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Abstract 

Motivation: Clinical sequencing aims to identify somatic mutations in cancer cells for accurate 

diagnosis and treatment. However, most widely used clinical assays lack patient-matched 

control DNA and additional analysis is needed to distinguish somatic and unfiltered germline 

variants. Such computational analyses require accurate assessment of tumor cell content in 

individual specimens. Histological estimates often do not corroborate with results from 

computational methods that are primarily designed for normal-tumor matched data and can be 

confounded by genomic heterogeneity and presence of sub-clonal mutations. 

Methods: All-FIT is an iterative weighted least square method to estimate specimen tumor 

purity based on the allele frequencies of variants detected in high-depth, targeted, clinical 

sequencing data. 

Results: Using simulated and clinical data, we demonstrate All-FIT’s accuracy and improved 

performance against leading computational approaches, highlighting the importance of 

interpreting purity estimates based on expected biology of tumors. 

Availability and Implementation: Freely available at http://software.khiabanian-lab.org. 
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INTRODUCTION 

Clinical sequencing assays aim to identify somatic mutations in cancer cells for accurate 

diagnosis and treatment of patients through therapeutic targeting of driver alterations and tumor 

mutational signatures (Garraway, 2013). Although in most scientific settings, patient-matched 

tumor and germline DNA samples are sequenced for this purpose, most implementations for 

clinical sequencing lack control DNA data and often only tumor specimens undergo genomic 

profiling (Frampton, et al., 2013). Moreover, because of recent rulings on qualified coverage for 

genomic diagnostic assays (United States Food & Drug Administration, 2017), tumor-only 

sequencing is poised to become one of the most utilized methods for genomic profiling of 

cancer patients in clinical settings.  

Most specimens that are collected in the clinic are formalin-fixed, paraffin-embedded 

(FFPE), and contain a mixture of tumor cells as well as surrounding non-tumor cells, which 

include stromal and hematopoietic populations. Hybrid-capture, high-depth sequencing (i.e. 

>500x depth of coverage) permits identification of genomic alterations with high statistical 

confidence in measuring variant allele frequencies (VAF), especially compared to whole-

genome and whole-exome sequencing methods (Damodaran, et al., 2015; Shaw and Maitra, 

2019). Detected variants in tested samples may arise from germline mutations present in all 

cells, somatic genomic alterations present in all cancer cells, and somatic genomic alterations 

present in a subset of cancer cells or occasionally in a subpopulation of non-tumor cells 

(Severson, et al., 2018). The power to detect these small somatic clones depends on 

sequencing depth and relative abundance of each cell population that harbors them. In the 

absence of patient-matched control DNA, the Single Nucleotide Polymorphism database 

(dbSNP) as well as variants detected in healthy individuals within public or private cohorts are 

often used to identify and remove germline variants (Li, et al., 2017). However, this approach 

fails to capture rare germline alterations that are specific to each patient, leading to possible 
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misclassification of germline mutations as somatic. Therefore, determining whether detected a 

mutation is germline or truly somatic as well as resolving variant clonality and loss of 

heterozygosity (LOH), require additional analyses based on an accurate estimation of 

specimen’s tumor content or purity. LOH events are shown to be pertinent for assessing 

treatment efficacy (Brok, et al., 2017; McGranahan, et al., 2017; Pawlyn, et al., 2018; Sade-

Feldman, et al., 2017). Yet, without accurate estimates of purity, even the availability of patient-

matched germline data may not help resolve evidence of LOH in the tumor, which can occur by 

deletion of the wild-type copy or by duplication of the mutant allele with the loss of the wild-type 

(copy-neutral LOH). Moreover, accurate estimates of specimen purity help resolve genomic 

diversity in both tumor and non-tumor cell populations, which adds to the complexity of 

interpreting a tumor’s mutational landscape and confounds distinguishing sub-clonal tumor 

alterations from those in a subpopulation of non-tumor cells (Ptashkin, et al., 2018; Riedlinger, 

et al., 2019; Severson, et al., 2018). In particular, characterizing clonal mutations, which are 

present in all cancer cells and are postulated as the best candidates for targeted treatment 

versus mutations that are sub-clonal and are present only in a subpopulation of cells 

(Amirouchene-Angelozzi, et al., 2017), is contingent upon correct estimation of the tumor 

content in sequenced specimen.  

Histological approximations of tumor purity are not always available or when they are, they 

do not provide the required confidence for these analyses. For this reason, various 

computational algorithms have been developed that utilize patient-matched germline 

sequencing or process-matched normal control data to infer tumor content of tumor specimens 

as well as genome-wide ploidy within the tumors (Yadav and De, 2015). A few methods have 

been developed to simultaneously estimate tumor purity and average ploidy from somatic DNA 

aberrations; however, the mathematical models used in some of the most utilized methods are 

optimized for SNP array platforms (Carter, et al., 2012; Van Loo, et al., 2010). Other approaches 

such as CNAnorm (Gusnanto, et al., 2012) and Control-FREEC (Boeva, et al., 2012) assess 
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copy-number and tumor ploidy of a specimen by correcting its contamination with normal cells, 

normalizing and scaling the data across tumor genomes. Nevertheless, these approaches 

operate under the assumption that most tumors are composed of a single clone, which causes 

the estimates to be inaccurate for heterogenous tumors with multiple subpopulations. Other 

algorithms such as Pyclone (Roth, et al., 2014) and EXPANDS (Andor, et al., 2014) utilize tumor 

purity and based on a clustering of somatic mutations with similar cellular prevalence, they 

predict clonal size and mutations specific to each subpopulation. Regardless of the strengths or 

weaknesses of these methods, they are primarily designed for normal-tumor pairs, and when 

applied to high-depth, tumor-only data from targeted genomic regions, they produce results that 

are confounded by the limited scope of sequencing as well as genomic heterogeneity, 

aneuploidy, and presence of sub-clonal mutations in cancer cell populations. Therefore, there is 

a need for strategies that take advantage of the power of tumor-only clinical sequencing assays 

for high-confidence measurements of VAF and focal copy-number variations (CNV). To this 

end, we developed All-FIT (Allele-Frequency-based Imputation of Tumor Purity), a weighted 

least square method that through iterative steps estimates specimen purity and its associated 

confidence intervals using detected variants’ VAF and CNV. We evaluate All-FIT’s performance 

using a comprehensive set of simulated datasets and compare its results with those from 

ABSOLUTE (Carter, et al., 2012), the leading algorithm for estimating purity from VAF and CNV 

measurements in matched normal-tumor data. Finally, we apply All-FIT to high-depth 

sequencing of 1,861 specimens from patients with solid tumors and show that histological 

estimates of purity often do not correspond to observed VAF of detected variants, especially 

when their biological nature is considered. Specifically, we demonstrate the concordance of our 

estimates with expected biology of tumors, by focusing on specimens from a wide range of 

cancer types that harbor known hot-spot mutations in the TP53 gene as well as colon cancer 

specimens that carry pathogenic substitutions or indels in the APC gene, highlighting the 

prevalence of LOH that affect these commonly mutated tumor suppressors.  
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MATERIALS & METHODS 

All-FIT weighted least square approach of imputing tumor purity 

All-FIT considers all detected variants as its input and requires their observed VAF (f), their total 

sequencing depth (D), and their loci’s chromosomal copy-number or ploidy (Y). We assume the 

positions of all mutations have chromosomal copy-number of 2 in normal cells. Because the 

germline-vs-somatic status of the detected variants is yet to be determined, we need to evaluate 

the likelihood of Y somatic and Y germline mutational models with their corresponding mutated 

allele’s copy-number cm (1≤cm≤Y) for each variant. For a given purity (p), we calculate cancer 

cell fraction (CCF) for somatic mutations as the ratio of observed VAF divided by the expected 

VAF. Although CCF for unfiltered germline heterozygous mutations is always equal to 1, CCF 

for LOH, copy-neutral LOH, and amplification events at the loci of germline mutations can be 

calculated and generalized as a function of p (Figure 1). Intuitively, at correct estimate of p, 

CCFs are equal to one for the variants’ likeliest mutational model. Therefore, we postulate that if 

detected variants are clonal, the parsimonious estimate of tumor content is the value that 

optimizes ∑ �����
� � ∑ ∑ �������		
����� � 1

��
�

�
� ; here, i and j count N variants and M 

mutational models, respectively, and Wij is the Akaike Information Criterion (AIC) weight of 

mutational model j for variant i, calculated based on binomially distributed variant depths. To 

calculate Wij, we follow the approach previously implemented in the LOHGIC algorithm 

(Khiabanian, et al., 2018), where AIC weights are based on binomial likelihoods of observing a 

variant with a VAF of f and focal ploidy of Y at total sequencing depth of D across 2Y possible 

mutational models.  

Since most tumors are heterogeneous in nature and contain both clonal and sub-clonal 

alterations, we need to evaluate variants’ clonality, which is not possible when p is unknown. 

Therefore, we propose to first use all detected variants to obtain an estimate for purity that can 

guide the identification and exclusion of unfiltered germline heterozygous and sub-clonal 
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somatic variants. Next, using the remaining putatively clonal events, we optimize L to estimate p 

and its confidence intervals (Figure 2a). All-FIT is implemented in Python 3 and is freely 

available at http://software.khiabanian-lab.org, along with the scripts to generated simulations.  

Simulated data 

To evaluate All-FIT’s performance, we generated 10,000 simulated sets of variants for known 

values of p (range: 0.1 – 0.9), including a mixture of clonal and sub-clonal mutations with 

varying ploidy values (dataset 1). The number of variants for each simulated set ranged from 20 

to 100 for which we considered equal probability to be under the following eight mutational 

models: somatic models with heterozygous, LOH, copy-neutral LOH, and high-ploidy 

alterations, as well as germline models with heterozygous, LOH, copy-neutral LOH, and high-

ploidy alterations. These sets included at least one somatic heterozygous mutation; at most 

25% of somatic heterozygous mutations were assigned to be sub-clonal. We randomly assigned 

to each variant a sequencing depth, d, ranging from 300x to 1000x (uniformly distributed). Each 

variant’s observed VAF was randomly generated from a binomial distribution using d as the 

number of trials and expected VAF of variant’s assigned mutational model as the success 

probability. 

To assess the broad utility of All-FIT, we also generated two other datasets with similar 

conditions. Dataset 2 was enriched with sub-clonal mutations assumed to be somatic 

heterozygous variants with cm = 1. To enrich simulated sets with sub-clonal mutations, we 

increased the number of somatic heterozygous variants to at least 25% of total number of 

variants and required at most 67% of them to be sub-clonal. Dataset 3 was enriched with high 

ploidy mutations (i.e. variants with 3 ≤ Y ≤ 8 and cm ≥ 1), where we simulated approximately 100 

sets for each percentage of high ploidy mutations, ranging from 0% of the variants (absence of 

high ploidy variants) to 99% (almost all variants in the sample are high ploidy changes). 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 2, 2019. ; https://doi.org/10.1101/625376doi: bioRxiv preprint 

https://doi.org/10.1101/625376


Patient data 

Patient samples are composed of tumor FFPE specimens submitted for clinical sequencing 

using the FoundationOne assay (Foundation Medicine, Inc., Cambridge, MA). These samples 

were sequenced with Illumina Hiseq at >500x on libraries that were enriched with hybrid-

capture, using custom bait-sets that target exons and selected introns of 315 genes; after 

sequencing, these data were analyzed with a process-matched normal control, which is an 

internally-validated mixture of 10 heterozygous diploid HAPMAP samples, that facilitated 

normalization of sequence coverage distribution across baited targets. All types of genomic 

mutations, such as substitutions, small indels, rearrangements, and copy-number changes, 

were identified for each specimen as previously described (Frampton, et al., 2013). All 

specimens were reviewed by board-certified pathologists at Foundation Medicine to assess 

tumor purity. Moreover, empirical Bayesian sampling methods were employed to 

computationally estimate tumor purity and base ploidy.  

Anonymized patient-matched clinical and sequence data were acquired from the Cancer 

Institute’s Bioinformatic Data Warehouse under IRB protocols of 2012002075, 2017000027, and 

20170001364 (Foran, et al., 2017). Data included age at diagnosis, cancer type, clinical history, 

and deep sequencing data.  

Comparing performance with ABSOLUTE 

ABSOLUTE (Carter, et al., 2012) is the most widely used computational method to estimate 

tumor purity and ploidy from somatic variants, especially in the form of copy-number alterations. 

It requires an input of CNV and optionally single nucleotide variants. To compare All-FIT’s 

performance with ABSOLUTE, we distributed simulated variants around the coding genome and 

provided additional information on chromosomal location to the algorithm. Since ABSOLUTE 

requires only somatic variants from matched-normal data, we excluded all simulated germline 

variants. We simulated CNV based on all variants with Y not equal to 2 and generated one-
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exon-sized, 99 base-pair segments to reflect higher local ploidy. (Equal length for CNV 

segments implied that they contributed equal weight in the analysis). Furthermore, copy-number 

neutral regions were added into the simulated sets, with number of exons identified in the region 

as the number of probes within the segments. We used ABSOLUTE’s default parameters and 

chose estimated tumor purity with the highest likelihood for a model with genome-wide ploidy of 

two. 

RESULTS 

Intuitively, All-FIT imputes p by choosing the value that classifies most clonal variants into their 

respective most likely mutational models. Therefore, it requires variants with various models to 

break ambiguous inferences to estimate p with high statistical confidence (i.e. small confidence 

interval). For example, if we assume a ploidy of 2 in both normal and tumor cells for a variant 

with observed VAF of 0.35, the variant can be considered as a somatic mutation that is 

heterozygous when p = 0.70, under LOH when p = 0.52, or under copy-neutral LOH when 

p = 0.35. If all variants in a simulated set have observed allele frequencies of about 0.35, it will 

be impossible to infer a purity estimate that distinguishes mutational models (Figure 2b). If the 

dataset also includes variants with observed VAF of 0.70, the ambiguity between three possible 

purity estimates can be broken because at p = 0.70, variants with observed VAF of 0.35 are 

classified as somatic heterozygous mutations while variants with observed VAF of 0.70 are 

classified as somatic mutations with copy-neutral LOH (Figure 2c-e). Germline heterozygous 

variants with VAF of ~0.50 play minimal role in breaking the ambiguity between different purity 

models, as their CCF is always equal to one, while sub-clonal somatic variants can confound 

this approach as by definition, their CCFs are never equal to one. 

All-FIT provides graphical presentations of ∑ �����
�  for individual variants (1 to N) and 

presents estimated p and its confidence interval at each step, demonstrating how All-FIT 

imputes p often with a higher certainty by removing germline heterozygous and sub-clonal 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 2, 2019. ; https://doi.org/10.1101/625376doi: bioRxiv preprint 

https://doi.org/10.1101/625376


somatic variants. Using the estimated purity, All-FIT calculates the expected VAF from the 

likeliest mutational model to which each variant belongs, based on an implementation of the 

LOHGIC algorithm, presenting the concordance between the expected and observed VAFs. It 

also shows the distribution of CCFs, demonstrating the clonal distribution of variants at the 

estimated p. Ideally, at correct purity, CCF distribution should peak at one with some sub-clonal 

populations detected at lower fraction, if there are any. Nevertheless, some variants may exist 

at a fraction that is larger than 1, due to ambiguity in their most likely mutational model 

(Figure 3). 

Purity estimation in simulated data 

We used simulated datasets to assess the accuracy of All-FIT (Methods). For dataset 1, 

comprised of both clonal and sub-clonal mutations with varying ploidy, All-FIT’s purity estimates 

corroborated with simulated values in 86% of cases with Pearson’s correlation coefficient (r) of 

0.99 (Figure 4a). All-FIT’s estimates were independent of the total number of mutations in a 

sample, as the difference between estimated and simulated purities mainly centered around 

zero especially when there were at least 15 variants per sample. (Supplementary Figure S1). 

When we removed all germline variants from dataset 1 to simulate presence of matched-normal 

DNA, All-FIT’s accuracy improved to 92%, indicating the robustness of the method by only 

considering somatic alterations (Supplementary Figure S2). In contrast, ABSOLUTE’s 

estimated p agreed with simulated p in only 35% of cases with r = 0.69 (Figure 4b). It should be 

noted that assessing All-FIT’s estimated values within their 2σ confidence intervals provided 

additional predictive power compared to ABSOLUTE, which produces a single purity estimate 

without a confidence interval.  

Next, we increased genomic heterogeneity in simulated data by varying the number of sub-

clonal mutations. We classified the simulated sets into four categories based on the percentage 

of sub-clonal mutations: <25%, 25-50%, 50-75%, and >75%. All-FIT’s accuracy was not 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 2, 2019. ; https://doi.org/10.1101/625376doi: bioRxiv preprint 

https://doi.org/10.1101/625376


affected by the presence of sub-clonal mutation, when the simulated sets were comprised of 

<25% of sub-clonal mutations. However, when the percentage of sub-clonal mutations varied 

from 25% to 75%, All-FIT increasingly misestimated p by about one-half, and when more than 

75% of the mutations were designated to be sub-clonal, All-FIT estimated purity as one-half of 

simulated values for most cases. Nonetheless, the correlation coefficient remained higher than 

0.76 regardless of the proportion of sub-clonal variants (Figure 5a), and it further improved to 

0.84 when we removed germline variants, excluding the 38 simulated sets that had >75% of 

sub-clonal mutations (Supplementary Figure S3). On the other hand, correlation coefficient for 

ABSOLUTE’s estimates was lower than those of All-FIT, with its best performance of r = 0.75 

when only <25% of variants were sub-clonal. It was also susceptible to misestimating purity at 

one-half of the simulated p, even with a few sub-clonal variants present (Figure 5b). 

We also tested our algorithm with a simulated dataset enriched with variants at high ploidy. 

Here, accuracy of All-FIT decreased to 79% while retaining the Pearson’s r = 0.99 

(Supplementary Figure S4a); All-FIT performed well with nearly perfect correlation coefficient 

unless more than 75% of variants had ploidy > 2 with an increase in the size of the confidence 

intervals. Particularly, All-FIT overestimated purity at low simulated values, possibly due to 

relatively similar AIC weights across models, which could lead to a lack of power in breaking 

ambiguity (Supplementary Figures S5a and S5c). This could also be explained by the 

presence of low frequency variants that were not sub-clonal but were designated as such and 

excluded, leading to an increase in estimated p. As for ABSOLUTE, its accuracy dropped to 

24% with r = 0.54 (Supplementary Figure S4b), and its correlation coefficient steadily 

decreased as the percentage of variants at high ploidy increased (Supplementary Figure S5c). 

It also often overestimated tumor purity regardless of the percentage of high ploidy mutations 

(Supplementary Figure S5b). ABSOLUTE’s predicted p with the highest likelihood mostly 

coupled with ploidy of two; however, the results were not significantly altered even when we 

removed the requirement of ploidy to be equal to two.  
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Purity estimation in patient data 

To test our method with patient data, we applied All-FIT to 1,861 solid tumor specimens that 

were sequenced using the FoundationOne assay (Foundation Medicine, Inc., Cambridge, MA). 

Corroborating previous studies (Carter, et al., 2012), the correlation between our computational 

estimates and histological values (i.e. pathological purity) was low (Pearson’s r = 0.28) 

(Figure 6). However, since all purity estimates must be interpreted in the context of tumor 

biology, we selected 199 tumor specimens that harbored only one hot-spot mutation in the TP53 

gene (including R175H, R248Q, R273H, R273C, R248W, R282W, R213*, G245S, Y220C, 

R196*, and R342*) with detected VAF > 0.10. These mutations are commonly seen in all tumor 

types and are known to be pathogenic. Cells with these mutations are also anticipated to have 

lost their wild-type copy while duplicating the mutated allele (copy-neutral LOH) (Alexandrova, et 

al., 2017), thus the purity of these specimens will be equal to the observed VAF of these 

mutations, if they are the drivers of tumor growth (Figure 1). Therefore, these driver mutations 

can be used as “anchors” for estimating tumor purity based on their expected biological role in 

cancer cells. In this analysis, we observed an improved corroboration between the estimated 

and anchor p values (r = 0.51). However, All-FIT overestimated purity when most variants were 

detected at VAF of ~0.40-0.45 (Figure 7a). This inconsistency could arise from not satisfying 

All-FIT’s requirement that variants from multiple mutational models should be present. For 

instance, in one specimen, five variants were detected, three of which had observed VAF of 

0.43-0.52 and the other two were at ~0.70. All-FIT estimated tumor purity to be 0.83 (0.80-0.85) 

while the anchor purity from the TP53 mutation was 0.43. If the assumption of copy-neutral LOH 

for this mutation was correct, this observation implied the absence of detected somatic 

heterozygous variants in the specimen. As expected, when we manually added a variant with 

VAF = 0.23, our purity estimate was corrected to 0.48 although with a large confidence interval 

and an unbroken ambiguity (0.45-0.66 joint with 0.81-0.83).  
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In addition, as was observed in the analysis of simulated datasets, sub-clonal alterations 

could confound All-FIT’s results. For example, for a specimen in which the TP53 mutation was 

detected with a VAF of 0.73, All-FIT estimated p to be 0.31 (0.29-0.32). This discrepancy was 

possibly due to the detection of sub-clonal variants with VAF < 0.3, which All-FIT incorrectly 

considered as part of the clonal population, resulting in its underestimated tumor purity. 

Conversely, presence of unfiltered germline variants also affected All-FIT’s estimations. This 

was particularly seen in a specimen in which one variant was detected at 0.07, two were 

detected at ~0.90, and the remaining 13 were detected at ~0.50. Although the TP53 mutation 

had a VAF of 0.46, All-FIT estimated p to be 0.98 (0.93-0.99), as it lacked statistical power to 

distinguish germline and somatic variants with high confidence.  

We also investigated 73 colon cancer specimens harboring pathogenic substitutions or 

indels in the APC gene. These pathogenic mutations could either undergo somatic LOH or 

somatic copy-neutral LOH if there is one APC mutation, or they could be individually somatic 

heterozygous if there are two APC mutations. There are two possible purity estimates from both 

one APC mutation and two APC mutations; purity with somatic LOH or somatic copy-neutral 

LOH with one APC mutation and purity based on each individual allele frequency with two APC 

mutations. In both scenarios, we considered the average of these two estimates to assess All-

FIT’s results, between which we observed a correlation coefficient of 0.6 (Figure 7b). Overall, 

our purity estimates showed improved corroboration with anchor purity compared to those from 

the histological values of these specimens (Supplementary Figure S6). 

DISCUSSION 

The complexity in cellular populations that exists within a tumor specimen is routinely 

summarized by the single qualitative measure of tumor purity. Since interpreting histologic as 

well as sequencing results relies on accurate estimates of a specimen’s tumor content, various 

computational solutions have been implemented to address the inaccuracies in pathological 
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estimates (Yadav and De, 2015). These methods aim to simultaneously infer tumor purity as 

well as global chromosomal copy-number and often require sequencing data from pairs of tumor 

and normal samples. However, due to the increase use of tumor-only sequencing in precision 

oncology, there is a need for computational methods that can infer tumor purity of clinical 

specimens from detected variants, which may include somatic as well as unfiltered germline 

alterations. Despite the limited breadth of clinical assays that often interrogate only a few 

hundred genes, their high depth of sequencing often provides sufficient power to distinguish 

mutational models and even to infer LOH events based on variant allele frequencies.  

Here, we introduced All-FIT, which offers a solution to the problem of inferring variant 

clonality by imputing tumor purity (p) from deep-sequenced specimens without matched-normal 

control data. It computes Akaike Information Criterion weights and cancer cell fractions for a 

range of somatic and germline mutational models. Through an iterative process, All-FIT 

estimates purity by minimizing a weighted least squared function with respect to p and provides 

statistical confidence intervals for its estimates (Figure 2a). Our application of All-FIT to patient 

data demonstrated the discordance between purity estimates and histological observations 

(Figure 6), which can be further confirmed by determining whether the mutated allele’s copy-

number of each variant exceeds its own chromosomal copy-number (Supplementary 

Figure S7).  

There are several caveats to our method. The first limitation is that All-FIT requires the 

detection of variants from various mutational models. Our analysis of simulated as well as 

clinical data showed that the presence of at least one somatic heterozygous variant is 

necessary for imputing correct tumor purity. All-FIT’s purity estimates were also greatly 

confounded when most detected variants were comprised of sub-clonal mutations as they 

violate All-FIT’s main assumption that variants are clonally present in all cancer cells. Unfiltered 

germline heterozygous variants also affect the statistical power to break ambiguity between 
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multiple purity estimates, widening the confidence intervals. To address these limitations, we 

propose a three-step solution, where we use all detected variants to obtain a preliminary purity 

approximation that helps identify and exclude sub-clonal somatic as well as unfiltered germline 

heterozygous variants. Next, using the remaining presumably clonal events, All-FIT computes 

the final purity estimate and its confidence interval. All-FIT reports its results at each step to 

ensure completeness and to enable visual assessment by the user.  

The second limitation is that we consider somatic and germline mutational models with 

equal probability; however, LOH and high copy-number alterations may not be detected as 

frequently as somatic heterozygous events. Nonetheless, All-FIT showed high accuracy and 

correlation with simulated ground truth even when germline variants were removed from 

simulated data, resulting in slightly improved accuracy and smaller confidence intervals on 

estimations. 

The third limitation is related to the technical aspects of our method. All-FIT is restricted to 

model variants sequenced from hybrid-capture based assays, since interpreting VAFs from 

amplicon-based assays could be complicated by PCR efficiency. Furthermore, it requires 

specimens to have adequate admixture from surrounding normal tissues, which is at least 10%, 

so we simulated data with tumor purities ranging from 10% to 90%.  Although All-FIT showed 

better performance relative to ABSOLUTE, the structure of simulated data may have worked 

unfavorably toward ABSOLUTE as it is not leveraged to impute tumor purity from single 

nucleotide variants.  

CONCLUSION 

In this work, we demonstrated the robustness of a computational method for predicting tumor 

specimen purity without sequencing matched-normal samples. Our method is mainly applicable 

to clinical deep sequencing, hybrid-capture platform, which is increasingly becoming a standard 

approach for genomic profiling of patients in clinical settings. All-FIT can also be potentially used 
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to estimate the abundance of tumor DNA in liquid biopsy assays. With knowledge of a 

specimen’s tumor content, we can now infer variant clonality and predict LOH events, leading to 

more tailored treatment for each patient by incorporating information on individual genes into 

medical decision making. Overall, our proposed method helps systematic interpretation of 

detected variants in a single tumor when control DNA is not available. 
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FIGURE LEGENDS 

Figure 1. Modeling mutational status and the number of mutated alleles for somatic and 

germline mutations with their respective expected variant allele frequency (VAF) and cancer cell 

fraction (CCF). Adapted from Khiabanian et al., 2018. 

 

Figure 2. Schematic view of All-FIT’s implementation. (a) All-FIT follows three steps for 

estimating p, first assuming all variants are clonal, then removing germline heterozygous 

variants, and finally excluding sub-clonal somatic variants. (b) If only a group of variants with 

observed VAFs of 0.35 exists in a specimen, these variants cannot be distinguished between 

three different somatic mutational models of heterozygous, under LOH, or under copy-neutral 

LOH, without knowing specimen’s tumor content. (c) If a second group of variants is detected 

with observed VAFs of 0.70, p = 0.7 can classify variants with observed VAFs of 0.35 and 0.70 

as heterozygous and copy-neutral LOH somatic mutations, respectively. (d,e) Detection of 

additional variants with observed VAFs of 0.50 and 0.85 improves confidence in estimating 

purity. 

 

Figure 3. Representation of All-FIT’s results for detected variants. (a) The contribution of each 

variant to the sum of likelihoods. (b) The sum of likelihoods across all variants, along with its 

2σ curve (brown dashed line). The intersections of the 2σ curve and the line tangent to the log 

of the sum of likelihoods at its minimum (grey dotted line) indicate the confidence interval 

around the estimated p. (c) The distribution of observed allele frequencies. Dashed lines 

represent the expected allele frequencies of included mutational models for the estimated p. (d) 

The distribution of CCFs for the estimated p. (e-h) Results after excluding unfiltered germline 

heterozygous variants. (i-l) Results after excluding somatic sub-clonal variants.  
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Figure 4. Relationship between simulated purity (ground truth) and estimated purity respectively 

from (a) All-FIT and (b) ABSOLUTE using dataset 1. The heatmap scale represents the density 

of data points at each coordinate in 10,000 simulated sets.  

 

Figure 5. Presence of sub-clonal mutations reduces the correlation coefficient between 

simulated purity and estimated purity using dataset 2. (a) All-FIT accurately imputes p in 

simulated sets when percentage of sub-clonal mutations is less than 50%, beyond which, it 

increasingly underestimates purity at one-half of the simulated value. The correlation 

coefficients are respectively 0.998, 0.975, 0.764, and 0.808 from left to right panels. (b) 

ABSOLUTE often fails to predict p correctly even when the percentage of sub-clonal mutations 

is less than 25%. The correlation coefficients are respectively 0.745, 0.742, 0.673, and 0.562 

from left to right panels. The heatmap scale represents the density of data points at each 

coordinate in 10,000 simulated sets. 

 

Figure 6. Relationship between pathological purity and estimated purity from 1,861 tumor 

specimens. There is limited corroboration between computational and histological estimates (r = 

0.28). The heatmap scale represents the number of specimens at each coordinate of the graph.  

 

Figure 7. Relationship between estimated purity and allele frequency of anchor mutations. (a) 

All-FIT’s purity estimates corroborate with the observed VAFs of hot-spot TP53 mutations 

detected in 199 solid tumor specimens, which are expected to be under copy-neutral LOH and 

indicative of the tumor content (r = 0.51). (b) All-FIT’s purity estimates corroborate with VAFs of 

pathogenic APC mutations detected in 73 colon cancer specimens (r = 0.60). The horizontal 

lines at each point represent the expected tumor content based on LOH and copy-neutral LOH 
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models for single APC mutation or based on heterozygous model for two APC mutations. The 

heatmap scale represents the number of specimens at each coordinate of the graph. 

 

SUPPLEMENATRY FIGURE LEGENDS 

Supplementary Figure S1. The effect of total number of mutations in a sample on the accuracy 

of All-FIT, using dataset with similar criteria as dataset 1, but with the number of variants in each 

set ranging from 5 to 100. The x-axis represents the number of mutations in interval of 5, and 

the y-axis represents the difference between estimated p and simulated p, without considering 

the confidence intervals. The accuracy of All-FIT is independent of the number of mutations, 

when there are at least 15 variants per sample. 

 

Supplementary Figure S2. Relationship between simulated purity (ground truth) and estimated 

purity from All-FIT using dataset 1, after eliminating germline variations from the simulated sets. 

All-FIT’s accuracy improves to 92% with correlation coefficient of 0.99. The heatmap scale 

represents the density of data points at each coordinate of the graph from 10,000 simulated 

sets.  

 

Supplementary Figure S3. Presence of sub-clonal mutations reduces the correlation 

coefficient between simulated purity and estimated purity using dataset 2, with only somatic 

variants present. As shown in Figure 5, All-FIT accurately imputes p in simulated sets when 

percentage of sub-clonal mutations is less than 50%, beyond which, an increasing number of 

simulated sets is underestimated at one-half of simulated values. However, having matched-

normal control provides a better predictive power to All-FIT by increasing the overall correlation 

coefficient and less simulated sets are predicted with incorrect p. The correlation coefficients are 

respectively 0.999, 0.985, 0.837, and 0.719 from upper left to lower right panels. 
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Supplementary Figure S4. Relationship between simulated purity (ground truth) and estimated 

purity using dataset 3. (a) All-FIT shows almost perfect correlation (r = 0.99) with an accuracy of 

79%. All-FIT overestimates for some simulated sets at low end of purity; this can be explained 

by the misclassification of low frequency variants as sub-clonal mutations. (b) ABSOLUTE 

exhibits a lower correlation of r = 0.54 with 24% accuracy. Most simulated sets are imputed with 

incorrect p, which is either two times or one-half of the simulated purity. 

 

Supplementary Figure S5. Presence of high ploidy mutations has minimal impact on the 

correlation coefficient between simulated purity and estimated purity from All-FIT. (a) Overall, 

aneuploidy has no significant effect on All-FIT, apart from some simulated sets being estimated 

at high p at low end of simulated purity spectrum when >75% of variants have high ploidy. (b) 

ABSOLUTE overestimates tumor purity regardless of the percentage of high ploidy variants, 

and more simulated sets are underestimated when the percentage is higher than 50%. (c) All-

FIT shows nearly perfect correlation when <80% of variants have high ploidy, but ABSOLUTE's 

correlation steadily decreases from 0.79, due to its strong dependence on copy-number change 

instead of single variant change. 

 

Supplementary Figure S6. Correlation between estimated purity and pathological purity for (a) 

solid tumor specimens with hot-spot TP53 mutations (r = 0.22) and (b) colon cancer specimens 

with pathogenic APC mutations (r = 0.32). The heatmap scale represents the number of 

specimens at each coordinate of the graph. 

 

Supplementary Figure S7. Discordance between purity estimates and histology in a clinical 

sample. The x-axis represents chromosomal copy-number or ploidy (Y) and the y-axis 
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represents the mutated allele’s copy-number (cm) calculated based on its observed VAF, Y, and 

p (Figure 1), with (a) using estimated p = 0.75 as purity and (b) using histological value of 0.3 

as purity. At p = 0.75, most variants have cm (in integer) ≤ Y, which is further justified by the 

TP53 mutation detected at VAF of 0.77.  
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