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Abstract 27 

Background 28 

Computational compound repositioning has the potential for identifying new uses for existing drugs, and 29 

new algorithms and data source aggregation strategies provide ever-improving results via in silico 30 

metrics. However, even with these advances, the number of compounds successfully repositioned via 31 

computational screening remains low. New strategies for algorithm evaluation that more accurately 32 

reflect the repositioning potential of a compound could provide a better target for future optimizations. 33 

Results 34 

Using a text-mined database, we applied a previously described network-based computational 35 

repositioning algorithm, yielding strong results via cross-validation, averaging 0.95 AUROC on test-set 36 

indications. The text-mined data was then used to build networks corresponding to different time-points 37 

in biomedical knowledge. Training the algorithm on contemporary indications and testing on future 38 

showed a marked reduction in performance, peaking in performance metrics with the 1985 network at an 39 

AUROC of .797. Examining performance reductions due to removal of specific types of relationships 40 

highlighted the importance of drug-drug and disease-disease similarity metrics. Using data from future 41 

timepoints, we demonstrate that further acquisition of these kinds of data may help improve 42 

computational results. 43 

Conclusions 44 

Evaluating a repositioning algorithm using indications unknown to input network better tunes its ability to 45 

find emerging drug indications, rather than finding those which have been withheld. Focusing efforts on 46 

improving algorithmic performance in a time-resolved paradigm may further improve computational 47 

repositioning predictions. 48 
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 53 

Background 54 

Compound repositioning is the identification and development of new uses for previously existing drugs. 55 

Repositioning is an attractive pipeline for drug development primarily due to the reduced pharmaceutical 56 

uncertainty and development times when compared to traditional pipelines [1]. While clinical observation 57 

and improved understanding of the mechanism of action are the two primary means by which a drug is 58 

repositioned, computational repositioning provides a third route to identifying these candidates. This third 59 

method has seen much development in the past decade as a way to potentially speed up the drug 60 

discovery process. The ultimate goal of computational repositioning is to quickly produce a small number 61 

of clinically relevant hits for further investigation. This process is achieved through the identification of 62 

features that relate drugs to diseases and utilizes a gold standard of known true drug-treats-disease 63 

relationships to train an algorithm to categorize or rank potential drug-disease pairs for treatment 64 

probability. While this path can efficiently produce repositioning probabilities for countless drug-disease 65 

pairs, identifying and experimentally validating the results of clinical importance can be both costly and 66 

challenging [2]. 67 

 In the last decade, there have been many improvements in approaches and algorithms to identify 68 

these candidates [3]. These include an expansion from gene expression-based approaches [4, 5] to include 69 

methods based on knowledge graphs [6, 7]. Coupled with the advancements in machine learning, the 70 

number of different methods for producing repurposing predictions has quickly increased, each showing 71 

marked improvements on their ability to accurately predict candidates. One common result in these 72 

knowledge-based approaches is that drug-drug and disease-disease similarity, when combined with drug-73 

disease associations, provide the important information for generating a learning model [6, 8, 9]. Many 74 

different metrics can be used to express these similarities, like structural motifs in the case of drugs, or 75 

phenotypes in the case of diseases. However, as good as these algorithms have become at providing 76 

repurposing candidates from a list of known indications, the majority of computational repositioning 77 

projects do not continue beyond the in vitro studies [10]. 78 
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One recent effort in computational repositioning, Himmelstein et. al.’s Rephetio project [11] used 79 

a heterogeneous network (hetnet) to describe drug-disease relationships in a variety of ways. This method 80 

worked by extracting counts of various metapaths between drug-disease pairs, where a metapath is 81 

defined by the concept and relationship types in the knowledge graph that join the drug and disease.  82 

These metapaths counts are then used as numerical features in a machine learning model. This study 83 

compiled several different highly curated data sources to generate the hetnet underlying this learning 84 

model and achieved excellent performance results. Whether this learning model that utilizes network 85 

structure as features can achieve similar results with a less well-curated network remains an open 86 

question.  87 

Progress in the field of natural language processing (NLP) has led to the ability to generate large 88 

biomedical knowledge bases through computational text-mining [12, 13]. This method can produce large 89 

amounts of data rather quickly, which when coupled with semantic typing of concepts and relations, 90 

produces a massive datasource that can quickly be represented in a hetnet structure. 91 

In this work, we evaluated the utility of text-mined networks for use in computational compound 92 

repositioning, by utilizing the Semantic MEDLINE Database (SemMedDB) [14] as an NLP-derived 93 

knowledge network, and  the Rephetio algorithm for producing predictions.  We evaluated the 94 

performance of this data source when trained with a gold standard of indications taken from DrugCentral 95 

[15] and tested via cross-validation. We then propose a new framework for evaluating repurposing 96 

algorithms in a time-dependent manner. By utilizing one of the unique features of SemMedDB, a PubMed 97 

Identification number (PMID) documented for every edge in the network, multiple networks were 98 

produced in a time-resolved fashion, each with data originating on or before a certain date, representing 99 

the current state of knowledge at that date. These networks were then evaluated in the context of 100 

computational repositioning via training on indications known during the time period of the given 101 

network and tested on indications approved after the network, a paradigm that more closely resembles the 102 

real-world problem addressed by computational repositioning than a cross-validation. Finally, we 103 

analyzed these results to identify the types of data most important to producing accurate predictions and 104 
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tested the predictive utility of supplementing a past network with future knowledge of these important 105 

types. 106 

 107 

Methods 108 

Initial SemMedDB Network Generation 109 

The SemMedDB SQL dump Version 31R, processed through June 30, 2018, was downloaded 110 

(https://skr3.nlm.nih.gov/SemMedDB/download/download.html) and converted into a csv. Using Python 111 

scripts (https://github.com/mmayers12/semmed/tree/master/prepare), corrupted lines were removed, and 112 

lines were normalized to a single subject-predicate-object triple per line, with identifiers in Unified 113 

Medical Language System (UMLS) space. This ‘clean’ database was then further processed into a 114 

heterogeneous network (hetnet) compatible with the hetnet package, hetio (https://github.com/hetio/hetio) 115 

a prerequisite for the rephetio machine learning pipeline. This processing included: using the UMLS 116 

Metathesaurus version 2018AA to map terms to other identifier spaces (primarily Medical Subject 117 

Headings or MeSH), combining granular concepts into a more general terms, thus reducing node-count 118 

and data-redundancy; combining semantic (edge) types of similar meaning (e.g. between Chemicals & 119 

Drugs and Disorders, ‘TREATS’, ‘PREVENTS’, ‘DISRUPTS’, and ‘INHIBITS’ were merged to 120 

‘TREATS’); filtering out semantic edge types that were sparsely populated (less than 0.1% of the total 121 

network); removing the top 100 nodes by degree to eliminate extremely general concepts (e.g., Patients, 122 

Cells, Disease, Humans); filtering out edges with less than 2 supporting PMIDs to reduce data noise due 123 

to text-mining. 124 

To create time-resolved knowledge networks, a map between PMID and publication year was 125 

generated from four data sources: Pubmed Central (ftp://ftp.ncbi.nlm.nih.gov/pub/pmc/), Euro PMC 126 

(http://europepmc.org/ftp/pmclitemetadata/), NLM - Baseline Repository 127 

(ftp://ftp.ncbi.nlm.nih.gov/pubmed/baseline/), and EBI’s API (https://europepmc.org/RestfulWebService). 128 

Output from these sources was merged to encompass the greatest number of PMIDs possible. Networks 129 
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were generated at 5-year intervals starting at the year 1950 continuing to present day. The PMID with the 130 

earliest publication year for a given edge was used for that edge. 131 

Gold standard generation 132 

The PostgreSQL dump of DrugCentral dated 2018-06-21 was downloaded for use as the gold standard of 133 

known drug-disease indications. The following tables were extracted for use throughout the analysis 134 

pipeline: omap_relationship, containing the indications; identifier, with maps from internal IDs to other 135 

systems including UMLS and MeSH; approval, containing approval dates from worldwide medical 136 

agencies; synonyms, containing drug names. Both DrugCentral’s and UMLS’s cross-references to MeSH 137 

were used to map DrugCentral internal structure IDs to SemMedDB, ensuring maximum overlap. Disease 138 

concepts contained both MeSH and Systematized Nomenclature of Medicine (SNOMED) identifiers that 139 

could be mapped to SemMedDB via UMLS cross-references. Some diseases could not be mapped to 140 

UMLS, primarily due to the specific nature of the condition, and were discarded. Unmappable conditions 141 

included ‘Uremic Bleeding Tendency’, ‘Tonic-Clonic Epilepsy Treatment Adjunct’, and ‘Prevention of 142 

Stress Ulcer.’ Highly related diseases were merged to produce a more general disease concept for each 143 

treated disease. For example, ‘Vasomotor rhinitis,’ ‘Allergic rhinitis’, ‘Perennial allergic rhinitis’, and 144 

‘Seasonal allergic rhinitis,’ were merged to the single concept ‘Allergic rhinitis.’ For time-resolved 145 

analysis, the first approval year for a drug in an indication, provided by DrugCentral, was taken as a 146 

proxy for the date of the indication. 147 

Repurposing Algorithm 148 

A customized version of the PathPredict algorithm [16] utilized in the Repehtio repurposing project [11] 149 

was adapted for producing repurposing predictions on the SemMedDB hetnet. This algorithm utilizes 150 

Degree Weighted Path Counts (DWPC) as the primary feature for machine learning [17]. These features 151 

are based on the various metapaths that connect the source and target node types (in this case Chemicals 152 

& Drugs, and Disorders). To aid in the speed of feature extraction, we built a framework 153 

(https://github.com/mmayers12/hetnet_ml) based on multiplication of Degree-Weighted adjacency 154 

matrices to extract path-counts quickly. The extracted features were then scaled and standardized 155 
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according to the Rephetio framework. Finally, an ElasticNet regularized logistic regression was 156 

performed using the python wrapper (https://github.com/civisanalytics/python-glmnet) for the Fortran 157 

library used in the R package glmnet [18]. Hyperparameters were tuned via grid search and once chosen 158 

left constant throughout all future runs. 159 

To evaluate the model, the DrugCentral gold standard was partitioned by indication into 5 equal 160 

partitions. One-fifth of the indications were withheld during training, and negative training examples were 161 

sampled at a rate of ten times the number of positives from the set of non-positive drug-disease pairs. The 162 

corresponding TREATS edges for holdout indications were removed from the hetnet before feature 163 

extraction in an attempt to limit the model’s ability to learn directly from those edges. The five-fold cross-164 

validations were performed a total of ten times, each with a different random partitioning. 165 

Time-restricted learning models 166 

The models for the time-resolved networks were trained using the positive gold-standard indications 167 

where drug was approved in the years prior to and including the year of the network. Training negatives 168 

were selected randomly from the pool of non-positive drug-disease pairs at a rate of ten times the number 169 

of positives. After training, the models were then tested on positive indications dated after the year of the 170 

network, as well as a proportional number of negatives. 171 

To combine the results of all of the models across the varying network years, the prediction 172 

probability for each model was first converted to z-score. This allowed for a cross model comparison of 173 

the results. The standardized probabilities for gold-standard drug-disease indications were then grouped 174 

according to the difference in years between the network the probability was derived from and the 175 

approval year of the drug in the indication. This grouping allowed for the generation of performance 176 

metrics for a relative drug approval year. Negative examples were chosen at random from the non-177 

positive set of drug-disease pairs, across all models, at a rate of ten times that of the positives. Area under 178 

the receiver operator characteristic (AUROC) and precision recall curves (AUPRC) were then calculated 179 

for each of the different time differences from negative 20 to positive 20 years. 180 

Feature performance analyses 181 
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To test the relative importance of each edge type to the model, one of the better performing networks on 182 

future indications, 1985, was chosen as a baseline. We performed a 'dropout' analysis in which edge 183 

instances were removed randomly from the network at rates of 25%, 50%, 75%, and 100% before running 184 

the machine learning pipeline. For dropout rates of 25%, 50%, and 75%, the 5 replicates were run with 185 

different random seeds, to account for the differences that specific edges may produce when selected for 186 

dropout. Performance metrics AUROC and AUPRC of these different dropout results were then 187 

compared to the baseline 1985 network model result. 188 

For the edge replacement analysis, the 1985 network was taken as a baseline. Edge instances of a 189 

given type were, type by type, replaced with those from the networks of other years starting with 1950 190 

and continuing to present. This produced 15 models for each of the 30 edge types, one for each network 191 

year per edge type. For example, for the TREATS edge, all values from the 1985 network were removed 192 

and replaced with TREATS edges from the 1950 network and predictions were made, then the TREATS 193 

edges were replaced with those from the 1955 network, and so-forth. AUROC and AUPRC results from 194 

these modified networks were compared to that of the base 1985 network. 195 

 196 

Results 197 

5-fold cross-validation on text-mined data 198 

A hetnet comprised of biomedical knowledge was built from SemMedDB, a database containing subject, 199 

predicate, object triples that were text-mined from PubMed abstracts. After data processing steps (see 200 

methods) the final network contained 78,400 unique concepts (graph nodes) and 2,470,050 relations 201 

(edges) connecting those concepts. These concepts were classified into 6 different types derived from 202 

UMLS semantic groups – ‘Chemicals & Drugs’, ‘Disorders’, ‘Genes & Molecular Sequences’, 203 

‘Anatomy’, ‘Physiology’, and ‘Phenomena’. The relationships between the nodes were also classified as 204 

one of 30 different edge types, comprised of both a semantic relation and the source and target node 205 

types. For example, the relation ‘AFFECTS’ between nodes of type ‘Chemicals & Drugs’ and ‘Anatomy’ 206 

is distinct from the relationship ‘AFFECTS’ between nodes of type ‘Chemicals & Drugs’ and 207 
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‘Physiology’. In labeling these relations, the node abbreviations are appended to the semantic relation to 208 

explicitly differentiate the edge types, e.g. the above examples the labels are ‘AFFECTS_CDafA’ and 209 

‘AFFECTS_CDafPH’ respectively (Table 1, and Supplemental Figure S1, Additional File 1). To train a 210 

learning model for compound repurposing, a gold standard of high quality and reliability containing drug-211 

disease indications is required. We used DrugCentral as the source for our gold standard. This open drug 212 

database contains a relatively complete, curated list of known indications, with a total of 10,938 unique 213 

drug-disease pairs. In mapping these drug and disease concepts to those found in SemMedDB, 3,885 214 

indications were lost due an inability to map the disease condition to a unique concept ID (see methods 215 

for examples), and further reductions came due to the merging of highly related disease concepts, 216 

resulting in 5,337 unique indications that could be used as true-positives for training and testing purposes.  217 

Table 1: Top 10 Edge Types by Instance Number 218 

Subject Node Type Predicate Object Node Type Edge Abbreviation Count 

Anatomy LOCATION_OF Chemicals & Drugs AloCD 380,422 

Chemicals & Drugs REGULATES Chemicals & Drugs CDreg>CD 214,912 

Chemicals & Drugs INTERACTS_WITH Genes & Molecular Sequences CDiwG 183,016 

Anatomy LOCATION_OF Disorders AloDO 182,373 

Anatomy LOCATION_OF Genes & Molecular Sequences AloG 174,246 

Chemicals & Drugs TREATS Disorders CDtDO 172,384 

Disorders ASSOCIATED_WITH Disorders DOawDO 169,075 

Anatomy LOCATION_OF Anatomy AloA 98,472 

Chemicals & Drugs STIMULATES Genes & Molecular Sequences CDstG 93,343 

Chemicals & Drugs AFFECTS Anatomy CDafA 92,126 

 After preparation of the hetnet and the gold standard, the utility of this text-mined knowledge 219 

base for the prediction of novel drug-disease indications was examined using a modified version of the 220 

PathPredict algorithm, utilized by Himmelstein et. al. in the Rephetio drug repurposing project [11]. This 221 

paradigm utilizes the degree weighted path count (DWPC) metric, derived from the metapaths that 222 
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connect different concepts within a network, as the primary features for training the classifier [17]. The 223 

remaining features, while comparatively small, are derived from the simple degree values of each edge 224 

type for the drug node and the disease node in given drug-disease pair. A 5-fold cross validation was 225 

repeated 10 times, each with a random split of the gold standard into training and test sets. The results of 226 

the 5-fold cross validation showed excellent results, with an average area under the receiver operator 227 

characteristic (AUROC) of 0.95 and average precision (AUPRC) of 0.74 (Figure 1A and 1B). These 228 

results are consistent with a very accurate classifier, and comparable to results seen in similar 229 

computational repositioning studies [6, 9, 11]. To further evaluate the accuracy of these predictions, the 230 

prediction rankings of test set indications were examined for given drugs and diseases (Figure 1C and 231 

1D). The median value for the rank of a positive disease, given a test-set positive drug was 18 out of 740 232 

total diseases. Similarly, when examining the test-set positive diseases, the median rank for a positive 233 

drug was 32 out of a possible 1330 examined compounds.  234 

The ElasticNet logistic regression in this analysis used feature selection to reduce the risk of 235 

overfitting with a highly complex model. In comparing the models, there was a fairly consistent selection 236 

of short metapaths with only two edges that include important drug-drug or disease-disease similarity 237 

measures (Figure 1E). These include two related drugs, one of which treats a disease 238 

(dwpc_CDrtCDtDO), or two associated diseases, one of which has a known drug treatment 239 

(dwpc_CDtDOawDO). However, other metapaths of length 3 which encapsulated drug-drug or disease-240 

disease similarities were also highly ranked. This includes two drugs that co-localize to a given 241 

anatomical structure (dwpc_CDloAloCDtDO), two diseases that present in the same anatomical structure 242 

(dwpc_CDtDOloAloDO), or diseases that affect similar phenomena (dwpc_CDtDOafPHafDO). In this 243 

case anatomical structures could include body regions, organs, cell types or components, or tissues, while 244 

phenomena include biological functions, processes, or environmental effects. It is important to again note 245 

that these ‘similarity measures’ are purely derived from text-mined relations.  246 

While these results indicate a fairly accurate classifier in this synthetic setting, the paradigm 247 

under which they are trained and tested is not necessarily optimal for finding novel drug-disease 248 
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indications. A cross-validation framework essentially optimizes finding a subset of indication data that 249 

has been randomly removed from a training set. However, prediction accuracy on randomly removed 250 

indications does not necessarily extrapolate to prospective prediction of new drug repurposing candidates. 251 

Framing the evaluation framework instead as one of future prediction based on past examples may be 252 

more informative. For example, the question ‘given today’s state of biomedical knowledge, can future 253 

indications be predicted?’ may more closely reflect the problem being addressed in drug repositioning. 254 

The best way to address this question would be to perform the predictions in a time-resolved fashion, 255 

training on contemporary data and then evaluating the model’s performance on an indication set from the 256 

future. 257 

Building time-resolved networks 258 

To facilitate a time-resolved analysis, both the knowledge base data and the training data need to be 259 

mapped to a particular time point. Each triple in SemMedDB is annotated with a PMID, indicating source 260 

abstract of this text-mined data. Using the PMID, each triple, corresponding to an edge in the final 261 

network, can be mapped to a specific date of publication. The DrugCentral database also includes 262 

approval dates from several international medical agencies for the majority of the drugs. By filtering the 263 

edges in the network by date, an approximate map of the biomedical knowledge of a given time period 264 

can be produced. Therefore, we generated multiple networks, each representing distinct time-points. We 265 

then applied the machine learning pipeline to each of these networks to evaluate the expected 266 

performance on future drug-disease indications. Combining these sources of time-points for the network 267 

serves to replicate the paradigm of training a machine learning model on the current state of biomedical 268 

knowledge, evaluating its ability to predict what indications are likely to be found useful in the future.  269 

 Knowledge networks were built in a time-resolved fashion for each year, starting with 1950 and 270 

continuing until the present. This was accomplished by removing edges with their earliest supporting 271 

PMID dated after the desired year of the network. If either a drug or a disease from a known gold 272 

standard indication was no longer connected to any other concept in the network, the indication was also 273 

removed from the training and testing set for that network year. Examining the trends of the networks 274 
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constructed for the various timepoints, the number of nodes and edges always increased, but edges 275 

increased more quickly with later timepoints producing a more connected network than earlier (Figures 276 

2A and 2B).  277 

The number of indications that could be mapped to a given network year increased quickly at first 278 

but rose much more slowly in the later years of the network, even though the total number of concepts in 279 

the network continued to increase. For the majority of the years of the network, the split between current 280 

and future indications remained at a ratio of around 80% current and 20%, ideal for a training and testing 281 

split. However, after the year 2000, the number of mappable future indications continued to diminish year 282 

after year, reducing the test set size for these years (Supplemental Figure S2, Additional File 1). 283 

Machine learning results 284 

The performance of each model against a test set of future indications steadily increased from the earliest 285 

time-point until the 1987 network. The AUROC metric saw continual increases over the entirety of the 286 

network years, though these increases occurred more slowly after the 1987 network (Figure 3A). Looking 287 

at average precision, this metric peaked at the 1987 timepoint with a value of 0.492, and then fell sharply 288 

at 2000 and beyond, likely due to the diminished number of test-set positives. The AUROC of this peak 289 

average precision time point of 1985 was 0.822. These peak performance metrics fall far below those 290 

found via 5-fold cross-validation indicating an inherent limitation in evaluating models via this paradigm.  291 

Similar to the cross-validation results, the models favored metapaths that represented drug-drug 292 

and disease-disease similarity (Figure 3B). Specifically, the metapaths of type ‘Chemical & Drug - 293 

TREATS - Disorder - ASSOCIATED WITH - Disorder’ (dwpc_CDtDOawDO) and ‘Chemical & Drug - 294 

RELATED_TO - Chemical & Drug - TREATS - Disorder’ (dwpc_CDrtCDtDO) had the highest weights 295 

across almost all models. One difference found from the cross-validation results is the appearance of the 296 

`Physiology` metanode in two of the top selected metapaths, one connecting two diseases through 297 

common physiology, and one connecting two drugs that both augment a particular physiology. Model 298 

complexity was also diminished compared to those seen in during cross-validation, with the majority of 299 
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models selecting less than 400 features, or 20% of the total available (Supplemental Figure S3, Additional 300 

File 1).  301 

Finally, one question to explore is whether or not there is a temporal dependence on the ability to 302 

predict indications. For example, is there better performance on drugs approved 5 years into the future 303 

rather than 20, since one only 5 years pre-approval may already be in the pipeline with some important 304 

associations already known in the literature. To answer this, the results from all network years were 305 

combined via z-scores. Grouping indications by approval relative to the year of the network allowed for 306 

an AUROC metric to be determined for different timepoints into the future (Figure 3C). This analysis 307 

revealed that there is still a substantial predictive ability for drugs approved up to about 5 years into the 308 

future. However, after 5 years, this value quickly drops to a baseline of .70 for the AUROC and .15 for 309 

the average precision. These results indicate a temporal dependence on the ability to predict future 310 

indications, with the model being fairly inaccurate when looking far into the future. 311 

Edge dropout confirms importance of drug disease links 312 

Many other efforts in computational repositioning have found that emphasis on drug-drug and disease-313 

disease similarity metrics results in accurate predictors [6, 19, 20]. To further investigate the types of 314 

information most impactful in improving the final model, an edge dropout analysis was run. The 1985 315 

network was chosen as a base network for this analysis both due to its relatively strong performance on 316 

future indications and its centralized time point among all the available networks. By taking each edge 317 

type, randomly dropping out edge instances at rates of 25%, 50%, 75% and 100%, and comparing the 318 

resulting models, the relative importance of each edge type within the model could be determined. The 319 

edge that was found to have the largest impact on the resulting model was the ‘Chemicals & Drugs - 320 

TREATS - Disorders’ edge, reducing the AUROC by .098 (Figure 4A). This result reinforces the idea 321 

that drug-disease links, particularly those with a positive treatment association, are highly predictive in 322 

repositioning studies. The drug-drug (‘Chemicals & Drugs - RELATED_TO - Chemicals & Drugs’) and 323 

disease-disease (‘Disorders - ASSOCIATED_WITH - Disorders’) similarity edges were the next two 324 

most impactful edges on the overall model, both showing decreases of .015 in the AUROC when 325 
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completely removed. Overall, however most edges showed very little reduction in AUROC, even at 100% 326 

dropout rate. This could indicate a redundancy in important connections between drugs and diseases that 327 

the model can continue to learn on even when partially removed. 328 

Time-resolved edge substitution confirms edge importance 329 

While dropout identifies the most important associations between concepts to this predictive model, this 330 

does not necessarily confirm that more data of these types will improve the model’s results. To simulate 331 

this the impact of the assimilation of new knowledge of a specific type, an edge replacement analysis was 332 

performed on the 1985 network. This process allowed for the examination of how accumulating new real-333 

world data of a given type might affect the model. By taking a specific edge type and replacing all the 334 

edges of that type with those from the other network years from 1950 to 2015, the potential effect of 335 

gathering more data of these specific types over time could be examined. Similar to the dropout analysis, 336 

the target edge of ‘Chemicals & Drugs - TREATS - Disorders’ had the greatest effect on the model’s 337 

performance, showing an increase of .108 when replaced with the most current version of the edge 338 

(Figure 4B). Similarly, the AUROC showed a large loss of .081 when replaced with values from 1950. 339 

The drug-drug and disease-disease similarity edges also showed significant performance increases when 340 

replaced with contemporary values, while decreasing performance in performance when replaced with 341 

1950 values. While the three edges that produced the greatest decrease in performance during the dropout 342 

analysis also had the biggest benefit when adding future edges, not all behaved in this manner. For 343 

example, the edge ‘Anatomy - LOCATION_OF - Chemicals & Drugs’ showed the fourth largest 344 

decreases in performance during edge dropout analysis. When using past versions of this edge type with 345 

the 1985 network, the performance did have a measurable decrease in AUROC of .012, however current 346 

versions of this edge type only improved the score by .002. Conversely, the edge ‘Physiology - AFFECTS 347 

- Disorders’ showed little to no performance loss during the dropout analysis and indeed showed little 348 

performance change when using past versions of the edge (Supplemental Figure S4, Additional File 1).  349 

However, this edge showed substantial increase of .012 AUROC when using contemporary versions of 350 

the edge. Finally, some edge types like ‘Genes & Molecular Sequences - ASSOCIATED WITH - 351 
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Disorders’ actually performed slightly better with past version or future versions of the edge, when 352 

compared 1985 version of the edge, with an increase in AUROC of .004 with contemporary edges and an 353 

increase of .011 with edges from 1950 (Supplemental Figure S5, Additional File 1). This further 354 

underscores the idea that a time-resolved analysis provides a more complete picture of the important 355 

components to a learning model. 356 

Discussion and Conclusions 357 

While a text-mined data source, SemMedDB performed very well when using the metapath-based 358 

repositioning algorithm from Rephetio and trained and tested against a DrugCentral derived gold 359 

standard. However, performing well in a cross-validation does not necessarily lead to a large number of 360 

real-world repositioning candidates. This evaluation paradigm essentially trains the learning model to 361 

identify indications that are currently known but simply withheld from a dataset. In the real world, the 362 

problem solved by computational repositioning is more closely aligned to attempting to predict new 363 

indications that are not already known at this current time-point. Our use of time-resolved knowledge 364 

networks has allowed us to replicate this paradigm and expose a marked reduction in performance when a 365 

model is tested in this fashion. Time separation is a long-used practice to combat overfitting in data 366 

mining [21] and our application of this practice to compound repositioning may help explain some of the 367 

discrepancy between model performance and the number of repositioning candidates successfully 368 

produced through computational repositioning.  369 

We believe that this method for evaluating a repositioning algorithm in a time-resolved fashion 370 

may more accurately reflect its ability to find true repurposing candidates. Identifying algorithms that 371 

perform well at predicting future indications on the time-resolved networks presented in this paper may 372 

yield better results when translating retrospective computational analyses to the prospective hypothesis 373 

generation. As these networks are built around text-mined data, predictive performance may be enhanced 374 

by utilizing high-confidence, curated, data sources for computational repositioning. The original date of 375 

discovery for a given data point has shown itself to be an important piece of metadata in evaluating a 376 

predictive model. Ensuring curated data sources are supported by evidence that can be mapped back to an 377 
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initial date of discovery functions to enhance the utility of the data in predictive models such as these. 378 

Finally, this temporal analysis again supports the notion that drug and disease similarity measures as well 379 

as direct associations between these concepts are still the most important pieces of data in generating a 380 

predictive model. Further enhancing our understanding of mechanistic relationships that these concepts 381 

will likely result in further increases to computational repositioning performance. 382 

 383 

List of abbreviations 384 

Hetnet – heterogeneous network, NLP – Natural Language Processing, SemMedDB – Semantic Medline 385 

Database, PMID – PubMed Identifier, DWPC – Degree Weighted Path Count, AUROC – Aera Under the 386 
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Figure 1: 5-fold cross validation results for SemMedDB network using DrugCentral gold standard. A) 470 

Receiver-Operator Characteristic curve displaying the mean result across 5-folds. Ten different seed 471 

values for randomly splitting indications in 5 are compared showing very little variation. B) Precision-472 

Recall curve for the mean result across 5-folds, with ten different split seeds displayed. C) Histogram of 473 

log2 transformed rank of true positive disease for a given test-set positive drug, taken from a 474 

representative fold and seed of the cross-validation. If a drug treats multiple diseases, the ranks of all 475 

diseases treated in the test-set indications are shown. D) Histogram of log2 transformed rank of true 476 

positive drug for a given test-set disease, chosen from same fold and seed as C. If a disease is treated by 477 

multiple drugs in the test-set indications, all ranks are included. E) (left) Boxplot of 10 largest model 478 

coefficients in selected features across all folds and seeds. (right) Breakdown of metapath abbreviations. 479 

Node abbreviations appear in capital letters while edge abbreviations appear lower case.  480 

 481 

 482 

Figure 2: Time-resolved network build results. A) Number of nodes of a given type by network year. B) 483 

Average node degree for each node type across all network years.  484 

 485 
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 486 

Figure 3: Machine learning results for the time-resolved networks. A) Performance metrics for the test-487 

set (future) indications across the different network years. Only drugs approved after the year of the 488 

network are included in the test-set, while those approved prior are used for training. B) Box plots of the 489 

values of the model coefficients across all of the different network years. The top-10 coefficients with 490 

largest mean value across all models are shown. C) AUROC and AUPRC data for indications based on 491 

their probabilities, split by the number of years between drug approval date and the year of the network. 492 
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Values to the left of the Zero Point are indications approved before the network year thus part of the 493 

training-set, while those to the right are part of the test-set. Probabilities for all drug-disease pairs were 494 

standardized before combining across models. Points are given for each data point, while lines represent a 495 

5-year rolling average of metrics.  496 

 497 

 498 
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Figure 4: Analysis of edge type importance to the overall model. A) Edge dropout analysis showing the 499 

reduction in AUROC metric when the edges are dropped out at rates of 25, 50, 75, and 100%. Error bars 500 

indicate 95% confidence interval over 5 replicates with different seeds for dropout. The 9 edge types that 501 

had the greatest reduction from 0 to 100% dropout are displayed. B) Edge replacement analysis showing 502 

changes in AUROC when edges are replaced with those of the same type from another year’s network. 503 

The top 9 edges that showed greatest loss in performance in the dropout analysis between 0 and 100% 504 

dropout are displayed. 505 

 506 
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