected as a result of either: lack of expression/transcription (“no 

244 transcription”), the position was homozygous in RNA (“no variation”), “found but filtered” 
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245 signifying that the position was detected but removed by one of our filtering steps, or “filtered” 

246 which indicates the position was heterozygous but filtered because it didn’t meet the default 

247 parameters for variant detection.

248

249 We then compared the RNA-seq SNPs in expressed genes (having FPKM > 0.1), and the 

250 specificity increased from 66% to over 82% (Fig 7). This shows that a large fraction of genes are 

251 expressed at very low levels (Fig 8). Overall the results prove our methodology can achieve high 

252 specificity for variant calling in expressed regions of the genome.

253

254 Fig 7. Specificity and number of RNA-seq SNPs detected in relation to the genes expressed 

255 (FPKM values).

256 Fig 8. Distribution of expression levels for genes with RNA-seq SNPs.

257

258 Comparison of RNA-seq and 600k Genotyping Panel SNPs

259 Given the high accuracy of genotyping arrays for SNP discovery, we compared our initially 

260 verified RNA-seq SNPs with the genotyped chromosomes identified in the 600k chicken 

261 genotyping panel (i.e. the autosomes (GGA1 – 33). A low percentage (10%) of our RNA-seq SNPs 

262 overlap with the 600k SNPs (Fig 9), which is largely due to the limitation in the number of variants 

263 the genotyping panel is able to capture across different samples. However, 99.9% of the 

264 genotyping SNPs were found in dbSNP, proving dbSNP is an adequate method for in silico 

265 verification of our RNA-seq SNPs.

266

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 1, 2019. ; https://doi.org/10.1101/625020doi: bioRxiv preprint 

https://doi.org/10.1101/625020
http://creativecommons.org/licenses/by/4.0/


16

267 Fig 9. Comparison of SNP calls between 600k Genotyping panel, RNA-seq SNPs, WGS 

268 SNPs and dbSNP v150. (a) all autosomal SNPs and (b) autosomal SNPs found in exons.

269

270 RNA–DNA differences (RDD) sites

271 As mentioned before, our RNA-seq SNPs were notably contributed from transitions which 

272 may be attributed to mRNA editing. Further classifications of the RNA-seq SNPs detected in exons 

273 reveal 34% of the exonic SNPs verified by dbSNP were not identified in our WGS data. The 

274 majority of the RNA SNPs were not found in WGS because of the mapping and filtering 

275 parameters as shown in Table 4. Interestingly, 24% of these SNPs were not found because the 

276 alternate nucleotide was not present in the DNA sequence potentially indicating RNA–DNA 

277 differences (RDD). Consequently, these RDD sites may result from post-transcriptional 

278 modification of the RNA sequence, such as RNA editing or alternative splicing.

279

280 Table 4. Explanation for the 14,147 RNA SNPs not found in WGS data.

Reason for absence Number of SNPs (%)

Position was heterozygous in WGS but filtered because it didn’t 

meet the default parameters for variant detection.

1225 (8.7)

No reads were mapped to region/position. 1693 (12)

Position was homozygous in WGS 3471 (24.5)

Position was heterozygous in WGS but removed by our custom 

filtering pipeline

7758 (54.8)

281
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282 RNA editing is the most prevalent form of post-transcriptional maturation processes that 

283 contributes to transcriptome diversity. It involves the modification of specific nucleotides in the 

284 RNA sequence without altering its template DNA (28,32). From our dataset, we identified the 

285 three non-synonymous RDD mutations on CYFIP2, GRIA2 and COG3 previously validated by 

286 Frésand et al. in chicken embryos(28) (Table 5). This demonstrates the VAP methodology ability 

287 to detect conserved RNA editing phenomena and that it can be used in further discovery of novel 

288 post-transcriptional editing events.

289

290 Table 5. Potentially functional RDD Candidates found in Fayoumi.

CHROM POSITION DNA 

NUCLEOTIDE

RDD 

NUCLEOTIDE

AMINO 

ACID 

CHANGE

GENE 

SHORT 

NAME

VAF 

SCORE

chr 1 167798513 A G I/V COG3 0.524

chr 4 21653669 A G R/G GRIA2 0.703

chr 13 11398088 T C K/E CYFIP2 0.375

291

292 DISCUSSION

293 RNA-seq is instrumental in understanding the complexity of the transcriptome. Several 

294 methodologies have provided approaches to understanding the varied aspects occurring in the 
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295 transcriptome, but little has been done in its application to identifying variants in functional regions 

296 of the genome. To this aim, we designed the VAP workflow, a multi-aligner strategy using a 

297 combination of splice-aware RNA-seq reference mapping tools, variant identification using 

298 GATK, and subsequent filtering that allows accurate identification of genomic variants from 

299 transcriptome sequencing. Our results show very high precision, sensitivity and specificity, though 

300 limited to SNPs occurring in transcribed regions. 

301 Considering the mapping phase of RNA-seq reads is a crucial step in variant calling, we 

302 devised a reference mapping strategy using three RNA-seq splice-aware aligners to reduce the 

303 prevalence of false positives. The use of the splice-aware aligner allows for accurate assembly of 

304 reads because it makes use of both the genome and transcriptome information simultaneously for 

305 read mapping.

306 The ability to call variants from RNA-seq has numerous applications. It enables validation 

307 of variants detected by genome sequencing. It also uncovers potential post-transcriptional 

308 modifications for gene regulation (Table 5) and allows for detection of previously unidentified 

309 variants that may be functionally important but difficult to capture using DNA sequencing or 

310 exome sequencing at lower cost. Although our WGS data was not sequenced from the same 

311 samples that gave rise to the RNA-seq data, this could explain the poor overlap in our datasets, for 

312 instance, 87.5% of RNA-seq variants in exons were not found in WGS though well characterized 

313 in dbSNP (Fig 6). Therefore, RNA variants can be used in identifying genetic markers for genetic 

314 mapping of traits of interest, thus offering a better understanding of the relationship between 

315 genotype and phenotype.

316 Our VAP methodology shows high precision in calling SNPs from RNA-seq data. It is 

317 however limited by the RNA-seq experiments; RNA SNPs are detected only on the transcripts 
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318 expressed. Regardless of comprehensive coverage, variant detection in some portions of the 

319 genome are not guaranteed by RNA-seq because of the potential lack of expression. Also, allele-

320 specific gene expression or tissue-specific gene expression might hamper the discovery of genomic 

321 variants given that the allele carrying the variant might not be expressed or the tissues collected 

322 might not express the genes of interest. 

323 SNP genotyping offers a highly accurate and alternative method of SNP discovery, and 

324 thus offers an additional in silico method of validation of our RNA-seq SNPs. However, a low 

325 overlap with the 600K chicken genotyping panel was observed (Fig 9). This low overlap is most 

326 likely due to the limitations in genotyping panels currently available for any given organism. The 

327 genotyping panels are limited by the number of variants they are able to capture across different 

328 genetic backgrounds (22). Not surprisingly, the majority of the 600K genotyping variants were 

329 also identified in dbSNP, proving that dbSNP an excellent choice for in silico validation.

330 Nevertheless, VAP allows the detection of variants even for lowly expressed genes. To 

331 obtain higher confidence in variant calls, pooling multiple data sets (i.e. RNA-seq from different 

332 tissues) can increase the coverage thereby facilitate variant discovery in regions of interest that 

333 would have otherwise been missed. Our study demonstrates that variants calling from RNA-seq 

334 experiments can tremendously benefit from an increased number of reads increasing the coverage 

335 of genomic regions especially for whole genome analysis; nevertheless even our small sample size 

336 allowed for reliable calling of variants and enriching for variants in exonic regions. 

337 Despite the limitations of calling genomic variants from RNA-seq data, our work shows 

338 high sensitivity and specificity in SNP calls from RNA-seq data. SNP calling from RNA-seq will 

339 not replace WGS or exome-sequencing (WES) approaches but rather offers a suitable alternative 

340 to either approaches and might complement or be used to validate SNPs detected from either WGS 
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341 or WES. Overall, we present a valuable methodology that provides an avenue to analyze genomic 

342 SNPs from RNA-seq data alone. 

343
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