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18 Abstract: 

19 Continuous glucose monitoring (CGM) is an essential part of diabetes care. Real-time 

20 CGM data are beneficial to patients for daily glucose management, and aggregate summary 

21 statistics of CGM measures are valuable to direct insulin dosing and as a tool for researchers in 

22 clinical trials. Yet, the various commercial systems still report CGM data in disparate, non-

23 standard ways. Accordingly, there is a need for a standardized, free, open-source approach to 

24 CGM data management and analysis. Functions were developed in the free programming 

25 language R to provide a rapid, easy, and consistent methodology for CGM data management and 

26 analysis. Summary variables calculated by our package compare well to those generated by 

27 various CGM software, and our functions provide a more comprehensive list of summary 

28 measures available to clinicians and researchers. Consistent handling of CGM data using our R 

29 package may facilitate collaboration between research groups and contribute to a better 

30 understanding of free-living glucose patterns. 

31
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32 Introduction

33 Continuous glucose monitoring (CGM) technology has transformed diabetes care over 

34 the past 15 years by allowing clinicians to measure free-living glucose patterns. During this 

35 period, CGM use has increased from < 5% of patients to almost 50% in some age groups [1]. 

36 With recent reports detailing the benefits of CGM time in range metrics as predictive of long-

37 term vascular outcomes [2] and as an indicator of glucose management or estimated hemoglobin 

38 A1c (HbA1c) [3], CGM use will likely continue to increase in both research and clinical settings. 

39 Despite the increasing use of CGM for treatment and research, a standardized, free, open-source 

40 approach to data management and analysis is lacking [4]. 

41 CGM manufacturers use proprietary algorithms to create reports and calculate summary 

42 measures for patients and clinicians. As a result, it may be difficult to compare results obtained 

43 using different CGM devices and to understand the sources of variability that could influence 

44 CGM outcomes. In addition, research questions may require summary measures that are not 

45 available in accompanying reports (e.g., use of a different cut-point for hyperglycemia).  

46 Furthermore, use of the summary values provided by each CGM platform sometimes requires 

47 that data be entered by hand into a database or spreadsheet prior to analysis. This is a time-

48 consuming and error prone process that will benefit from automation. The use of a free and open 

49 source program to analyze raw sensor glucose values will enable researchers to define their own 

50 variables of interest and standardize calculation of summary measures across different CGM 

51 devices.

52 There have already been a few attempts to develop such systems, including the EasyGV 

53 macro-enabled Excel workbook [5], AGP Report (agpreport.org), and Tidepool (tidepool.org). 

54 However, there are reports suggesting that EasyGV poorly matches other calculations of mean 
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55 amplitude of glycemic excursion (MAGE) [6], and it does not permit the various definitions of a 

56 significant excursion (i.e. greater than 1 standard deviation (SD), 2 SDs, etc.). Although 

57 Tidepool appears to be an excellent option for patients and clinicians, it is not free for use in 

58 research, and many smaller investigator-initiated studies cannot afford the additional expense. 

59 Also, their open source code requires significant coding knowledge in multiple programming 

60 languages which limits accessibility and widespread use. 

61 To address this need, we have developed a package written entirely in the statistical 

62 programming language R (R Foundation for Statistical Computing, Vienna, Austria). The 

63 package currently works with data from Diasend (www.diasend.com), Dexcom 

64 (www.dexcom.com), iPro 2 (http://professional.medtronicdiabetes.com/ipro2-professional-cgm), 

65 Libre (www.freestylelibre.us), and Carelink (www.medtronicdiabetes.com/products/carelink-

66 personal-diabetes-software), with plans to add support for other platforms as CGM technology 

67 advances. Additionally, data can be manually formatted to work with these functions if 

68 necessary. The package is available on The Comprehensive R Archive Network (CRAN) under 

69 the name ‘cgmanalysis’ and the source code can be found at 

70 https://github.com/childhealthbiostatscore/R-Packages, which allows for version control and 

71 forking if users need to alter functionality, and includes a short user guide for those with limited 

72 R experience. 

73

74 Summary Measures of Glycemia

75 Although CGM is not a new technology, there is still debate regarding the advantages 

76 and disadvantages of various CGM metrics for use in clinical care and as research outcomes. The 

77 American Diabetes Association (ADA) recently proposed a set of key metrics for CGM analysis 
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78 [7], all of which are calculated by our code, in addition to the glucose management index (GMI) 

79 [3], time in range [2], and other variables proposed by Hernandez et al.[8]. An easy method to 

80 calculate these important summary variables from a variety of sources of CGM data has the 

81 potential to contribute to the standardization of the use of these metrics. A list of summary 

82 variables produced by our default code is available in Table 1, and Table 2 provides 

83 comparisons between the package and proprietary software. The code can be easily modified to 

84 include further variables of interest, to be released in future version updates. Further, because the 

85 package is open source, individual users can create their own modifications.

86

87 Methods

88 Package Design 

89 Our package consists of three simple functions: cleandata(), cgmvariables(), and 

90 cgmreport(). The data cleaning function iterates through a directory of CGM data exports and 

91 produces new files that then serve as input to the CGM variable calculator and the CGM report 

92 generator. The initial directory can contain files from different sources, as the function identifies 

93 the relevant timestamp and glucose values for each file format. By default, the cleaning function 

94 will fill in gaps in glucose data less than 20 minutes long using linear interpolation. It will also 

95 remove 24-hour periods containing gaps larger than 20 minutes, so that there will be an equal 

96 number of daytime and nighttime values, important for calculating some variables, such as AUC. 

97 The user can specify a different maximum gap to fill by interpolation and can also choose 

98 whether to remove days with larger gaps. Ideally, the CGM data should be exported and then 

99 cleaned using this package, and not manually edited. However, if a file does require manual data 
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100 editing, these functions will work on the three-column format detailed in the package 

101 documentation. 

102 Once the data have been cleaned, the CGM variables described in Table 1 are calculated 

103 using the cgmvariables() function. By default, blood glucose must be above a threshold for at 

104 least 35 minutes or below a threshold for at least 10 minutes to count as an excursion, but these 

105 parameters can be changed by the user if necessary. Likewise, daytime (e.g. for daytime vs. 

106 nighttime AUC or maximum glucose) is defined as 6:00 to 22:00 by default, but these can be set 

107 depending on user needs. MAGE is calculated using Baghurst’s algorithm [9], which we have 

108 coded in R. By default, the function includes blood glucose excursions greater than 1 SD from 

109 the mean in calculation of MAGE, but there are options for 1.5 SD and 2 SD as well. 

110 Table 1: Summary Measures of Glycemia

CGM Variable Definition
percent_cgm_wear The number of sensor readings as a 

percentage of the number of potential 
readings (given time worn).

average_sensor Mean of all sensor glucose values
estimated_a1c Estimated HbA1c based on the equation: 

(46.7 + average glucose in mg/dL) / 28.7[1]
gmi Glucose management indicator based on the 

equation: 3.31 + (0.02392  average glucose 
in mg/dL)7

q1_sensor First quartile sensor glucose value
median_sensor Median sensor glucose value
q3_sensor Third quartile sensor glucose value
standard_deviation Standard deviation of all sensor glucose 

values
cv Coefficient of variation of all sensor glucose 

values (SD/mean)
min_sensor Minimum of all sensor glucose values
max_sensor Maximum of all sensor glucose values
excursions_over_*** The number of local glucose peaks with an 

amplitude greater than *** mg/dL
min_spent_over_*** The total length of time that sensor glucose 

was at or above *** mg/dL
percent_time_over_*** Minutes spent above *** mg/dL, as a 
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percentage of the total time CGM was worn
avg_excur_over_***_per_day The number of glucose peaks above *** 

mg/dL averaged per 24-hour period of CGM 
wear

min_spent_under_** The total length of time that sensor glucose 
was at or below ** mg/dL

percent_time_under_** Minutes spent below ** mg/dL, as a 
percentage of the total time CGM was worn

min_spent_70_180 Minutes spent in the range 70 – 180 mg/dL 
(inclusive)

percent_time_70_180 Minutes spent in the range 70 – 180 mg/dL 
(inclusive), as a percentage of the total time 
CGM was worn

daytime_*** *** of all sensor glucose values during 
specified daytime hours

nighttime_*** *** of all sensor glucose values during 
specified nighttime hours

auc Approximate area under the sensor glucose 
curve, calculated using the trapezoidal rule

r_mage MAGE calculated according to Baghurst’s 
algorithm

j_index Calculated based on the equation: 0.324  
(average glucose in mg/dL + standard 
deviation of glucose levels)^211

conga Continuous overall net glycemic action, 
default n = 1 hour11

modd Mean of daily differences
lbgi Low blood glucose index
hbgi High blood glucose index

111

112 Our code was originally written to produce data tables for upload to a Research 

113 Electronic Data Capture (REDCap) database [10], which influenced the selection of variable 

114 names in the final output. These names can be changed in the code itself or by simply editing the 

115 function’s output. These variables are stored in separate columns of a new data frame (the 

116 function’s output), with each record identified by the patient ID.

117 In addition to producing calculated variables, our package can also plot CGM data in a 

118 few ways. First, the function concatenates all the CGM data in the specified directory into one 

119 data table and plots the aggregate data in the style of the standard AGP report 
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120 (http://www.agpreport.org), the aggregate daily overlay (ADO). This method uses Tukey 

121 smoothing after rounding each timepoint to the nearest 10-minute mark, then plots the median, 

122 inter-quartile range, and 5 and 95 percentiles at each time of day (with plans to add more options 

123 in the future). The package also produces a similar aggregate plot with a Loess-smoothed 

124 (locally estimated scatterplot smoothing) average overlaid on points representing every single 

125 glucose value. For smaller data sets, this type of plot gives a meaningful overview of daily 

126 glucose trends. Finally, the third type of plot uses a Loess-smoothed average for each patient 

127 with glucose values color-coded by participant. 

128 Comparison of cgmanalysis package and proprietary software

129 Our functions were compared to proprietary CGM software using clinically collected 

130 data from iPro 2, Carelink 670G, Dexcom Clarity, and Diasend. The data were exported from 

131 each platform, formatted using the cleandata() function, then summarized using the 

132 cgmvariables() and cgmreport() functions. The data were not cleaned prior to plotting and 

133 summary variable calculation, and summary variable parameters were altered from default (e.g. 

134 defining an excursion as 15 minutes above or below threshold for iPro 2 data) in order to better 

135 match the CGM results. Because each CGM device provides different and limited summary 

136 variables, we were only able to compare a small subset of our package’s output and were not 

137 able to directly test more complex variables, such as MAGE or CONGA. 

138

139 Results

140 Fig 1 is an example of the ADO plot made using approximately 25,000 simulated CGM 

141 values, and Fig 2 is the version of the ADO with Loess smoothing, using the same data as in Fig 

142 1.  Fig 3 is the patient-specific plot, made with a subset of the simulated data.
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143 Fig 1: Aggregate Daily Overlay (Tukey Smoothing) 
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145 Fig 2: Aggregate Daily Overlay (Loess Smoothing) 

146 Fig 3: Daily Overlay per Subject (LOESS Smoothing) 
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148 Table 2 shows the results of summary variable comparisons between four different 

149 proprietary CGM devices and our cgmanalysis package. Most of the differences in these 

150 comparisons are small and the result of rounding. Overall the package appears to be capable of 

151 reproducing proprietary calculations when run with non-default settings, although in the 

152 comparison to the iPro 2, there was a difference of 1 high excursion.

153
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154 Table 2: Summary Variable Comparisons

155 A. iPro 2 software (high excursion defined as > 140 mg/dL for 15 minutes, low defined as < 
156 60 mg/dL for 15 minutes)

cgmanalysis iPro 
# Sensor Values 2000 2000
Highest 282 282
Lowest 70 70
Average 126.87 127
Standard Dev 30.79 31
# High Excursions 31 32
# Low Excursions 0 0
% Time Above 140 24.85 24
% Time Below 60 0 0

157
158 B. Carelink 670G

cgmanalysis
Carelink 
670G

Average 123.65 124
Standard Dev 37.53 38

159
160 C. Dexcom Clarity

cgmanalysis
Dexcom 
Clarity

Average 175.68 176
Standard Dev 67.10 68
Time in Range 55.66 56

161
162 D. Diasend

cgmanalysis Diasend
# Sensor Values 184 184
Highest 411 411
Lowest 54 54
Average 193.23 193
Standard Dev 89.67 89
Values above 200 44.57% 44.57%

163

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 1, 2019. ; https://doi.org/10.1101/625137doi: bioRxiv preprint 

https://doi.org/10.1101/625137
http://creativecommons.org/licenses/by/4.0/


Page 11 of 15

164 Figs 4a-d show the comparisons of the graphical outputs produced by the proprietary 

165 software and the cgmanalysis package. In the graphs produced by the cgmanalysis package, 

166 glycemic patterns at each hour of the day are clearly visible and match the CGM device outputs 

167 well.  However, some of the proprietary software appear to apply different smoothing 

168 algorithms, resulting in slightly different patterns across time. 

169 Fig 4a: “cgmanalysis” Package Plots Compared to iPro 2 Daily Overlay

170 Clockwise from top left: Aggregate Daily Overlay (Tukey Smoothing), Aggregate Daily Overlay 
171 (Loess Smoothing), iPro 2 Daily Overlay
172
173 Fig 4a Tukey AGP (Top Left) Legend
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175
176 Fig 4b: “cgmanalysis” Package Plots Compared to Carelink 670G Daily Overlay
177
178 Clockwise from top left: Aggregate Daily Overlay (Tukey Smoothing), Aggregate Daily Overlay 
179 (Loess Smoothing), Carelink 670G Daily Overlay
180
181 Fig 4b Tukey AGP (Top Left) Legend
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183
184 Fig 4c: “cgmanalysis” Package Plots Compared to Dexcom Clarity Daily Overlay
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185
186 Clockwise from top left: Aggregate Daily Overlay (Tukey Smoothing), Aggregate Daily Overlay 
187 (Loess Smoothing), Dexcom Daily Overlay
188

189 Fig 4c Tukey AGP (Top Left) Legend
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191 Fig 4c Dexcom Clarity (Bottom) Legend

192

193 Fig 4d Tukey AGP (Top Left) Legend
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195 Fig 4d Tukey AGP (Bottom) Legend

196

197
198 Fig 4d: “cgmanalysis” Package Plots Compared to Diasend Daily Overlay
199
200 Clockwise from top left: Aggregate Daily Overlay (Tukey Smoothing), Aggregate Daily Overlay 
201 (Loess Smoothing), Diasend Daily Overlay
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202

203 Discussion

204 The summary variables produced by the cgmanalysis package match those from the 

205 proprietary software for all platforms assessed, and differences are mainly due to rounding 

206 discrepancies.  Compared to the iPro 2, the number of high excursions differed by 1.  Without 

207 access to the iPro algorithms we are unable to determine why these counts disagree, but the 

208 difference is not likely of clinical significance. The graphical outputs from the cgmanalysis 

209 package are similar to the CGM device output in terms of the glycemic patterns by hour of day, 

210 although there are small differences, likely due different smoothing algorithms.  

211 There are several limitations to our comparison of the cgmanalysis package to the 

212 proprietary software output.  CGM devices only calculate a few summary variables, and 

213 accordingly it is difficult to test this package cohesively. Also, gold standard calculations do not 

214 exist for many of these variables, which makes verifying our results difficult. We hope that by 

215 making this package freely available and open source, these limitations will be minimized 

216 through widespread testing. Perhaps the greatest limitation to the software itself is the lack of an 

217 easy to use graphical user interface (GUI), which may prevent its use by clinicians with limited 

218 programming experience. We have included detailed documentation in the CRAN package, as 

219 well as a new-user guide on GitHub, but using the package still requires enough technical 

220 knowledge that it may be inaccessible to some users. None of the authors are software engineers, 

221 and the package is undoubtedly less efficient than it could be. Again, we hope that the free and 

222 open source nature will contribute significantly to improving the code over time, both as a result 

223 of outside contributions and our own planned updates.
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224 In conclusion, our software provides a standardized, free, open-source approach to 

225 manage and analyze CGM data, enabling sharing of data across technology platforms, 

226 collaboration between research groups, and more effective use of the growing pool of CGM data. 

227 The advantage of using R functions rather than licensed statistical software, or a web-based or 

228 desktop application, is that R is freely available and open source. Clinicians or investigators can 

229 alter the code according to their needs and anyone can contribute to the development of the 

230 program, as CGM research and technology advance.   

231

232
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