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Abstract 22 

Increasing availability of comprehensive experimental datasets and of high-performance 23 

computing resources are driving rapid growth in scale, complexity, and biological realism of 24 

computational models in neuroscience.  To support construction and simulation, as well as 25 

sharing of such large-scale models, a broadly applicable, flexible, and high-performance data 26 

format is necessary.  To address this need, we have developed the Scalable Open Network 27 

Architecture TemplAte (SONATA) data format.  It is designed for memory and computational 28 

efficiency and works across multiple platforms.  The format represents neuronal circuits and 29 

simulation inputs and outputs via standardized files and provides much flexibility for adding new 30 

conventions or extensions. SONATA is used in multiple modeling and visualization tools, and 31 

we also provide reference Application Programming Interfaces and model examples to catalyze 32 

further adoption.  SONATA format is free and open for the community to use and build upon 33 

with the goal of enabling efficient model building, sharing, and reproducibility. 34 
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Introduction 35 

Modern systems neuroscience faces ever-widening streams of data on composition, connectivity, 36 

and in vivo activity of brain networks (e.g., (Gouwens et al., 2018a; Jiang et al., 2015; Kasthuri et 37 

al., 2015; Lee et al., 2016; Markov et al., 2012; Oh et al., 2014; Tasic et al., 2018; de Vries et al., 38 

2018)), supported by major funding initiatives around the world (Amunts et al., 2016; Bouchard 39 

et al., 2016; Hawrylycz et al., 2016; Koch and Jones, 2016; Martin and Chun, 2016; Vogelstein 40 

et al., 2016). Turning these complex data into knowledge is a challenging task requiring 41 

systematic analysis and modeling. Detailed, data-driven modeling in particular will be essential 42 

to integrate the experimentally observed hundreds of cell types, intricate connectivity rules, and 43 

complex patterns of neuronal dynamics  into predictive computational frameworks (Einevoll et 44 

al., 2019). 45 

 46 

For this task, scientists need tools that are up to the challenge. Simulation engines, such as 47 

NEURON (Carnevale and Hines, 2006), NEST (Gewaltig and Diesmann, 2007), Brian 48 

(Goodman and Brette, 2008), GENESIS (Bower and Beeman, 1997), MOOSE (Ray and Bhalla, 49 

2008), Xolotl (Gorur-Shandilya et al., 2018), and others offer high computational performance, 50 

and recently a number of software interfaces (e.g., neuroConstruct (Gleeson et al., 2007), PyNN 51 

(Davison et al., 2009), NetPyNE (Dura-Bernal et al., 2019), Open Source Brain (Gleeson et al., 52 

2018), and the Allen Institute’s Brain Modeling ToolKit (BMTK, 53 

https://alleninstitute.github.io/bmtk/; (Gratiy et al., 2018)) have been developed that allow users 54 

to interact with these engines without mastering the underlying programming environments. 55 

However, the utility of these tools is limited without a broadly applicable, flexible, and high-56 

performance modeling data format. The current evolution of typical workstyles towards 57 

collaborative team projects demands standardized formats for model sharing and reproducibility, 58 

as well as for interoperability between tools. Meanwhile, high computational performance of 59 

such formats  becomes increasingly important to enable efficient representation of growing 60 

biological complexity of models. 61 

 62 

While existing solutions, such as the XML-based data format NeuroML (Cannon et al., 2014; 63 

Gleeson et al., 2010), the PyNN language (Davison et al., 2009), and the NSDF standard for 64 

simulator output (Ray et al., 2016), have proven useful, major challenges remain and are felt 65 

acutely in the case of large data-driven models.  One problem is a performance bottleneck: 66 

storing data about thousands of neurons or millions of synapses in verbose text-based files 67 

produces a large disk space footprint and may be challenging for reading/writing in parallel 68 

compute environments. Another is that existing formats describe either static models or 69 

simulation outputs, but not both. And, for broad adoption of a modeling data format, it needs to 70 

be flexible enough to represent a variety of model types (point neuron, biophysically detailed, 71 

etc.) and compatible with more specialized formats (e.g., SWC for neuronal morphologies 72 

(Cannon et al., 1998)), without compromising computational performance. 73 
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 74 

Notably, similar challenges exist in experimental neuroscience (see, e.g., (Koch and Reid, 75 

2012)).  The situation is improving due to initiatives for experimental data formats, such as 76 

NWB:N (Ruebel et al., 2019), BIDS (Gorgolewski et al., 2016), Loom 77 

(https://linnarssonlab.org/loompy), or spacetx-starfish (https://github.com/spacetx/starfish), but 78 

for many types of experimental data the community is still far from a widespread adoption of 79 

universally agreed-upon formats. These challenges contribute to difficulties in closing the 80 

virtuous experiment/modeling loop and to the overall reproducibility crisis (Baker, 2016; 81 

Goodman et al., 2016; Koch and Jones, 2016)). 82 

 83 

Here we present the SONATA (Scalable Open Network Architecture TemplAte) data format, 84 

which provides an open-source framework for representing neuronal circuits, simulation 85 

configurations, and simulation outputs.  The format has been jointly developed by the Allen 86 

Institute and the Blue Brain Project to facilitate exchange of their large scale cortical models 87 

(e.g., (Arkhipov et al., 2018; Billeh et al., 2019; Markram et al., 2015)) and is supported by these 88 

organizations’ software tools, such as BMTK (https://alleninstitute.github.io/bmtk/; (Gratiy et al., 89 

2018)). Support for the format has also been added by other simulation tools -- pyNeuroML 90 

(Cannon et al., 2014; Gleeson et al., 2010), PyNN (Davison et al. 2009), and NetPyNE (Dura-91 

Bernal et al., 2019) -- and an interface between SONATA and the NWB:N format (Ruebel et al., 92 

2019) for neurophysiological data has been developed. 93 

 94 

As described below, SONATA utilizes computationally efficient binary formats for storing large 95 

datasets while also offering text-based formats for easy editing of less data-rich model 96 

components. SONATA represents all aspects of models and simulations, from network structure, 97 

to simulation parameters, to input and output activity. It provides much flexibility for describing 98 

models at different levels of resolution, including hybrid models. Importantly, because SONATA 99 

is already supported by a number of widely used tools and applications, users can get all of the 100 

benefits of the format with no extra work on their part.  Full specification of the format can be 101 

found at the SONATA GitHub page (https://github.com/AllenInstitute/sonata), along with the 102 

open-source reference application programming interfaces (APIs).  To enable broad applications 103 

in the field, SONATA is freely available and open to the community. 104 

 105 

Results 106 

Overview of the SONATA format 107 

The major object in SONATA is the model network (Fig. 1), which consists of nodes of two 108 

types: explicitly simulated nodes and virtual nodes (the latter only providing inputs to the 109 

simulated system). In both cases, nodes are grouped in one or more populations for convenience. 110 

Nodes within and between populations are connected via edges. Simulations of model networks 111 
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are performed by applications that load SONATA files. Locations of these files and also 112 

parameters of simulation (e.g., the time step and temperature) are stored in the SONATA 113 

configuration (“config”) files. Finally, SONATA also provides specifications to store the 114 

incoming activity or simulation output, in the form of events (spikes) or time series. 115 

 116 

SONATA relies on existing file formats, HDF5, CSV, and JSON (see Methods), which ensures 117 

that files can be read/written by existing libraries and applications and used on all major 118 

operating systems. The SONATA specification on top of these formats accommodates multiple 119 

cell and synapse model types and is designed to optimally handle a heterogeneous network. To 120 

achieve flexibility in defining models, SONATA provides recipes for storing arbitrary attributes, 121 

with some attribute names being reserved for basic standardization. 122 

 123 

Below, we describe the details of these elements of the SONATA format.  A more complete 124 

description is given in the Online Documentation 125 

(https://github.com/AllenInstitute/sonata/blob/master/docs/SONATA_DEVELOPER_GUIDE.md). 126 

 127 

 128 
Figure 1. Overview of the SONATA data format. (Top) A simulated model consists of one or 129 

more explicitly simulated network populations and external sources (virtual nodes) that provide 130 

inputs into the simulated populations. During and after simulation, output is created 131 

characterizing dynamics in the simulated model. (Bottom) The SONATA data format reflects the 132 

major components of simulation in dedicated file structures. Information about the model is 133 

stored in files (CSV and HDF5) describing nodes and edges of the network (left). Model 134 

metadata (e.g., path relations between files on disk) and information about simulation are stored 135 
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in JSON configuration files (middle). The spiking and time series output is stored in a tabular 136 

format, taking advantage of the HDF5 technology (right). In the case of time series (bottom 137 

right), multiple variables can be stored for individual nodes (in this example, node ID 0 has three 138 

variables stored), which can correspond, e.g., to multiple compartments of a neuron. 139 

 140 

Node and edge types 141 

Both nodes and edges can have attributes describing biological details (e.g. cell or synapse 142 

properties). One major benefit of the SONATA format is its flexibility: while a small number of 143 

attributes are reserved, users can create their own attributes for nodes or edges. Furthermore, 144 

attributes can be described either individually for each node or more globally for whole subsets 145 

of nodes (same for edges), due to the concepts of node types and edge types. It is up to the user 146 

to decide which attributes are stored on a per-type basis and which should be stored individually 147 

for each node or edge. Since the number of node/edge types in a network model is usually much 148 

smaller than the number of nodes or edges, the node/edge type files are stored in the plain-text 149 

CSV tabular format. This makes it easy for modelers to change and update the network en-masse 150 

through a text editor. For example, Table 1 shows five different node types, three of which 151 

(node_type_id 100, 101, and 102) are biophysically detailed models and two (node_type_id 103 152 

and 104) are much simpler, point neuron models.  Whereas the total number of nodes in this 153 

network can be many thousands, the five entries in Table 1 succinctly describe many attributes 154 

of the nodes. 155 

 156 

The lists of attributes and instructions for constructing individual nodes are determined by each 157 

node type’s “model_type” (Table 1). The reserved values are “biophysical”, 158 

“single_compartment”, “point_neuron”, or “virtual”. The mechanisms required for cell models 159 

are described by “model_template”, with possible values including references to a NeuroML2 160 

file or a NEURON hoc template. The reserved “morphology” attribute references a morphology 161 

file (e.g., in the widely used SWC format) and the “dynamics_params” references files that can 162 

be optionally used to initialize or overwrite electrophysiological attribute values defined by the 163 

template.  In Table 1, node types 100 and 101 are built using hoc templates from the Allen Cell 164 

Types Database (http://celltypes.brain-map.org), which take parameter values form the JSON 165 

files in “dynamics_params”. Node type 102 uses a NeuroML template file; dynamics_params = 166 

NONE means that default values from the NeuroML model_template are used.  Node types 103 167 

and 104 are NEURON built-in IntFire1 point processes taking parameter values from the JSON 168 

files under “dynamics_params”. 169 

 170 

Edge types are described in similar ways (Table 1). The “model_template” attribute determines 171 

the synaptic model via a template file or a synaptic type defined in a particular simulator, e.g., 172 

NEURON’s exp2syn, whereas the optional “dynamics_params” initializes or overwrites the 173 

parameters of the synaptic mechanisms, e.g., time of rise and decay of synaptic conductance. 174 
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Other reserved attributes include synaptic weight, delay, and the afferent and efferent locations of 175 

synapses (only the delays are shown in Table 1). 176 

 177 

Table 1: Examples of “node types” and “edge types”.  In a network model, all individual 178 

nodes belonging to a particular node type share the respective attributes, and likewise all edges 179 

belonging to the same edge type share attributes of that type. 180 

Node types 

node_type_id model_type model_template morphology dynamics_params 

100 biophysical ctdb:Biophys1.hoc scnn1a_m.swc 472363762_fit.json 

101 biophysical ctdb:Biophys1.hoc rorb_m.swc 473863510_fit.json 

102 biophysical nml:PV1.nml.xml pv1_m.swc NONE 

103 point_neuron nrn:IntFire1 NONE if1_exc.json 

104 point_neuron nrn:IntFire1 NONE if1_inh.json 

Edge types 

edge_type_id model_templa

te 

dynamics_params delay 

100 exp2syn biophys_exc.json 2.0 

101 exp2syn biophys_inh.json 2.0 

102 NONE Instantaneous_exc.json 2.0 

103 NONE Instantaneous_inh.json 2.0 

 181 

Nodes 182 

Individual attributes of nodes are listed in “node tables”, stored as HDF5 files.  As discussed, 183 

users decide which attributes to store in node-type CSV and which in node table HDF5. For 184 

example (Fig. 2A), one can store only the coordinates of neurons (x, y, z locations) in the node 185 

table with a pointer (the node_type_id) to the node types table for repeated information such as 186 

morphology (see example in Table 1).  Alternatively, each neuron may have its own unique 187 

morphology (Fig. 2B), and in that case the node table contains both the coordinates and the 188 

morphology attribute. 189 

 190 

SONATA allows for nodes to be hierarchically organized into populations and groups. 191 

Different populations may be stored in different files, allowing modelers to mix and reuse 192 

populations between simulations. For example, one may study one brain region -- say, visual area 193 

V1 -- in one simulation and visual area V2 in another simulation, and then build a simulation of 194 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 20, 2019. ; https://doi.org/10.1101/625491doi: bioRxiv preprint 

https://doi.org/10.1101/625491
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 
 

V1 and V2 together using the two populations without the need to create new nodes files. Within 195 

a population, there is one or more node groups, each group using a homogeneous collection of 196 

node attributes. This is useful for hybrid simulations. For example, compartmental neuron 197 

models often have many more (and radically different) attributes than integrate-and-fire models. 198 

Thus, for mixed populations it is practical to store attributes of compartmental and integrate-and-199 

fire nodes in different groups. Note that nodes of multiple types may be stored in each group, as 200 

long as all the nodes in the group have the same lists of attributes. The SONATA implementation 201 

of populations and groups utilizes HDF5 groups and datasets (see Online Documentation). 202 

 203 

 204 

Figure 2. Nodes and edges in SONATA format.  (A, B) Two examples are shown that 205 

demonstrate how for each node one can find its model attributes in either the node_group (for 206 

individually unique attributes) or the node_types table (for globally shared attributes).  In (A), the 207 

unique attributes are only the node locations (x, y, z), indicated by empty triangles and circles on 208 

the left.  Morphology and dynamic parameters are shared among multiple nodes within a type.  209 

Hence, all red triangles share the same morphology, as do blue circles (right).  In (B), the 210 

morphology is unique for each node.  The dynamics_params is the only attribute specified at the 211 

type level; it is assigned to each node, as indicated by the triangles and circles being filled with 212 

color on the right.  (C, D) Same for edges. In (C), the synapse locations are stored individually 213 

for each edge, whereas synaptic weights and dynamics_params attributes are stored at the edge 214 

type level, as indicated by the uniform circle size and colored connections on the right.  215 

(“dynamics_params” attributes here determine the dynamical properties of synapses, such as the 216 

time of rise and time of decay of synaptic conductance).  (D) The synapse locations as well as 217 

synaptic weights are stored individually (hence different circle sizes), whereas the 218 

dynamics_params attributes are stored at the edge type level. 219 

 220 
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Edges 221 

An edge typically represents a synapse from one neuron to another.  Like for nodes, shared 222 

attributes of many edges can be stored in CSV edge type files and individual attributes in HDF5 223 

edge tables files (Fig. 2C, D). Users decide which attributes belong to edge types and which to 224 

edge tables. In the edge tables, edges are grouped together into edge populations. Each edge 225 

population contains directed connections between nodes in one node population to nodes in 226 

another population (the target and source populations can be the same). Each edge identifies the 227 

node_id of the source node and the node_id of the target. There may be multiple edges for a 228 

single source/target pair. As with nodes, each edge population consists of one or more edge 229 

groups. One edge group contains edges with the same list of attributes.  230 

 231 

Continuing our example of a model of V1 and V2 above, one can use one edge population for all 232 

connections from V1 to V2, another for V2 to V1, another for V1 to V1, and one more for V2 to 233 

V2.  The specific partition is again up to users, but has to be consistent with the partition of nodes 234 

into populations. Within the V1-to-V1 edge population, one may need to have two edge groups.  235 

One edge group would be used for connections to biophysically detailed cell models, containing, 236 

for example, attributes of synapse location on the dendritic tree of the target cell, local synapse 237 

strength, time delay specific to that particular edge, and many others.  The other edge group 238 

would be used for connections to point-neuron models, perhaps containing only the synaptic 239 

weight. 240 

 241 

For technical details and benchmark examples of SONATA representation of edges, see 242 

Methods. 243 

 244 

Simulation configuration 245 

SONATA provides a framework for storing the information about the location of the files 246 

describing the model, as well as parameters of the simulation and metadata. This information is 247 

stored in the config files that tie all the network, circuit, and output components together (Fig. 1). 248 

The SONATA configuration files, the primary config, the circuit config, and the simulation 249 

config, are JSON files containing key/value pairs. Table 2 lists the keys required in each of these 250 

files (see Online Documentation for details). 251 

 252 

The circuit config contains pointers to the files with the information about nodes and edges that 253 

describe the network being simulated. The simulation config describes properties unique to a 254 

specific simulation run, such as the inputs the network receives, the simulation parameters (for 255 

example, duration, time-step), optional parameters such as the temperature, the outputs to be 256 

recorded (for instance spike times, membrane potentials, internal calcium concentrations, etc.), 257 

paths to writing the outputs, and others. Both the simulation config and the circuit config may 258 

contain a manifest block that defines the paths to be used/reused throughout the JSON file. The 259 

primary config simply points to the simulation and circuit configs. 260 
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 261 

Separating of config files in this manner provides flexibility to mix and match models and 262 

simulations. For example, one can use a single circuit config and multiple simulation configs to 263 

run many simulations of one model under different conditions, or alternatively use multiple 264 

circuit configs with one simulation config to study multiple circuits under identical conditions. 265 

 266 

Table 2. Summary of the config files.  Representative components are listed; additional entries 267 

can be used as described in the Online Documentation. 268 

Primary config: Defines relative location of each part of a network simulation 

Key Description 

network Defines the network config file 

simulation Defines the simulation config file 

Circuit config: Defines relative locations of circuit components 

Key Description 

components 
Directories for neuron morphologies, synaptic models, mechanisms, and neuron 

models 

network/nodes 
Specifies CSV file describing node types (key: node_types_file) and HDF5 file 

containing individual nodes (key: nodes_file) 

network/edges 
Specifies CSV file describing edge types (key: edge_types_file) and HDF5 file 

containing individual edges (key: edges_file) 

Simulation config: Defines simulation conditions and inputs for the circuit 

Key Description 

manifest Convenient handle on setting variables that point to base paths 

run Specifies global parameters of the simulation run, such as total duration 

conditions 
Specifies optional global parameters with reserved meaning associated with 

manipulation 

node_sets 
Contains subsets of nodes that act as targets for different reports or stimulations, 

or can also be used to name and define the target subpopulation to simulate 

inputs 
Specifies the inputs to the network with a different block for every input (if more 

than one) 
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output 
Configures the location where output reports should be written, and if output 

should be overwritten 

reports Defines the specifications of the output variables 

 269 

Input and output activity 270 

In addition to representing models, SONATA also describes dynamical variables such as spikes 271 

and time series, which is necessary for representing incoming activity or output of simulations. 272 

For these types of data, SONATA’s format is in many ways similar and consistent to the 273 

experimental neurophysiology format NWB:N (Ruebel et al., 2019), the two formats having been 274 

developed approximately simultaneously and with mutual influences due to interactions between 275 

the two developer communities. Both are designed to be optimal for large-scale recordings or 276 

simulations. At present, the SONATA output format and NWB:N are maintained in separate 277 

projects, but conversion between the two is straightforward and is achieved by a tool described 278 

below (see Ecosystem support). In the future, it may be desirable to achieve full integration 279 

between NWB:N and SONATA. 280 

Activity format design 281 

The SONATA activity format (also referred to as reports) is designed to efficiently support three 282 

types of data: spike trains, time series for node elements (e.g., membrane voltage or Ca2+ 283 

concentration in cell compartments) and time series that are not associated with specific node 284 

elements (such as voltages recorded with extracellular probes). The file formats are based on 285 

HDF5. 286 

 287 

The data stored in a spike train report consists of a series of node identifiers and spike times, 288 

stored in separate HDF5 datasets. For maximum flexibility, the standard allows the datasets to be 289 

sorted according to three different criteria: by node ID, by spike time, or unsorted. 290 

 291 

A node element report consists of a set of variables which are sampled at a fixed rate for some 292 

elements of interest from a selected set of cells. Typically, the elements are electrical 293 

compartments, but other elements can be used as well, such as individual synapses. The time 294 

series associated with each element can be membrane voltage, synaptic current, or any other 295 

variable. In the report, a simulation frame is the set of all values reported at a given timestamp 296 

and a trace is the full time series of all values associated with one element (Fig. 3A). The 297 

requirements we followed in designing the node element report were: (i) support for large data 298 

sets both in total size (terabytes) and number of elements (millions of cells using multi-299 

compartment models), (ii) random read access to specific frames and elements within a frame, 300 
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(iii) high performance for different read access patterns (especially full frames and full cell 301 

traces) and (iv) high performance sequential parallel writing of full frames. 302 

 303 

In the resulting design, data are stored in a single N⨉M matrix dataset, with rows being frames 304 

and columns being traces, whereas extra metadata provides a mapping between (cell, element) 305 

identifiers and columns within the frame (Fig. 3A).  The format provides substantial flexibility, 306 

in particular permitting one to save different types and amounts of information for different cells. 307 

For example, one can choose to save membrane voltage and synaptic currents for all 308 

compartments and all synapses for a few cells, only somatic membrane voltage for several other 309 

cells, and nothing at all for all the other cells. This design also readily represents non-cell-310 

element time series reports. In this case, instead of the cell elements, each row represents a 311 

channel storing a particular time series -- for example, an electrode at which the extracellular 312 

voltage is recorded. 313 

 314 
Figure 3. Recordings of activity in SONATA format.  (A) Layout of a multi-compartment 315 

report. The dataset is a matrix where each frame (set of values at one point in time) is a row and 316 

columns represent traces (the time series of all values associated with one element). All the 317 
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elements of a node are contiguous within a frame, but nodes may not appear sorted by GID. The 318 

position of the first element of each node is indicated by the offset array. Node elements can 319 

appear multiple times (e.g. morphological sections with multiple electrical compartments).  (B-E) 320 

Examples of read/write performance (see Methods).  Write performance (B, C) and read 321 

performance (D, E) of multi-compartment reports (B and D) and single compartment reports (C 322 

and E) is measured as bandwidth (amount of data written/read per time unit). Three different 323 

HDF5 chunk dimensions (specified in the legend, note that the K suffix indicates multiplication 324 

by 1024) were evaluated to demonstrate that high effective bandwidth can be obtained. In the 325 

reading evaluation, data was read by frames (continuous lines) and by traces (dotted lines) in 326 

single operations of different sizes to demonstrate the flexibility and high performance of the 327 

SONATA format; in the writing evaluation, data was only written by frames (continuous lines), 328 

which imitates the way most simulators generate data. 329 

Performance benchmarks 330 

Fig. 3B-E illustrates the effective I/O bandwidth (amount of useful data read/written per time 331 

unit) of SONATA multi-compartment and single-compartment reports, using 26,576 neurons 332 

(41,389,269 reported cell elements) with 1,000 time steps for the former and 217,000 neurons 333 

with 130,000 time steps for the latter (see Methods). We considered (i) the amount of data 334 

read/written, (ii) HDF5 chunk dimensions, (iii) only for write benchmarks ― the amount of data 335 

written at each write operation (block size per process), and (iv) only for read benchmarks ― the 336 

direction in which data is accessed (by frames or by traces). We did not consider the latter option 337 

in the write benchmark because simulators typically generate data which is ordered temporally, 338 

i.e. in frames. 339 

 340 

Note that HDF5 provides a storage layout in which the dataset is split into fixed size “chunks” 341 

(see Methods).  Chunking is essential for obtaining good performance with arbitrary access 342 

patterns, and for that reason is supported in SONATA.  However, SONATA does not prescribe 343 

specific chunking, and taking advantage of chunking to optimize read/write performance for 344 

specific applications is up to the specific software implementations that use SONATA. 345 

 346 

The benchmarks in Fig. 3B-E show that SONATA supports high read and write performance. 347 

The write performance reaches several GiB/s. In the case of multi-compartment reports, the 348 

HDF5 chunk size is the main determinant of the effective write performance (Fig. 3B). This is 349 

due to the overhead caused when using smaller HDF5 chunk dimensions, as the increase in 350 

absolute number of HDF5 chunks makes the support data structures in the file larger. On the 351 

contrary, in single-compartment reports (Fig. 3C) the amount of data written by each process at 352 

each write operation affects performance, since writing data in small block sizes is not efficient. 353 

Here the performance is also affected by the fact that, in some cases, multiple processes write to 354 

the same HDF5 chunk, which leads to lower effective bandwidth (compare 4K ⨉ 512 vs 4K ⨉ 355 

1K). The read performance tests (Fig. 3D, E) were run on a single-node, single-thread 356 
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configuration, because this is the typical scenario of analysis and visualization use cases.  In all 357 

cases, read bandwidth improves as the number of contiguous cells per operation increases and 358 

reaches 1 GiB/s and above. 359 

An example of a large-scale model: a network model of the layer 4 of 360 

mouse cortical area V1 361 

To provide a realistic example of handling large-scale biologically detailed networks with 362 

SONATA, we consider the recently published network model of the layer 4 of the mouse 363 

primary visual cortex (area V1) (Arkhipov et al., 2018).  The model consists of 45,000 neurons 364 

(representing more than half of layer 4 neurons in V1) and employs realistic patterns of highly 365 

recurrent connectivity.  The central portion of the model (Fig. 4A) consists of 10,000 neurons 366 

modeled using a biophysically detailed, compartmental approach, whereas the remaining 35,000 367 

neurons are modeled using a much simpler point-neuron, leaky integrate-and-fire (LIF) approach 368 

and serve mainly to prevent boundary artifacts.  This hybrid model contains ~40 million edges 369 

for connections between explicitly modeled nodes and another ~8 million edges from ~10,000 370 

external virtual nodes providing external spiking inputs.  In the original study, the model was 371 

subjected to a battery of visual stimuli (movies), and the results were compared to published 372 

work and new in vivo experiments (Arkhipov et al., 2018) (see an example of spiking output in 373 

Fig. 4B). 374 

 375 

Fig. 4C shows benchmarks for loading the layer 4 model in SONATA format for simulation in 376 

NEURON (Carnevale and Hines, 2006) using the BMTK’s BioNet module (Gratiy et al., 2018), 377 

performed on cluster partitions from 5 to 390 CPU cores.  The times required to build the nodes, 378 

establish edges from the external virtual nodes, and establish edges among the explicitly 379 

simulated, recurrently connected nodes are shown (note that these times include both reading the 380 

files and instantiating NEURON objects).  Two views of the same data are presented: (i) scaling 381 

with the number of cores and (ii) scaling with the number of edges or nodes per core.  The 382 

scaling is approximately linear (with a slope close to 1) starting at about 32 cores.  The overall 383 

simulation setup time is dominated by the recurrent connections, which are about 5 times more 384 

numerous than the virtual input connections and take about 5 times longer to set up. 385 

 386 

For a typical use case of hundreds of CPU cores, the 45,000-neuron hybrid layer 4 network 387 

model requires <10 s for instantiating nodes, <50 s for external edges, and ~4 minutes for 388 

recurrent edges, resulting in ~5-minute setup time total.  Using uncompressed HDF5 files, the 389 

total size of network files, including recurrent and feedforward network connections, is ~2.4 GB 390 

(see http://portal.brain-map.org/explore/models/l4-mv1). Thus, for this considerably large and 391 

detailed model, SONATA supports modest loading times and storage space footprint. We also 392 

previously demonstrated good scaling of simulation time for this model (Gratiy et al., 2018). 393 

 394 
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 395 

Figure 4.  A 45,000-neuron hybrid network model of the layer 4 of mouse cortical area V1.  396 

(A) Visualization of the network model, which consists of 10,000 biophysically detailed neurons 397 

(colored morphologies) in the center and 35,000 point neurons (white balls) forming an annulus 398 

around the biophysical neurons to prevent boundary artifacts.  (B) An example raster plot output 399 

from a simulation of the layer 4 model.  Shown are the spikes of 10,000 biophysical neurons in 400 

response to a clip from a natural movie.  Colors indicate the five types of neurons: excitatory 401 

Scnn1a (orange), Rorb (red), Nr5a1 (magenta) and inhibitory PV1 (blue) and PV2 (cyan).  See 402 

details in (Arkhipov et al., 2018). (C) Benchmarks for instantiating different parts of the layer 4 403 

model.  The left and right column show the same data: against the number of CPU cores used for 404 

simulation on the left and against the number of edges or nodes per core on the right. 405 

Ecosystem support 406 

SONATA is a free format open for community development. Anyone wishing to add SONATA 407 

support to a Python based application may utilize the PySONATA Python API hosted at GitHub 408 

and developed jointly by the Allen Institute and Blue Brain Project (BBP). Multiple tools from 409 

these two organizations and other modeling and standardization initiatives already implement 410 

SONATA support (Fig. 5). 411 

 412 

Below we briefly describe examples of using these tools to construct, read, write, visualize, and 413 

simulate network models in SONATA format.  Note that, in general, when different simulators 414 

load one SONATA model for simulation, bitwise agreement between their outputs is not 415 

guaranteed.  The reasons for that are non-standardized processing of certain data in simulation 416 
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software packages, different approaches for instantiating initial conditions, etc.  For a real-life 417 

example, consider that loading SWC morphologies in NEURON can be done using different 418 

functions (e.g., hoc or Python), which employ different numerical precisions; as a result, 419 

simulation outputs will not be bitwise identical, but will be only statistically the same to the level 420 

permitted by the precision discrepancy in morphologies.  Nevertheless, SONATA constrains a 421 

vast variety of important degrees of freedom in network simulations, enabling statistically similar 422 

results between simulators and bitwise reproducibility within a simulator with fixed software 423 

code. 424 

 425 

Although SONATA has been originally developed to support very large and biologically 426 

complex simulations, it is fully consistent with more typical smaller-scale and less complex 427 

applications. For example, it is rather common for modelers to use conceptual rules implemented 428 

in a few lines of code to generate model geometries and connections. These approaches are fully 429 

supported by BMTK, Brion/Brain, pyNeuroML, PyNN, and NetPyNE described below -- in 430 

addition to the advanced capabilities of these tools to build and carry out very sophisticated, data-431 

driven, large-scale network simulations. Each of these software packages can generate models 432 

using such high-level conceptual definitions, and in fact the examples illustrated in Fig. 5 were 433 

generated in such a simple way using the BMTK’s model building module. The important new 434 

contribution that SONATA makes is a standardized, efficient format for exchanging generated 435 

network structures, as well as simulation results, between these applications. That is showcased 436 

in Fig. 5, where the BMTK-generated models are simulated using several other tools. 437 

Furthermore, it is important to note that large scale biologically realistic models (e.g., (Arkhipov 438 

et al., 2018; Markram et al., 2015)) often require as much or even more time to build than to run 439 

a single simulation, and then saving model instantiations becomes very important, whereas for 440 

small models this may be simply unnecessary. However, for sharing models with the community, 441 

and especially across simulator platforms, the ability to save all instantiated parameters of 442 

models and simulations systematically -- as provided by SONATA -- becomes important for 443 

large and small models alike. The examples in Fig. 5 are relatively small, 300-neuron models, 444 

illustrating use cases that are more common in the field than the very large simulations with tens 445 

of thousands of neurons (Fig. 4). 446 

 447 

Currently, SONATA is not natively supported by the widely used simulation engines NEURON 448 

and NEST, but the tools described below provide convenient interfaces to NEURON and NEST 449 

and enable simulations with SONATA using these two engines. In the future, implementation of 450 

native support in NEURON and NEST could be useful for systematic conversion of older, 451 

existing models (which are typically stored as software code) to SONATA format by 452 

instantiating these models in NEURON or NEST environment from the original code and then 453 

saving as SONATA files.  454 
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PySONATA 455 

PySONATA is a Python based API for reading SONATA files, open-sourced under a BSD 456 

license and maintained as an official tool of the SONATA working group 457 

(https://github.com/AllenInstitute/sonata). Users wishing to begin integrating the SONATA 458 

format into their own software are encouraged to use the PySONATA Python modules. 459 

Examples of how to use the module can be found at 460 

https://github.com/AllenInstitute/sonata/blob/master/src/pysonata/docs/Tutorial%20-461 

%20pySONATA.ipynb. 462 

The Brain Modeling Toolkit 463 

The Brain Modeling Toolkit (BMTK; https://github.com/AllenInstitute/bmtk) is a Python based 464 

package for building, simulating and analyzing large-scale neural networks across different 465 

levels of resolution. The BMTK is open-sourced under a BSD-3 license and has full support for 466 

generating and reading the SONATA data format (Fig. 5). Modelers can use the BMTK Builder 467 

submodule to create their own SONATA based networks from scratch. It supports cell template 468 

files, electrophysiological parameters, and morphology from the Allen Cell Types Database 469 

(http://celltypes.brain-map.org/) (Gouwens et al., 2018b; Teeter et al., 2018) as well as other cell 470 

model formats, including NeuroML2 (Cannon et al., 2014; Gleeson et al., 2010), NEURON hoc 471 

files (Carnevale and Hines, 2006), or even user defined Python functions.  For simulations, 472 

BMTK relies on an increasing array of simulation engines (NEURON (Carnevale and Hines, 473 

2006), NEST (Gewaltig and Diesmann, 2007), Dipde (Cain et al., 2016), etc.), which allow users 474 

to run simulations of SONATA networks using either multi-compartment, point, or population 475 

based representations. The results of these simulations, regardless of the underlying simulator 476 

used to run them, are transformed into SONATA output format, allowing networks built and run 477 

with BMTK to be analyzed and visualized by any third-party software that supports SONATA. 478 

Fig. 5B and 5C show a network with 300 biophysically detailed cells, in SONATA format, 479 

generated using BMTK and visualized with RTNeuron and NetPyNE, respectively. The results 480 

of simulations of this network using BMTK and NetPyNE are shown in Fig. 5D. Fig 5E shows 481 

simulations of a network of 300 integrate and fire neurons created with BMTK and simulated 482 

using BMTK, PyNN, and pyNeuroML.  483 

Brion/Brain 484 

The Blue Brain’s C++ libraries for handling large scale data and simulation setup, Brion/Brain 485 

(https://github.com/BlueBrain/Brion), provide partial support for SONATA. Currently Brion 486 

provides a low level API to read circuit and simulation JSON configurations, spike and multi-487 

compartment simulation outputs, SWC morphologies and query nodes in HDF5 files. It also 488 

provides a single threaded writer for multi-compartment simulation output reports. Brain 489 

provides a higher level API that makes it easier to work with full networks. All this functionality 490 

is also available in Python through the associated Python wrapping module. 491 
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libSONATA 492 

Blue Brain’s libSONATA (https://github.com/BlueBrain/libsonata) is a library that provides 493 

support to read SONATA files. The library is open-sourced under a LGPLv3 license and offers 494 

an API for both Python and C++ applications. Currently libSONATA supports reading circuit 495 

files, including nodes and edges populations. 496 

RTNeuron 497 

Blue Brain’s RTNeuron (Hernando et al., 2013)  is a framework for visualizing detailed neuronal 498 

network models and simulations. As it relies on Brion/Brain for data access, it currently provides 499 

basic support to visualize SONATA circuits and simulations. For instance, Fig. 5B illustrates the 500 

RTNeuron visualization of a model of 300 biophysically detailed neurons, provided as an 501 

example in the SONATA specification GitHub repository 502 

(https://github.com/AllenInstitute/sonata/tree/master/examples/300_cells). Here, one can see 503 

neuronal morphologies and the distribution of membrane voltage across the electrical 504 

compartments comprising these morphologies as the simulation evolves over time. 505 

pyNeuroML 506 

NeuroML (Cannon et al., 2014; Gleeson et al., 2010) is a standardized format based on XML for 507 

declaratively describing models of neurons and networks in computational neuroscience. Cellular 508 

models which can be described range from simple point neurons (e.g. leaky integrate and fire) to 509 

multicompartmental neuron models with multiple active conductances. Networks of these cells 510 

can be specified, detailing the 3D positions or populations, connectivity between them and 511 

stimulus applied to drive the network activity. 512 

 513 

Multiple libraries have been created to support user adoption of the NeuroML language, 514 

including jNeuroML (https://github.com/NeuroML/jNeuroML) in the Java language and 515 

pyNeuroML (https://github.com/NeuroML/pyNeuroML) in Python. The latter package also gives 516 

access to all of the functionality of jNeuroML (including the ability to convert NeuroML to 517 

simulator specific code, e.g. for NEURON) through Python scripts, by bundling a binary copy of 518 

the library. PyNeuroML has recently added support for importing networks and simulations 519 

specified in the SONATA format and converting them to NeuroML. A related package currently 520 

under development, NeuroMlite (https://github.com/NeuroML/NeuroMLlite) allows compact 521 

description of networks and can export the generated structures to SONATA. Fig. 5E shows a 522 

simulation of 300 integrate and fire cells in SONATA which has been imported by pyNeuroML, 523 

converted to NeuroML and executed in the NEURON simulator. 524 

PyNN 525 

PyNN is a simulator-agnostic Python API for describing network models of point neurons, and 526 

simulation experiments with such models (Davison et al. 2009). A reference implementation of 527 
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the API for the NEURON, NEST and Brian simulators is available 528 

(http://neuralensemble.org/PyNN), and a number of other simulation tools, including 529 

neuromorphic hardware systems, have implemented the API (Brüderle et al., 2011; Rhodes et al., 530 

2018). PyNN models can be converted to and from the NeuroML and SONATA formats with a 531 

single function call.  Fig. 5E illustrates an example where a model in SONATA format was 532 

loaded using the PyNN “serialization” module, a simulation was carried out using the PyNN 533 

NEST backend, and simulation output was saved in the SONATA format. 534 

NetPyNE 535 

NetPyNE (www.netpyne.org;  (Dura-Bernal et al., 2019)) is a package developed in Python and 536 

building on the NEURON simulator (Carnevale and Hines, 2006).  It provides both 537 

programmatic and graphical interfaces that facilitate the definition, parallel simulation, and 538 

analysis of data-driven multiscale models. Users can provide specifications at a high level via its 539 

standardized declarative language. NetPyNE supports both point neurons and biophysically-540 

detailed multi-compartment neurons, as well as NEURON's Reaction-Diffusion (RxD) 541 

molecular-level descriptions. The tool includes built-in functions to visualize and analyze the 542 

model, including connectivity matrices, voltage traces, raster plot, local field potential (LFP) 543 

plots and information transfer measures. Additionally, it facilitates parameter exploration and 544 

optimization by automating the submission of batch parallel simulation on multicore machines 545 

and supercomputers.  546 

NetPyNE network model instantiations can be converted to and from the NeuroML and 547 

SONATA formats. SONATA complements NetPyNE by providing a standardized and efficient 548 

format to store and exchange large network models. This enables using other simulation tools to 549 

run and explore models developed with NetPyNE, and vice versa. As an example, we imported 550 

the 300-cell SONATA example with multicompartment cells into NetPyNE, visualized it using 551 

the NetPyNE GUI (Fig. 5C), and carried out a NetPyNE simulation (Fig. 5D). 552 

Neurodata Without Borders: Neurophysiology 2.0 553 

Neurodata Without Borders: Neurophysiology (NWB:N) 2.0 is a data format for standardizing 554 

experimental data across systems neuroscience. We developed an extension for NWB:N 2.0 to 555 

accommodate large-scale simulation data, and developed a conversion script from SONATA to 556 

NWB:N 2.0 (https://github.com/ben-dichter-consulting/ndx-simulation-output) (Fig. 5A). This 557 

allows stimulated data to be stored side-by-side with experimental data and facilities comparative 558 

analysis between simulation and electrophysiology or calcium imaging experiments. 559 

 560 
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Figure 5.  Support for SONATA in simulators and libraries. (A) Overview of applications 562 

which can generate SONATA files (containing either a description of a network structure or 563 

simulation output) and the various categories of applications which can read SONATA, including 564 

general purpose libraries, visualization tools, and simulation packages. The software packages 565 

BMTK, NetPyNE, PyNN, and pyNeuroML can read SONATA network descriptions for 566 

execution in the simulation engines NEURON and NEST. The pyNWB package provides a 567 

programming interface for reading and writing neurophysiology data (either from experiments or 568 

from simulations) in the NWB:N 2.0 format. (B) RTNeuron visualization. Sample renderings at 3 569 

simulation timesteps of an example network with 300 biophysically detailed cells, with somatic 570 

and dendritic compartments colored according to the simulated membrane potential. The 571 

biophysical 300-cell network, as well as its point-neuron counterpart, were created via the model-572 

building scripting interface in BMTK and saved using SONATA. These two models are used in 573 

all subsequent panels here. (C) Rendering of the same model as in (B) using the NetPyNE GUI. 574 

Each cell is colored according to which of the 5 node types it belongs. (D) The 300-cell 575 

biophysically detailed example from (B) and (C) simulated in NEURON using BMTK (left) and 576 

NetPyNE (right). (E) A network with 300 integrate and fire neurons generated by BMTK, and 577 

simulated in NEST via BMTK (left), NEST after importing the SONATA files into PyNN 578 

(middle) and NEURON after conversion of the network to NeuroML by pyNeuroML.  Each 579 

raster plot in (D) and (E) is accompanied by a panel underneath showing population firing rate 580 

(arbitrary units). 581 

 582 

Discussion 583 

We have described SONATA, an open-source data format developed to answer the challenges of 584 

modern computational neuroscience, especially those inherent in large-scale data-driven 585 

modeling of brain networks. It is designed for memory and computational efficiency, as well as 586 

for working across multiple platforms, and at the same time enabling as much flexibility as 587 

possible for diverse applications.  To achieve this, SONATA relies on commonly used data 588 

formats such as CSV, HDF5, and JSON, which can be used across platforms, can be read and 589 

written by many existing libraries in various programming languages, and (especially in the case 590 

of HDF5) have been proven to work efficiently in parallel computations with very large datasets. 591 

The SONATA specifications include network descriptions, simulation configuration, and input 592 

or output activity. Close cooperation with existing standardisation and simulator independent 593 

specification initiatives like NeuroML, PyNN, and NWB:N has helped to increase synergy with 594 

existing formats, and has ensured compatibility with languages and tools already in use in the 595 

community. 596 

 597 

The flexibility of the SONATA specification is ensured by several design criteria.  First, the 598 

design leaves it up to users to decide which attributes are shared within node or edge type vs. 599 

which are unique to specific nodes or edges.  Second, it allows limitless creation of user-defined 600 

attributes and maintains only a small number of reserved fields.  And third, via a hierarchy of 601 

types, populations, and groups of nodes/edges, it permits specification of hybrid models that may 602 
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include biophysically detailed neurons, point neurons, and many other model types, all in one 603 

network model. 604 

 605 

While SONATA offers computationally efficient solutions for storing many model properties, 606 

we did not attempt to reinvent file formats for all properties. For example, SONATA utilizes the 607 

well established ASCII-based SWC format for neuronal morphologies. We did not develop a 608 

computationally optimized binary format for morphologies because their footprint in terms of 609 

storage or computational demand is typically small. In the case of the Layer 4 model (Fig. 4), 610 

loading SWC morphologies takes ~60% of the time of building nodes, but that expense is 611 

dwarfed by the time it takes to establish connections (~300 s for external and recurrent 612 

connections vs. ~5 s for nodes). Thus, we opted to develop efficient binary solutions only for 613 

computationally demanding model properties, otherwise relying on widely used formats such as 614 

SWC.  615 

 616 

The SONATA community and ecosystem include multiple groups with diverse interests and are 617 

growing due to the open-source design.  Initially developed jointly by the Allen Institute and the 618 

Blue Brain Project, SONATA is now supported by tools from many teams.  As described above, 619 

tools such as BMTK (Gratiy et al., 2018), RTNeuron (Hernando et al., 2013), PyNN (Davison et 620 

al., 2009), NeuroML (Cannon et al., 2014; Gleeson et al., 2010), and NetPyNE (Dura-Bernal et 621 

al., 2019) include SONATA support. Functionality for conversion between SONATA and 622 

NWB:N (Ruebel et al., 2019) also exists. The SONATA data format and framework are reflected 623 

in the free and open-source PySONATA project hosted on GitHub 624 

(https://github.com/AllenInstitute/sonata), which is intended as a key resource for those wishing 625 

to add support for SONATA to their applications and includes specification documentation, 626 

open-source reference application programming interfaces, and model and simulation output 627 

examples. 628 

 629 

As an open living format, SONATA may be extended in the future to reflect developments in 630 

modeling and in experimental neuroscience. In turn, we invite experimentalist colleagues to 631 

explore SONATA’s applicability to their circumstances, as the SONATA framework provides an 632 

efficient description for a variety of network properties.  Such cross-pollination will help 633 

improve reproducibility and facilitate collaboration between experimental and computational 634 

neuroscientists. 635 

 636 
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Methods 637 

JSON, CSV, and HDF5 638 

JSON 639 

JSON (JavaScript Object Notation) is a data exchange format that is easy for both humans and 640 

machines to read and write. Being text based, JSON is platform and language independent. Data 641 

organization is based on two common structures: key-value pairs and ordered lists, which have 642 

equivalents in almost all programming languages. 643 

CSV 644 

CSV stands for “comma-separated values” and it is a very common way of laying out tabular 645 

data in text files. CSV is not a standard per se; the choices that have been made for SONATA are 646 

described in the official specification.  It should be noted that, although the CSV abbreviation 647 

suggests comma as a separator, CSV files can use many types of separator, and, in fact, 648 

SONATA format specifies spaces as preferred separators for CSV. 649 

HDF5 650 

HDF5 (Hierarchical Data Format version 5) is a technology designed for storing very large 651 

heterogeneous data collections and their metadata in a single container file. HDF5 defines a 652 

binary container file format for which the HDF Group provides an implementation in C. 653 

Bindings for several other languages exist as well. Basic concepts of HDF5 include groups, 654 

datasets and attributes. Making an analogy to filesystems, groups are similar to directories and 655 

datasets to files. The main differences between HDF5 and a general purpose filesystem are that 656 

a) a dataset is not a stream of bytes like a file, but consists of a multidimensional array with a 657 

single data type for all values and that b) groups and datasets can be annotated by means of 658 

attributes. HDF5 defines some basic data types common to most programming languages: 659 

integers, floats, strings.  Data can be stored linearly (the elements of a dataset are stored in 660 

increasing order, according to their index and dimension) or in “chunks” for computational 661 

efficiency (the order in how dataset elements is interleaved according to their index and 662 

dimension; for details, see https://support.hdfgroup.org/HDF5/doc/Advanced/Chunking/). 663 

Benchmarking 664 

Edge file benchmarks 665 

The performance of navigating through an edge file in SONATA format is illustrated in Fig. 6, 666 

which shows the results of selecting 1000 neurons and accessing one arbitrary property of all the 667 
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edges of the selected neurons in the 45,000-cell recurrently connected model of Layer 4 of mouse 668 

V1(Arkhipov et al., 2018) On average each cell receives input from 438.8 neighbors with the 669 

number and strength of synapses between any two cells being determined by source and target cell 670 

types. The network file contains over 39.2 million unique synapses partitioned into two groups, 671 

those synapses that target multicompartment neurons and those that target point points. 672 

Connections that target point neurons only require synaptic strength variable, while those that 673 

target multi-compartment neurons also require information about section number and segment 674 

distance for each synapse. The HDF5 edge file is 1.9 GB in size. 675 

The benchmarks were conducted on an HPE SGI 8600 supercomputer. Each compute node had 676 

two Intel Xeon Gold 6140 CPUs (each with 18 cores at 2.30 GHz) and 768 GB of DRAM. Nodes 677 

were connected through a Mellanox Infiniband (IB) EDR fabric to two GS14K storage racks 678 

with a total storage capacity of 4 PB. The computing system was running Linux 3.10.0 and the 679 

filesystem was GPFS 4.2.3-6, configured with 4 MiB block size. The storage system did not have 680 

dedicated metadata drivers. The software components used and their versions are the following: 681 

glibc 2.25-49, gcc 6.4, boost 1.58, HDF5 1.10.1, Python 2.7, numpy 1.13.3 and MPI 2.16 682 

provided by HPE. 683 

 684 

For reference, the maximum average read bandwidth obtained in pure I/O benchmark 685 

experiments with IOR (https://ior.readthedocs.io/en/latest/) in this machine is 5.6 GiB/s using 1 686 

single core accessing a 1 GiB file in 4 MiB blocks. The maximum average write bandwidth 687 

measured is 9.5 GiB/s using 8 cores from 1 node writing 1 GiB per core in 4 MiB operations to a 688 

shared file. POSIX I/O was used to obtain both measurements. 689 

 690 

To illustrate SONATA’s performance and flexibility, we use examples of ordering the edges data 691 

in two different ways (Fig. 6A): target-major (Fig. 6B), where data is sorted according to the ID 692 

of the target neuron (increasing), and hybrid ordering (Fig. 6C), where the connectivity matrix is 693 

divided in blocks, and edges inside each block are enumerated, alternating (from block to block) 694 

between source-major and target major orderings. We also compare the impact of selecting 1000 695 

neurons randomly or sequentially. 696 

 697 

Note that SONATA supports arbitrary ordering of edges, and the two variants tested in the 698 

benchmarks are only for demonstration purposes. 699 

 700 

A target-major sort is more efficient for instance in the case of a simulator creating the synapses 701 

on the target cell when instantiating the network. A source-major sort (data sorted according to 702 

the ID of the source neuron increasing) is favorable to analysis of efferent connectivity of large 703 

network. The hybrid ordering is a compromise between the target-major and source-major 704 

ordering. 705 

 706 
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Fig. 6D shows that ordering has an impact on the performance of data access (whereas selecting 707 

neurons randomly or sequentially does not impact performance substantially). By using target-708 

major ordering (or its symmetric source-major ordering) one can achieve optimal performance 709 

when accessing data in the same access pattern as the ordering, but accessing data in the opposite 710 

direction is much less efficient, by a factor of ~100. Ordering data in a hybrid manner is a 711 

compromise to get balanced performance between the source-to-target and target-to-source 712 

access patterns, but in this case the performance is not as good as the optimal performance for 713 

non-hybrid ordering.  Due to such large discrepancies, the SONATA format specification leaves 714 

the choice of ordering open to users. Note that source-target pairs for each edge are always 715 

defined in the edge files in the same way; it is the indexing of these edges that may differ 716 

depending on user requirements. This means that the edges can always be read, but reading speed 717 

for a particular application will depend on the choice of indexing, and this choice should be made 718 

based on the desired application. Examples in Fig. 6D indicate that a rather high performance can 719 

be achieved (close to 10,000 neurons processed per second for their edge attributes) in optimal 720 

cases, but users should take advantage of the flexibility of SONATA specification to use edge 721 

ordering that is most suitable for their needs.  In situations where high performance for various 722 

access patterns is essential, solutions may include two or more copies of edge files with different 723 

orderings for different use cases. 724 

 725 

 726 

 727 
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 728 

Figure 6.  Target  major and hybrid ordering of edges.  (A) A simple example of connectivity 729 

matrix (the number within each matrix element indicates the number of edges -- i.e., synapses -- 730 

between the two nodes) and schematics of target major and hybrid orderings.  (B) and (C) Edge 731 

lists representing edges from the connectivity matrix in (A), sorted according to target major (B) 732 

or hybrid (C) ordering.   (D) Throughput of accessing edge information for target major or hybrid 733 

ordering of edges in the SONATA files in a 45,000-cell model of Layer 4 of mouse V1 734 

(Arkhipov et al., 2018).  The target-to-source and source-to-target access patterns are illustrated 735 

with either random or sequential selection of target or source neurons. 736 

Simulation output benchmarks 737 

The simulation output benchmarks (Fig. 3) were run on the aforementioned HPE SGI 8600 738 

system. Since most simulators can run in parallel (multi-thread and/or multi-process), the 739 

benchmarking of the report generation was also done in parallel, on 16 nodes and 36 processes 740 
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per node (using 1 core per process). All processes were periodically dumping data to a single, 741 

shared HDF5 file in the SONATA format. At each write operation, each process was writing 742 

several columns at its designated frame/trace region. The amount of data written at each 743 

operation is presented as the “Write block size per process” illustrated in the performance plots 744 

(the write block size applies for each process and for each write operation). 745 

 746 

Write benchmarks made use of the Neuromapp library 747 

(https://github.com/BlueBrain/neuromapp, revision f03d3ea) (Ewart et al., 2017), which uses 748 

parallel HDF5 and MPI underneath. Read benchmarks were implemented using the Python 749 

binding of Brion/Brain (revision c16a694), the testing and plotting code can be found in the 750 

SONATA github repository in the benchmarks branch. 751 

Loading of simulation data 752 

Benchmarks for loading simulation data (Fig. 4C) were obtained for the full simulation of the 753 

45,000-neuron recurrently connected model of Layer 4 of mouse V1 (Arkhipov et al., 2018). 754 

Figure Fig. 4C shows the amount of time required to parse through the SONATA network files 755 

and instantiate the in-memory cell and synaptic objects to run a full NEURON (Carnevale and 756 

Hines, 2006) simulation. Each simulation was instantiated with a computing cluster of Intel Xeon 757 

E5 processors (each core either 2.1 or 2.2 GHz), using a minimum of 5 cores and a maximum of 758 

390 cores. The network was built using the Brain Modeling Toolkit with Python 3.6 and 759 

NEURON 7.5 with Python bindings.   760 
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