
1

The SONATA Data Format for Efficient 1

Description of Large-Scale Network Models 2

Kael Dai1, Juan Hernando2, Yazan N. Billeh1, Sergey L. Gratiy1, Judit Planas2, Andrew P. 3

Davison3, Salvador Dura-Bernal4,5, Padraig Gleeson6, Adrien Devresse2, Benjamin K. Dichter7,8, 4

Michael Gevaert2, James G. King2, Werner A. H. Van Geit2, Arseny V. Povolotsky2, Eilif 5

Muller2, Jean-Denis Courcol2, Anton Arkhipov1,9 * 6

 7
1 Allen Institute for Brain Science, Seattle, WA, USA 8
2 Blue Brain Project, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland 9
3 Paris-Saclay Institute of Neuroscience UMR 9197, Centre National de la Recherche 10

Scientifique/Université Paris Sud, France 11
4 State University of New York Downstate Medical Center, Brooklyn, NY, USA 12
5 Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA 13
6 Department of Neuroscience, Physiology and Pharmacology, University College London, UK 14
7 Department of Neurosurgery, Stanford University, Stanford, CA, USA 15
8 Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 16

USA 17
9 Lead contact 18
* Correspondence: antona@alleninstitute.org 19

 20

 21

Abstract 22

Increasing availability of comprehensive experimental datasets and of high-performance 23

computing resources are driving rapid growth in scale, complexity, and biological realism of 24

computational models in neuroscience. To support construction and simulation, as well as 25

sharing of such large-scale models, a broadly applicable, flexible, and high-performance data 26

format is necessary. To address this need, we have developed the Scalable Open Network 27

Architecture TemplAte (SONATA) data format. It is designed for memory and computational 28

efficiency and works across multiple platforms. The format represents neuronal circuits and 29

simulation inputs and outputs via standardized files and provides much flexibility for adding new 30

conventions or extensions. SONATA is used in multiple modeling and visualization tools, and 31

we also provide reference Application Programming Interfaces and model examples to catalyze 32

further adoption. SONATA format is free and open for the community to use and build upon 33

with the goal of enabling efficient model building, sharing, and reproducibility. 34

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 20, 2019. ; https://doi.org/10.1101/625491doi: bioRxiv preprint

mailto:antona@alleninstitute.org
https://doi.org/10.1101/625491
http://creativecommons.org/licenses/by-nc-nd/4.0/

2

Introduction 35

Modern systems neuroscience faces ever-widening streams of data on composition, connectivity, 36

and in vivo activity of brain networks (e.g., (Gouwens et al., 2018a; Jiang et al., 2015; Kasthuri et 37

al., 2015; Lee et al., 2016; Markov et al., 2012; Oh et al., 2014; Tasic et al., 2018; de Vries et al., 38

2018)), supported by major funding initiatives around the world (Amunts et al., 2016; Bouchard 39

et al., 2016; Hawrylycz et al., 2016; Koch and Jones, 2016; Martin and Chun, 2016; Vogelstein 40

et al., 2016). Turning these complex data into knowledge is a challenging task requiring 41

systematic analysis and modeling. Detailed, data-driven modeling in particular will be essential 42

to integrate the experimentally observed hundreds of cell types, intricate connectivity rules, and 43

complex patterns of neuronal dynamics into predictive computational frameworks (Einevoll et 44

al., 2019). 45

 46

For this task, scientists need tools that are up to the challenge. Simulation engines, such as 47

NEURON (Carnevale and Hines, 2006), NEST (Gewaltig and Diesmann, 2007), Brian 48

(Goodman and Brette, 2008), GENESIS (Bower and Beeman, 1997), MOOSE (Ray and Bhalla, 49

2008), Xolotl (Gorur-Shandilya et al., 2018), and others offer high computational performance, 50

and recently a number of software interfaces (e.g., neuroConstruct (Gleeson et al., 2007), PyNN 51

(Davison et al., 2009), NetPyNE (Dura-Bernal et al., 2019), Open Source Brain (Gleeson et al., 52

2018), and the Allen Institute’s Brain Modeling ToolKit (BMTK, 53

https://alleninstitute.github.io/bmtk/; (Gratiy et al., 2018)) have been developed that allow users 54

to interact with these engines without mastering the underlying programming environments. 55

However, the utility of these tools is limited without a broadly applicable, flexible, and high-56

performance modeling data format. The current evolution of typical workstyles towards 57

collaborative team projects demands standardized formats for model sharing and reproducibility, 58

as well as for interoperability between tools. Meanwhile, high computational performance of 59

such formats becomes increasingly important to enable efficient representation of growing 60

biological complexity of models. 61

 62

While existing solutions, such as the XML-based data format NeuroML (Cannon et al., 2014; 63

Gleeson et al., 2010), the PyNN language (Davison et al., 2009), and the NSDF standard for 64

simulator output (Ray et al., 2016), have proven useful, major challenges remain and are felt 65

acutely in the case of large data-driven models. One problem is a performance bottleneck: 66

storing data about thousands of neurons or millions of synapses in verbose text-based files 67

produces a large disk space footprint and may be challenging for reading/writing in parallel 68

compute environments. Another is that existing formats describe either static models or 69

simulation outputs, but not both. And, for broad adoption of a modeling data format, it needs to 70

be flexible enough to represent a variety of model types (point neuron, biophysically detailed, 71

etc.) and compatible with more specialized formats (e.g., SWC for neuronal morphologies 72

(Cannon et al., 1998)), without compromising computational performance. 73

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 20, 2019. ; https://doi.org/10.1101/625491doi: bioRxiv preprint

https://paperpile.com/c/2aR2bC/pHyIO+937v9+63Gge+goTux+kkcDn+SqZpg+A9Vsq+RMbh6
https://paperpile.com/c/2aR2bC/pHyIO+937v9+63Gge+goTux+kkcDn+SqZpg+A9Vsq+RMbh6
https://paperpile.com/c/2aR2bC/pHyIO+937v9+63Gge+goTux+kkcDn+SqZpg+A9Vsq+RMbh6
https://paperpile.com/c/2aR2bC/QXHdg+YQipU+QKbiF+k9gUH+vvxDp+F78Cj
https://paperpile.com/c/2aR2bC/QXHdg+YQipU+QKbiF+k9gUH+vvxDp+F78Cj
https://paperpile.com/c/2aR2bC/QXHdg+YQipU+QKbiF+k9gUH+vvxDp+F78Cj
https://paperpile.com/c/2aR2bC/Iyn7
https://paperpile.com/c/2aR2bC/Iyn7
https://paperpile.com/c/2aR2bC/WpLfl
https://paperpile.com/c/2aR2bC/LvJhW
https://paperpile.com/c/2aR2bC/8vXHh
https://paperpile.com/c/2aR2bC/rutVh
https://paperpile.com/c/2aR2bC/snRNp
https://paperpile.com/c/2aR2bC/snRNp
https://paperpile.com/c/2aR2bC/8e57
https://paperpile.com/c/2aR2bC/Uo9RG
https://paperpile.com/c/2aR2bC/hrO3T
https://paperpile.com/c/2aR2bC/pw9pK
https://paperpile.com/c/2aR2bC/GcDc7
https://paperpile.com/c/2aR2bC/GcDc7
https://alleninstitute.github.io/bmtk/
https://paperpile.com/c/2aR2bC/oqGy7
https://paperpile.com/c/2aR2bC/xP1JB+IFa22
https://paperpile.com/c/2aR2bC/xP1JB+IFa22
https://paperpile.com/c/2aR2bC/hrO3T
https://paperpile.com/c/2aR2bC/VeinE
https://paperpile.com/c/2aR2bC/h1hdB
https://doi.org/10.1101/625491
http://creativecommons.org/licenses/by-nc-nd/4.0/

3

 74

Notably, similar challenges exist in experimental neuroscience (see, e.g., (Koch and Reid, 75

2012)). The situation is improving due to initiatives for experimental data formats, such as 76

NWB:N (Ruebel et al., 2019), BIDS (Gorgolewski et al., 2016), Loom 77

(https://linnarssonlab.org/loompy), or spacetx-starfish (https://github.com/spacetx/starfish), but 78

for many types of experimental data the community is still far from a widespread adoption of 79

universally agreed-upon formats. These challenges contribute to difficulties in closing the 80

virtuous experiment/modeling loop and to the overall reproducibility crisis (Baker, 2016; 81

Goodman et al., 2016; Koch and Jones, 2016)). 82

 83

Here we present the SONATA (Scalable Open Network Architecture TemplAte) data format, 84

which provides an open-source framework for representing neuronal circuits, simulation 85

configurations, and simulation outputs. The format has been jointly developed by the Allen 86

Institute and the Blue Brain Project to facilitate exchange of their large scale cortical models 87

(e.g., (Arkhipov et al., 2018; Billeh et al., 2019; Markram et al., 2015)) and is supported by these 88

organizations’ software tools, such as BMTK (https://alleninstitute.github.io/bmtk/; (Gratiy et al., 89

2018)). Support for the format has also been added by other simulation tools -- pyNeuroML 90

(Cannon et al., 2014; Gleeson et al., 2010), PyNN (Davison et al. 2009), and NetPyNE (Dura-91

Bernal et al., 2019) -- and an interface between SONATA and the NWB:N format (Ruebel et al., 92

2019) for neurophysiological data has been developed. 93

 94

As described below, SONATA utilizes computationally efficient binary formats for storing large 95

datasets while also offering text-based formats for easy editing of less data-rich model 96

components. SONATA represents all aspects of models and simulations, from network structure, 97

to simulation parameters, to input and output activity. It provides much flexibility for describing 98

models at different levels of resolution, including hybrid models. Importantly, because SONATA 99

is already supported by a number of widely used tools and applications, users can get all of the 100

benefits of the format with no extra work on their part. Full specification of the format can be 101

found at the SONATA GitHub page (https://github.com/AllenInstitute/sonata), along with the 102

open-source reference application programming interfaces (APIs). To enable broad applications 103

in the field, SONATA is freely available and open to the community. 104

 105

Results 106

Overview of the SONATA format 107

The major object in SONATA is the model network (Fig. 1), which consists of nodes of two 108

types: explicitly simulated nodes and virtual nodes (the latter only providing inputs to the 109

simulated system). In both cases, nodes are grouped in one or more populations for convenience. 110

Nodes within and between populations are connected via edges. Simulations of model networks 111

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 20, 2019. ; https://doi.org/10.1101/625491doi: bioRxiv preprint

https://paperpile.com/c/2aR2bC/wTK5y
https://paperpile.com/c/2aR2bC/wTK5y
https://paperpile.com/c/2aR2bC/B9mUv
https://paperpile.com/c/2aR2bC/YcyzN
https://linnarssonlab.org/loompy
https://github.com/spacetx/starfish
https://paperpile.com/c/2aR2bC/QKbiF+N58ed+VbTr0
https://paperpile.com/c/2aR2bC/QKbiF+N58ed+VbTr0
https://paperpile.com/c/2aR2bC/G6qo+Y08O+odOS
https://alleninstitute.github.io/bmtk/
https://paperpile.com/c/2aR2bC/oqGy7
https://paperpile.com/c/2aR2bC/oqGy7
https://paperpile.com/c/2aR2bC/xP1JB+IFa22
https://paperpile.com/c/2aR2bC/pw9pK
https://paperpile.com/c/2aR2bC/pw9pK
https://paperpile.com/c/2aR2bC/B9mUv
https://paperpile.com/c/2aR2bC/B9mUv
https://github.com/AllenInstitute/sonata
https://doi.org/10.1101/625491
http://creativecommons.org/licenses/by-nc-nd/4.0/

4

are performed by applications that load SONATA files. Locations of these files and also 112

parameters of simulation (e.g., the time step and temperature) are stored in the SONATA 113

configuration (“config”) files. Finally, SONATA also provides specifications to store the 114

incoming activity or simulation output, in the form of events (spikes) or time series. 115

 116

SONATA relies on existing file formats, HDF5, CSV, and JSON (see Methods), which ensures 117

that files can be read/written by existing libraries and applications and used on all major 118

operating systems. The SONATA specification on top of these formats accommodates multiple 119

cell and synapse model types and is designed to optimally handle a heterogeneous network. To 120

achieve flexibility in defining models, SONATA provides recipes for storing arbitrary attributes, 121

with some attribute names being reserved for basic standardization. 122

 123

Below, we describe the details of these elements of the SONATA format. A more complete 124

description is given in the Online Documentation 125

(https://github.com/AllenInstitute/sonata/blob/master/docs/SONATA_DEVELOPER_GUIDE.md). 126

 127

 128
Figure 1. Overview of the SONATA data format. (Top) A simulated model consists of one or 129

more explicitly simulated network populations and external sources (virtual nodes) that provide 130

inputs into the simulated populations. During and after simulation, output is created 131

characterizing dynamics in the simulated model. (Bottom) The SONATA data format reflects the 132

major components of simulation in dedicated file structures. Information about the model is 133

stored in files (CSV and HDF5) describing nodes and edges of the network (left). Model 134

metadata (e.g., path relations between files on disk) and information about simulation are stored 135

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 20, 2019. ; https://doi.org/10.1101/625491doi: bioRxiv preprint

https://github.com/AllenInstitute/sonata/blob/master/docs/SONATA_DEVELOPER_GUIDE.md
https://doi.org/10.1101/625491
http://creativecommons.org/licenses/by-nc-nd/4.0/

5

in JSON configuration files (middle). The spiking and time series output is stored in a tabular 136

format, taking advantage of the HDF5 technology (right). In the case of time series (bottom 137

right), multiple variables can be stored for individual nodes (in this example, node ID 0 has three 138

variables stored), which can correspond, e.g., to multiple compartments of a neuron. 139

 140

Node and edge types 141

Both nodes and edges can have attributes describing biological details (e.g. cell or synapse 142

properties). One major benefit of the SONATA format is its flexibility: while a small number of 143

attributes are reserved, users can create their own attributes for nodes or edges. Furthermore, 144

attributes can be described either individually for each node or more globally for whole subsets 145

of nodes (same for edges), due to the concepts of node types and edge types. It is up to the user 146

to decide which attributes are stored on a per-type basis and which should be stored individually 147

for each node or edge. Since the number of node/edge types in a network model is usually much 148

smaller than the number of nodes or edges, the node/edge type files are stored in the plain-text 149

CSV tabular format. This makes it easy for modelers to change and update the network en-masse 150

through a text editor. For example, Table 1 shows five different node types, three of which 151

(node_type_id 100, 101, and 102) are biophysically detailed models and two (node_type_id 103 152

and 104) are much simpler, point neuron models. Whereas the total number of nodes in this 153

network can be many thousands, the five entries in Table 1 succinctly describe many attributes 154

of the nodes. 155

 156

The lists of attributes and instructions for constructing individual nodes are determined by each 157

node type’s “model_type” (Table 1). The reserved values are “biophysical”, 158

“single_compartment”, “point_neuron”, or “virtual”. The mechanisms required for cell models 159

are described by “model_template”, with possible values including references to a NeuroML2 160

file or a NEURON hoc template. The reserved “morphology” attribute references a morphology 161

file (e.g., in the widely used SWC format) and the “dynamics_params” references files that can 162

be optionally used to initialize or overwrite electrophysiological attribute values defined by the 163

template. In Table 1, node types 100 and 101 are built using hoc templates from the Allen Cell 164

Types Database (http://celltypes.brain-map.org), which take parameter values form the JSON 165

files in “dynamics_params”. Node type 102 uses a NeuroML template file; dynamics_params = 166

NONE means that default values from the NeuroML model_template are used. Node types 103 167

and 104 are NEURON built-in IntFire1 point processes taking parameter values from the JSON 168

files under “dynamics_params”. 169

 170

Edge types are described in similar ways (Table 1). The “model_template” attribute determines 171

the synaptic model via a template file or a synaptic type defined in a particular simulator, e.g., 172

NEURON’s exp2syn, whereas the optional “dynamics_params” initializes or overwrites the 173

parameters of the synaptic mechanisms, e.g., time of rise and decay of synaptic conductance. 174

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 20, 2019. ; https://doi.org/10.1101/625491doi: bioRxiv preprint

http://celltypes.brain-map.org/
https://doi.org/10.1101/625491
http://creativecommons.org/licenses/by-nc-nd/4.0/

6

Other reserved attributes include synaptic weight, delay, and the afferent and efferent locations of 175

synapses (only the delays are shown in Table 1). 176

 177

Table 1: Examples of “node types” and “edge types”. In a network model, all individual 178

nodes belonging to a particular node type share the respective attributes, and likewise all edges 179

belonging to the same edge type share attributes of that type. 180

Node types

node_type_id model_type model_template morphology dynamics_params

100 biophysical ctdb:Biophys1.hoc scnn1a_m.swc 472363762_fit.json

101 biophysical ctdb:Biophys1.hoc rorb_m.swc 473863510_fit.json

102 biophysical nml:PV1.nml.xml pv1_m.swc NONE

103 point_neuron nrn:IntFire1 NONE if1_exc.json

104 point_neuron nrn:IntFire1 NONE if1_inh.json

Edge types

edge_type_id model_templa

te

dynamics_params delay

100 exp2syn biophys_exc.json 2.0

101 exp2syn biophys_inh.json 2.0

102 NONE Instantaneous_exc.json 2.0

103 NONE Instantaneous_inh.json 2.0

 181

Nodes 182

Individual attributes of nodes are listed in “node tables”, stored as HDF5 files. As discussed, 183

users decide which attributes to store in node-type CSV and which in node table HDF5. For 184

example (Fig. 2A), one can store only the coordinates of neurons (x, y, z locations) in the node 185

table with a pointer (the node_type_id) to the node types table for repeated information such as 186

morphology (see example in Table 1). Alternatively, each neuron may have its own unique 187

morphology (Fig. 2B), and in that case the node table contains both the coordinates and the 188

morphology attribute. 189

 190

SONATA allows for nodes to be hierarchically organized into populations and groups. 191

Different populations may be stored in different files, allowing modelers to mix and reuse 192

populations between simulations. For example, one may study one brain region -- say, visual area 193

V1 -- in one simulation and visual area V2 in another simulation, and then build a simulation of 194

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 20, 2019. ; https://doi.org/10.1101/625491doi: bioRxiv preprint

https://doi.org/10.1101/625491
http://creativecommons.org/licenses/by-nc-nd/4.0/

7

V1 and V2 together using the two populations without the need to create new nodes files. Within 195

a population, there is one or more node groups, each group using a homogeneous collection of 196

node attributes. This is useful for hybrid simulations. For example, compartmental neuron 197

models often have many more (and radically different) attributes than integrate-and-fire models. 198

Thus, for mixed populations it is practical to store attributes of compartmental and integrate-and-199

fire nodes in different groups. Note that nodes of multiple types may be stored in each group, as 200

long as all the nodes in the group have the same lists of attributes. The SONATA implementation 201

of populations and groups utilizes HDF5 groups and datasets (see Online Documentation). 202

 203

 204

Figure 2. Nodes and edges in SONATA format. (A, B) Two examples are shown that 205

demonstrate how for each node one can find its model attributes in either the node_group (for 206

individually unique attributes) or the node_types table (for globally shared attributes). In (A), the 207

unique attributes are only the node locations (x, y, z), indicated by empty triangles and circles on 208

the left. Morphology and dynamic parameters are shared among multiple nodes within a type. 209

Hence, all red triangles share the same morphology, as do blue circles (right). In (B), the 210

morphology is unique for each node. The dynamics_params is the only attribute specified at the 211

type level; it is assigned to each node, as indicated by the triangles and circles being filled with 212

color on the right. (C, D) Same for edges. In (C), the synapse locations are stored individually 213

for each edge, whereas synaptic weights and dynamics_params attributes are stored at the edge 214

type level, as indicated by the uniform circle size and colored connections on the right. 215

(“dynamics_params” attributes here determine the dynamical properties of synapses, such as the 216

time of rise and time of decay of synaptic conductance). (D) The synapse locations as well as 217

synaptic weights are stored individually (hence different circle sizes), whereas the 218

dynamics_params attributes are stored at the edge type level. 219

 220

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 20, 2019. ; https://doi.org/10.1101/625491doi: bioRxiv preprint

https://doi.org/10.1101/625491
http://creativecommons.org/licenses/by-nc-nd/4.0/

8

Edges 221

An edge typically represents a synapse from one neuron to another. Like for nodes, shared 222

attributes of many edges can be stored in CSV edge type files and individual attributes in HDF5 223

edge tables files (Fig. 2C, D). Users decide which attributes belong to edge types and which to 224

edge tables. In the edge tables, edges are grouped together into edge populations. Each edge 225

population contains directed connections between nodes in one node population to nodes in 226

another population (the target and source populations can be the same). Each edge identifies the 227

node_id of the source node and the node_id of the target. There may be multiple edges for a 228

single source/target pair. As with nodes, each edge population consists of one or more edge 229

groups. One edge group contains edges with the same list of attributes. 230

 231

Continuing our example of a model of V1 and V2 above, one can use one edge population for all 232

connections from V1 to V2, another for V2 to V1, another for V1 to V1, and one more for V2 to 233

V2. The specific partition is again up to users, but has to be consistent with the partition of nodes 234

into populations. Within the V1-to-V1 edge population, one may need to have two edge groups. 235

One edge group would be used for connections to biophysically detailed cell models, containing, 236

for example, attributes of synapse location on the dendritic tree of the target cell, local synapse 237

strength, time delay specific to that particular edge, and many others. The other edge group 238

would be used for connections to point-neuron models, perhaps containing only the synaptic 239

weight. 240

 241

For technical details and benchmark examples of SONATA representation of edges, see 242

Methods. 243

 244

Simulation configuration 245

SONATA provides a framework for storing the information about the location of the files 246

describing the model, as well as parameters of the simulation and metadata. This information is 247

stored in the config files that tie all the network, circuit, and output components together (Fig. 1). 248

The SONATA configuration files, the primary config, the circuit config, and the simulation 249

config, are JSON files containing key/value pairs. Table 2 lists the keys required in each of these 250

files (see Online Documentation for details). 251

 252

The circuit config contains pointers to the files with the information about nodes and edges that 253

describe the network being simulated. The simulation config describes properties unique to a 254

specific simulation run, such as the inputs the network receives, the simulation parameters (for 255

example, duration, time-step), optional parameters such as the temperature, the outputs to be 256

recorded (for instance spike times, membrane potentials, internal calcium concentrations, etc.), 257

paths to writing the outputs, and others. Both the simulation config and the circuit config may 258

contain a manifest block that defines the paths to be used/reused throughout the JSON file. The 259

primary config simply points to the simulation and circuit configs. 260

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 20, 2019. ; https://doi.org/10.1101/625491doi: bioRxiv preprint

https://doi.org/10.1101/625491
http://creativecommons.org/licenses/by-nc-nd/4.0/

9

 261

Separating of config files in this manner provides flexibility to mix and match models and 262

simulations. For example, one can use a single circuit config and multiple simulation configs to 263

run many simulations of one model under different conditions, or alternatively use multiple 264

circuit configs with one simulation config to study multiple circuits under identical conditions. 265

 266

Table 2. Summary of the config files. Representative components are listed; additional entries 267

can be used as described in the Online Documentation. 268

Primary config: Defines relative location of each part of a network simulation

Key Description

network Defines the network config file

simulation Defines the simulation config file

Circuit config: Defines relative locations of circuit components

Key Description

components
Directories for neuron morphologies, synaptic models, mechanisms, and neuron

models

network/nodes
Specifies CSV file describing node types (key: node_types_file) and HDF5 file

containing individual nodes (key: nodes_file)

network/edges
Specifies CSV file describing edge types (key: edge_types_file) and HDF5 file

containing individual edges (key: edges_file)

Simulation config: Defines simulation conditions and inputs for the circuit

Key Description

manifest Convenient handle on setting variables that point to base paths

run Specifies global parameters of the simulation run, such as total duration

conditions
Specifies optional global parameters with reserved meaning associated with

manipulation

node_sets
Contains subsets of nodes that act as targets for different reports or stimulations,

or can also be used to name and define the target subpopulation to simulate

inputs
Specifies the inputs to the network with a different block for every input (if more

than one)

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 20, 2019. ; https://doi.org/10.1101/625491doi: bioRxiv preprint

https://doi.org/10.1101/625491
http://creativecommons.org/licenses/by-nc-nd/4.0/

10

output
Configures the location where output reports should be written, and if output

should be overwritten

reports Defines the specifications of the output variables

 269

Input and output activity 270

In addition to representing models, SONATA also describes dynamical variables such as spikes 271

and time series, which is necessary for representing incoming activity or output of simulations. 272

For these types of data, SONATA’s format is in many ways similar and consistent to the 273

experimental neurophysiology format NWB:N (Ruebel et al., 2019), the two formats having been 274

developed approximately simultaneously and with mutual influences due to interactions between 275

the two developer communities. Both are designed to be optimal for large-scale recordings or 276

simulations. At present, the SONATA output format and NWB:N are maintained in separate 277

projects, but conversion between the two is straightforward and is achieved by a tool described 278

below (see Ecosystem support). In the future, it may be desirable to achieve full integration 279

between NWB:N and SONATA. 280

Activity format design 281

The SONATA activity format (also referred to as reports) is designed to efficiently support three 282

types of data: spike trains, time series for node elements (e.g., membrane voltage or Ca2+ 283

concentration in cell compartments) and time series that are not associated with specific node 284

elements (such as voltages recorded with extracellular probes). The file formats are based on 285

HDF5. 286

 287

The data stored in a spike train report consists of a series of node identifiers and spike times, 288

stored in separate HDF5 datasets. For maximum flexibility, the standard allows the datasets to be 289

sorted according to three different criteria: by node ID, by spike time, or unsorted. 290

 291

A node element report consists of a set of variables which are sampled at a fixed rate for some 292

elements of interest from a selected set of cells. Typically, the elements are electrical 293

compartments, but other elements can be used as well, such as individual synapses. The time 294

series associated with each element can be membrane voltage, synaptic current, or any other 295

variable. In the report, a simulation frame is the set of all values reported at a given timestamp 296

and a trace is the full time series of all values associated with one element (Fig. 3A). The 297

requirements we followed in designing the node element report were: (i) support for large data 298

sets both in total size (terabytes) and number of elements (millions of cells using multi-299

compartment models), (ii) random read access to specific frames and elements within a frame, 300

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 20, 2019. ; https://doi.org/10.1101/625491doi: bioRxiv preprint

https://paperpile.com/c/2aR2bC/B9mUv
https://doi.org/10.1101/625491
http://creativecommons.org/licenses/by-nc-nd/4.0/

11

(iii) high performance for different read access patterns (especially full frames and full cell 301

traces) and (iv) high performance sequential parallel writing of full frames. 302

 303

In the resulting design, data are stored in a single N⨉M matrix dataset, with rows being frames 304

and columns being traces, whereas extra metadata provides a mapping between (cell, element) 305

identifiers and columns within the frame (Fig. 3A). The format provides substantial flexibility, 306

in particular permitting one to save different types and amounts of information for different cells. 307

For example, one can choose to save membrane voltage and synaptic currents for all 308

compartments and all synapses for a few cells, only somatic membrane voltage for several other 309

cells, and nothing at all for all the other cells. This design also readily represents non-cell-310

element time series reports. In this case, instead of the cell elements, each row represents a 311

channel storing a particular time series -- for example, an electrode at which the extracellular 312

voltage is recorded. 313

 314
Figure 3. Recordings of activity in SONATA format. (A) Layout of a multi-compartment 315

report. The dataset is a matrix where each frame (set of values at one point in time) is a row and 316

columns represent traces (the time series of all values associated with one element). All the 317

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 20, 2019. ; https://doi.org/10.1101/625491doi: bioRxiv preprint

https://doi.org/10.1101/625491
http://creativecommons.org/licenses/by-nc-nd/4.0/

12

elements of a node are contiguous within a frame, but nodes may not appear sorted by GID. The 318

position of the first element of each node is indicated by the offset array. Node elements can 319

appear multiple times (e.g. morphological sections with multiple electrical compartments). (B-E) 320

Examples of read/write performance (see Methods). Write performance (B, C) and read 321

performance (D, E) of multi-compartment reports (B and D) and single compartment reports (C 322

and E) is measured as bandwidth (amount of data written/read per time unit). Three different 323

HDF5 chunk dimensions (specified in the legend, note that the K suffix indicates multiplication 324

by 1024) were evaluated to demonstrate that high effective bandwidth can be obtained. In the 325

reading evaluation, data was read by frames (continuous lines) and by traces (dotted lines) in 326

single operations of different sizes to demonstrate the flexibility and high performance of the 327

SONATA format; in the writing evaluation, data was only written by frames (continuous lines), 328

which imitates the way most simulators generate data. 329

Performance benchmarks 330

Fig. 3B-E illustrates the effective I/O bandwidth (amount of useful data read/written per time 331

unit) of SONATA multi-compartment and single-compartment reports, using 26,576 neurons 332

(41,389,269 reported cell elements) with 1,000 time steps for the former and 217,000 neurons 333

with 130,000 time steps for the latter (see Methods). We considered (i) the amount of data 334

read/written, (ii) HDF5 chunk dimensions, (iii) only for write benchmarks ― the amount of data 335

written at each write operation (block size per process), and (iv) only for read benchmarks ― the 336

direction in which data is accessed (by frames or by traces). We did not consider the latter option 337

in the write benchmark because simulators typically generate data which is ordered temporally, 338

i.e. in frames. 339

 340

Note that HDF5 provides a storage layout in which the dataset is split into fixed size “chunks” 341

(see Methods). Chunking is essential for obtaining good performance with arbitrary access 342

patterns, and for that reason is supported in SONATA. However, SONATA does not prescribe 343

specific chunking, and taking advantage of chunking to optimize read/write performance for 344

specific applications is up to the specific software implementations that use SONATA. 345

 346

The benchmarks in Fig. 3B-E show that SONATA supports high read and write performance. 347

The write performance reaches several GiB/s. In the case of multi-compartment reports, the 348

HDF5 chunk size is the main determinant of the effective write performance (Fig. 3B). This is 349

due to the overhead caused when using smaller HDF5 chunk dimensions, as the increase in 350

absolute number of HDF5 chunks makes the support data structures in the file larger. On the 351

contrary, in single-compartment reports (Fig. 3C) the amount of data written by each process at 352

each write operation affects performance, since writing data in small block sizes is not efficient. 353

Here the performance is also affected by the fact that, in some cases, multiple processes write to 354

the same HDF5 chunk, which leads to lower effective bandwidth (compare 4K ⨉ 512 vs 4K ⨉ 355

1K). The read performance tests (Fig. 3D, E) were run on a single-node, single-thread 356

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 20, 2019. ; https://doi.org/10.1101/625491doi: bioRxiv preprint

https://doi.org/10.1101/625491
http://creativecommons.org/licenses/by-nc-nd/4.0/

13

configuration, because this is the typical scenario of analysis and visualization use cases. In all 357

cases, read bandwidth improves as the number of contiguous cells per operation increases and 358

reaches 1 GiB/s and above. 359

An example of a large-scale model: a network model of the layer 4 of 360

mouse cortical area V1 361

To provide a realistic example of handling large-scale biologically detailed networks with 362

SONATA, we consider the recently published network model of the layer 4 of the mouse 363

primary visual cortex (area V1) (Arkhipov et al., 2018). The model consists of 45,000 neurons 364

(representing more than half of layer 4 neurons in V1) and employs realistic patterns of highly 365

recurrent connectivity. The central portion of the model (Fig. 4A) consists of 10,000 neurons 366

modeled using a biophysically detailed, compartmental approach, whereas the remaining 35,000 367

neurons are modeled using a much simpler point-neuron, leaky integrate-and-fire (LIF) approach 368

and serve mainly to prevent boundary artifacts. This hybrid model contains ~40 million edges 369

for connections between explicitly modeled nodes and another ~8 million edges from ~10,000 370

external virtual nodes providing external spiking inputs. In the original study, the model was 371

subjected to a battery of visual stimuli (movies), and the results were compared to published 372

work and new in vivo experiments (Arkhipov et al., 2018) (see an example of spiking output in 373

Fig. 4B). 374

 375

Fig. 4C shows benchmarks for loading the layer 4 model in SONATA format for simulation in 376

NEURON (Carnevale and Hines, 2006) using the BMTK’s BioNet module (Gratiy et al., 2018), 377

performed on cluster partitions from 5 to 390 CPU cores. The times required to build the nodes, 378

establish edges from the external virtual nodes, and establish edges among the explicitly 379

simulated, recurrently connected nodes are shown (note that these times include both reading the 380

files and instantiating NEURON objects). Two views of the same data are presented: (i) scaling 381

with the number of cores and (ii) scaling with the number of edges or nodes per core. The 382

scaling is approximately linear (with a slope close to 1) starting at about 32 cores. The overall 383

simulation setup time is dominated by the recurrent connections, which are about 5 times more 384

numerous than the virtual input connections and take about 5 times longer to set up. 385

 386

For a typical use case of hundreds of CPU cores, the 45,000-neuron hybrid layer 4 network 387

model requires <10 s for instantiating nodes, <50 s for external edges, and ~4 minutes for 388

recurrent edges, resulting in ~5-minute setup time total. Using uncompressed HDF5 files, the 389

total size of network files, including recurrent and feedforward network connections, is ~2.4 GB 390

(see http://portal.brain-map.org/explore/models/l4-mv1). Thus, for this considerably large and 391

detailed model, SONATA supports modest loading times and storage space footprint. We also 392

previously demonstrated good scaling of simulation time for this model (Gratiy et al., 2018). 393

 394

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 20, 2019. ; https://doi.org/10.1101/625491doi: bioRxiv preprint

https://paperpile.com/c/2aR2bC/Y08O
https://paperpile.com/c/2aR2bC/Y08O
https://paperpile.com/c/2aR2bC/WpLfl
https://paperpile.com/c/2aR2bC/oqGy7
http://portal.brain-map.org/explore/models/l4-mv1
https://paperpile.com/c/2aR2bC/oqGy7
https://doi.org/10.1101/625491
http://creativecommons.org/licenses/by-nc-nd/4.0/

14

 395

Figure 4. A 45,000-neuron hybrid network model of the layer 4 of mouse cortical area V1. 396

(A) Visualization of the network model, which consists of 10,000 biophysically detailed neurons 397

(colored morphologies) in the center and 35,000 point neurons (white balls) forming an annulus 398

around the biophysical neurons to prevent boundary artifacts. (B) An example raster plot output 399

from a simulation of the layer 4 model. Shown are the spikes of 10,000 biophysical neurons in 400

response to a clip from a natural movie. Colors indicate the five types of neurons: excitatory 401

Scnn1a (orange), Rorb (red), Nr5a1 (magenta) and inhibitory PV1 (blue) and PV2 (cyan). See 402

details in (Arkhipov et al., 2018). (C) Benchmarks for instantiating different parts of the layer 4 403

model. The left and right column show the same data: against the number of CPU cores used for 404

simulation on the left and against the number of edges or nodes per core on the right. 405

Ecosystem support 406

SONATA is a free format open for community development. Anyone wishing to add SONATA 407

support to a Python based application may utilize the PySONATA Python API hosted at GitHub 408

and developed jointly by the Allen Institute and Blue Brain Project (BBP). Multiple tools from 409

these two organizations and other modeling and standardization initiatives already implement 410

SONATA support (Fig. 5). 411

 412

Below we briefly describe examples of using these tools to construct, read, write, visualize, and 413

simulate network models in SONATA format. Note that, in general, when different simulators 414

load one SONATA model for simulation, bitwise agreement between their outputs is not 415

guaranteed. The reasons for that are non-standardized processing of certain data in simulation 416

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 20, 2019. ; https://doi.org/10.1101/625491doi: bioRxiv preprint

https://paperpile.com/c/2aR2bC/Y08O
https://doi.org/10.1101/625491
http://creativecommons.org/licenses/by-nc-nd/4.0/

15

software packages, different approaches for instantiating initial conditions, etc. For a real-life 417

example, consider that loading SWC morphologies in NEURON can be done using different 418

functions (e.g., hoc or Python), which employ different numerical precisions; as a result, 419

simulation outputs will not be bitwise identical, but will be only statistically the same to the level 420

permitted by the precision discrepancy in morphologies. Nevertheless, SONATA constrains a 421

vast variety of important degrees of freedom in network simulations, enabling statistically similar 422

results between simulators and bitwise reproducibility within a simulator with fixed software 423

code. 424

 425

Although SONATA has been originally developed to support very large and biologically 426

complex simulations, it is fully consistent with more typical smaller-scale and less complex 427

applications. For example, it is rather common for modelers to use conceptual rules implemented 428

in a few lines of code to generate model geometries and connections. These approaches are fully 429

supported by BMTK, Brion/Brain, pyNeuroML, PyNN, and NetPyNE described below -- in 430

addition to the advanced capabilities of these tools to build and carry out very sophisticated, data-431

driven, large-scale network simulations. Each of these software packages can generate models 432

using such high-level conceptual definitions, and in fact the examples illustrated in Fig. 5 were 433

generated in such a simple way using the BMTK’s model building module. The important new 434

contribution that SONATA makes is a standardized, efficient format for exchanging generated 435

network structures, as well as simulation results, between these applications. That is showcased 436

in Fig. 5, where the BMTK-generated models are simulated using several other tools. 437

Furthermore, it is important to note that large scale biologically realistic models (e.g., (Arkhipov 438

et al., 2018; Markram et al., 2015)) often require as much or even more time to build than to run 439

a single simulation, and then saving model instantiations becomes very important, whereas for 440

small models this may be simply unnecessary. However, for sharing models with the community, 441

and especially across simulator platforms, the ability to save all instantiated parameters of 442

models and simulations systematically -- as provided by SONATA -- becomes important for 443

large and small models alike. The examples in Fig. 5 are relatively small, 300-neuron models, 444

illustrating use cases that are more common in the field than the very large simulations with tens 445

of thousands of neurons (Fig. 4). 446

 447

Currently, SONATA is not natively supported by the widely used simulation engines NEURON 448

and NEST, but the tools described below provide convenient interfaces to NEURON and NEST 449

and enable simulations with SONATA using these two engines. In the future, implementation of 450

native support in NEURON and NEST could be useful for systematic conversion of older, 451

existing models (which are typically stored as software code) to SONATA format by 452

instantiating these models in NEURON or NEST environment from the original code and then 453

saving as SONATA files. 454

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 20, 2019. ; https://doi.org/10.1101/625491doi: bioRxiv preprint

https://paperpile.com/c/2aR2bC/G6qo+Y08O
https://paperpile.com/c/2aR2bC/G6qo+Y08O
https://doi.org/10.1101/625491
http://creativecommons.org/licenses/by-nc-nd/4.0/

16

PySONATA 455

PySONATA is a Python based API for reading SONATA files, open-sourced under a BSD 456

license and maintained as an official tool of the SONATA working group 457

(https://github.com/AllenInstitute/sonata). Users wishing to begin integrating the SONATA 458

format into their own software are encouraged to use the PySONATA Python modules. 459

Examples of how to use the module can be found at 460

https://github.com/AllenInstitute/sonata/blob/master/src/pysonata/docs/Tutorial%20-461

%20pySONATA.ipynb. 462

The Brain Modeling Toolkit 463

The Brain Modeling Toolkit (BMTK; https://github.com/AllenInstitute/bmtk) is a Python based 464

package for building, simulating and analyzing large-scale neural networks across different 465

levels of resolution. The BMTK is open-sourced under a BSD-3 license and has full support for 466

generating and reading the SONATA data format (Fig. 5). Modelers can use the BMTK Builder 467

submodule to create their own SONATA based networks from scratch. It supports cell template 468

files, electrophysiological parameters, and morphology from the Allen Cell Types Database 469

(http://celltypes.brain-map.org/) (Gouwens et al., 2018b; Teeter et al., 2018) as well as other cell 470

model formats, including NeuroML2 (Cannon et al., 2014; Gleeson et al., 2010), NEURON hoc 471

files (Carnevale and Hines, 2006), or even user defined Python functions. For simulations, 472

BMTK relies on an increasing array of simulation engines (NEURON (Carnevale and Hines, 473

2006), NEST (Gewaltig and Diesmann, 2007), Dipde (Cain et al., 2016), etc.), which allow users 474

to run simulations of SONATA networks using either multi-compartment, point, or population 475

based representations. The results of these simulations, regardless of the underlying simulator 476

used to run them, are transformed into SONATA output format, allowing networks built and run 477

with BMTK to be analyzed and visualized by any third-party software that supports SONATA. 478

Fig. 5B and 5C show a network with 300 biophysically detailed cells, in SONATA format, 479

generated using BMTK and visualized with RTNeuron and NetPyNE, respectively. The results 480

of simulations of this network using BMTK and NetPyNE are shown in Fig. 5D. Fig 5E shows 481

simulations of a network of 300 integrate and fire neurons created with BMTK and simulated 482

using BMTK, PyNN, and pyNeuroML. 483

Brion/Brain 484

The Blue Brain’s C++ libraries for handling large scale data and simulation setup, Brion/Brain 485

(https://github.com/BlueBrain/Brion), provide partial support for SONATA. Currently Brion 486

provides a low level API to read circuit and simulation JSON configurations, spike and multi-487

compartment simulation outputs, SWC morphologies and query nodes in HDF5 files. It also 488

provides a single threaded writer for multi-compartment simulation output reports. Brain 489

provides a higher level API that makes it easier to work with full networks. All this functionality 490

is also available in Python through the associated Python wrapping module. 491

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 20, 2019. ; https://doi.org/10.1101/625491doi: bioRxiv preprint

https://github.com/AllenInstitute/sonata
https://github.com/AllenInstitute/sonata/blob/master/src/pysonata/docs/Tutorial%20-%20pySONATA.ipynb
https://github.com/AllenInstitute/sonata/blob/master/src/pysonata/docs/Tutorial%20-%20pySONATA.ipynb
https://github.com/AllenInstitute/bmtk
http://celltypes.brain-map.org/
https://paperpile.com/c/2aR2bC/siCxw+6yXCf
https://paperpile.com/c/2aR2bC/xP1JB+IFa22
https://paperpile.com/c/2aR2bC/WpLfl
https://paperpile.com/c/2aR2bC/WpLfl
https://paperpile.com/c/2aR2bC/WpLfl
https://paperpile.com/c/2aR2bC/LvJhW
https://paperpile.com/c/2aR2bC/gZJPg
https://github.com/BlueBrain/Brion
https://doi.org/10.1101/625491
http://creativecommons.org/licenses/by-nc-nd/4.0/

17

libSONATA 492

Blue Brain’s libSONATA (https://github.com/BlueBrain/libsonata) is a library that provides 493

support to read SONATA files. The library is open-sourced under a LGPLv3 license and offers 494

an API for both Python and C++ applications. Currently libSONATA supports reading circuit 495

files, including nodes and edges populations. 496

RTNeuron 497

Blue Brain’s RTNeuron (Hernando et al., 2013) is a framework for visualizing detailed neuronal 498

network models and simulations. As it relies on Brion/Brain for data access, it currently provides 499

basic support to visualize SONATA circuits and simulations. For instance, Fig. 5B illustrates the 500

RTNeuron visualization of a model of 300 biophysically detailed neurons, provided as an 501

example in the SONATA specification GitHub repository 502

(https://github.com/AllenInstitute/sonata/tree/master/examples/300_cells). Here, one can see 503

neuronal morphologies and the distribution of membrane voltage across the electrical 504

compartments comprising these morphologies as the simulation evolves over time. 505

pyNeuroML 506

NeuroML (Cannon et al., 2014; Gleeson et al., 2010) is a standardized format based on XML for 507

declaratively describing models of neurons and networks in computational neuroscience. Cellular 508

models which can be described range from simple point neurons (e.g. leaky integrate and fire) to 509

multicompartmental neuron models with multiple active conductances. Networks of these cells 510

can be specified, detailing the 3D positions or populations, connectivity between them and 511

stimulus applied to drive the network activity. 512

 513

Multiple libraries have been created to support user adoption of the NeuroML language, 514

including jNeuroML (https://github.com/NeuroML/jNeuroML) in the Java language and 515

pyNeuroML (https://github.com/NeuroML/pyNeuroML) in Python. The latter package also gives 516

access to all of the functionality of jNeuroML (including the ability to convert NeuroML to 517

simulator specific code, e.g. for NEURON) through Python scripts, by bundling a binary copy of 518

the library. PyNeuroML has recently added support for importing networks and simulations 519

specified in the SONATA format and converting them to NeuroML. A related package currently 520

under development, NeuroMlite (https://github.com/NeuroML/NeuroMLlite) allows compact 521

description of networks and can export the generated structures to SONATA. Fig. 5E shows a 522

simulation of 300 integrate and fire cells in SONATA which has been imported by pyNeuroML, 523

converted to NeuroML and executed in the NEURON simulator. 524

PyNN 525

PyNN is a simulator-agnostic Python API for describing network models of point neurons, and 526

simulation experiments with such models (Davison et al. 2009). A reference implementation of 527

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 20, 2019. ; https://doi.org/10.1101/625491doi: bioRxiv preprint

https://github.com/BlueBrain/libsonata
https://paperpile.com/c/2aR2bC/bwRBf
https://github.com/AllenInstitute/sonata/tree/master/examples/300_cells
https://paperpile.com/c/2aR2bC/xP1JB+IFa22
https://github.com/NeuroML/jNeuroML
https://github.com/NeuroML/pyNeuroML
https://github.com/NeuroML/NeuroMLlite
https://doi.org/10.1101/625491
http://creativecommons.org/licenses/by-nc-nd/4.0/

18

the API for the NEURON, NEST and Brian simulators is available 528

(http://neuralensemble.org/PyNN), and a number of other simulation tools, including 529

neuromorphic hardware systems, have implemented the API (Brüderle et al., 2011; Rhodes et al., 530

2018). PyNN models can be converted to and from the NeuroML and SONATA formats with a 531

single function call. Fig. 5E illustrates an example where a model in SONATA format was 532

loaded using the PyNN “serialization” module, a simulation was carried out using the PyNN 533

NEST backend, and simulation output was saved in the SONATA format. 534

NetPyNE 535

NetPyNE (www.netpyne.org; (Dura-Bernal et al., 2019)) is a package developed in Python and 536

building on the NEURON simulator (Carnevale and Hines, 2006). It provides both 537

programmatic and graphical interfaces that facilitate the definition, parallel simulation, and 538

analysis of data-driven multiscale models. Users can provide specifications at a high level via its 539

standardized declarative language. NetPyNE supports both point neurons and biophysically-540

detailed multi-compartment neurons, as well as NEURON's Reaction-Diffusion (RxD) 541

molecular-level descriptions. The tool includes built-in functions to visualize and analyze the 542

model, including connectivity matrices, voltage traces, raster plot, local field potential (LFP) 543

plots and information transfer measures. Additionally, it facilitates parameter exploration and 544

optimization by automating the submission of batch parallel simulation on multicore machines 545

and supercomputers. 546

NetPyNE network model instantiations can be converted to and from the NeuroML and 547

SONATA formats. SONATA complements NetPyNE by providing a standardized and efficient 548

format to store and exchange large network models. This enables using other simulation tools to 549

run and explore models developed with NetPyNE, and vice versa. As an example, we imported 550

the 300-cell SONATA example with multicompartment cells into NetPyNE, visualized it using 551

the NetPyNE GUI (Fig. 5C), and carried out a NetPyNE simulation (Fig. 5D). 552

Neurodata Without Borders: Neurophysiology 2.0 553

Neurodata Without Borders: Neurophysiology (NWB:N) 2.0 is a data format for standardizing 554

experimental data across systems neuroscience. We developed an extension for NWB:N 2.0 to 555

accommodate large-scale simulation data, and developed a conversion script from SONATA to 556

NWB:N 2.0 (https://github.com/ben-dichter-consulting/ndx-simulation-output) (Fig. 5A). This 557

allows stimulated data to be stored side-by-side with experimental data and facilities comparative 558

analysis between simulation and electrophysiology or calcium imaging experiments. 559

 560

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 20, 2019. ; https://doi.org/10.1101/625491doi: bioRxiv preprint

http://neuralensemble.org/PyNN
https://paperpile.com/c/2aR2bC/28XCj+MZHBN
https://paperpile.com/c/2aR2bC/28XCj+MZHBN
http://www.netpyne.org/
https://paperpile.com/c/2aR2bC/pw9pK
https://paperpile.com/c/2aR2bC/WpLfl
https://github.com/ben-dichter-consulting/ndx-simulation-output
https://doi.org/10.1101/625491
http://creativecommons.org/licenses/by-nc-nd/4.0/

19

 561

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 20, 2019. ; https://doi.org/10.1101/625491doi: bioRxiv preprint

https://doi.org/10.1101/625491
http://creativecommons.org/licenses/by-nc-nd/4.0/

20

Figure 5. Support for SONATA in simulators and libraries. (A) Overview of applications 562

which can generate SONATA files (containing either a description of a network structure or 563

simulation output) and the various categories of applications which can read SONATA, including 564

general purpose libraries, visualization tools, and simulation packages. The software packages 565

BMTK, NetPyNE, PyNN, and pyNeuroML can read SONATA network descriptions for 566

execution in the simulation engines NEURON and NEST. The pyNWB package provides a 567

programming interface for reading and writing neurophysiology data (either from experiments or 568

from simulations) in the NWB:N 2.0 format. (B) RTNeuron visualization. Sample renderings at 3 569

simulation timesteps of an example network with 300 biophysically detailed cells, with somatic 570

and dendritic compartments colored according to the simulated membrane potential. The 571

biophysical 300-cell network, as well as its point-neuron counterpart, were created via the model-572

building scripting interface in BMTK and saved using SONATA. These two models are used in 573

all subsequent panels here. (C) Rendering of the same model as in (B) using the NetPyNE GUI. 574

Each cell is colored according to which of the 5 node types it belongs. (D) The 300-cell 575

biophysically detailed example from (B) and (C) simulated in NEURON using BMTK (left) and 576

NetPyNE (right). (E) A network with 300 integrate and fire neurons generated by BMTK, and 577

simulated in NEST via BMTK (left), NEST after importing the SONATA files into PyNN 578

(middle) and NEURON after conversion of the network to NeuroML by pyNeuroML. Each 579

raster plot in (D) and (E) is accompanied by a panel underneath showing population firing rate 580

(arbitrary units). 581

 582

Discussion 583

We have described SONATA, an open-source data format developed to answer the challenges of 584

modern computational neuroscience, especially those inherent in large-scale data-driven 585

modeling of brain networks. It is designed for memory and computational efficiency, as well as 586

for working across multiple platforms, and at the same time enabling as much flexibility as 587

possible for diverse applications. To achieve this, SONATA relies on commonly used data 588

formats such as CSV, HDF5, and JSON, which can be used across platforms, can be read and 589

written by many existing libraries in various programming languages, and (especially in the case 590

of HDF5) have been proven to work efficiently in parallel computations with very large datasets. 591

The SONATA specifications include network descriptions, simulation configuration, and input 592

or output activity. Close cooperation with existing standardisation and simulator independent 593

specification initiatives like NeuroML, PyNN, and NWB:N has helped to increase synergy with 594

existing formats, and has ensured compatibility with languages and tools already in use in the 595

community. 596

 597

The flexibility of the SONATA specification is ensured by several design criteria. First, the 598

design leaves it up to users to decide which attributes are shared within node or edge type vs. 599

which are unique to specific nodes or edges. Second, it allows limitless creation of user-defined 600

attributes and maintains only a small number of reserved fields. And third, via a hierarchy of 601

types, populations, and groups of nodes/edges, it permits specification of hybrid models that may 602

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 20, 2019. ; https://doi.org/10.1101/625491doi: bioRxiv preprint

https://doi.org/10.1101/625491
http://creativecommons.org/licenses/by-nc-nd/4.0/

21

include biophysically detailed neurons, point neurons, and many other model types, all in one 603

network model. 604

 605

While SONATA offers computationally efficient solutions for storing many model properties, 606

we did not attempt to reinvent file formats for all properties. For example, SONATA utilizes the 607

well established ASCII-based SWC format for neuronal morphologies. We did not develop a 608

computationally optimized binary format for morphologies because their footprint in terms of 609

storage or computational demand is typically small. In the case of the Layer 4 model (Fig. 4), 610

loading SWC morphologies takes ~60% of the time of building nodes, but that expense is 611

dwarfed by the time it takes to establish connections (~300 s for external and recurrent 612

connections vs. ~5 s for nodes). Thus, we opted to develop efficient binary solutions only for 613

computationally demanding model properties, otherwise relying on widely used formats such as 614

SWC. 615

 616

The SONATA community and ecosystem include multiple groups with diverse interests and are 617

growing due to the open-source design. Initially developed jointly by the Allen Institute and the 618

Blue Brain Project, SONATA is now supported by tools from many teams. As described above, 619

tools such as BMTK (Gratiy et al., 2018), RTNeuron (Hernando et al., 2013), PyNN (Davison et 620

al., 2009), NeuroML (Cannon et al., 2014; Gleeson et al., 2010), and NetPyNE (Dura-Bernal et 621

al., 2019) include SONATA support. Functionality for conversion between SONATA and 622

NWB:N (Ruebel et al., 2019) also exists. The SONATA data format and framework are reflected 623

in the free and open-source PySONATA project hosted on GitHub 624

(https://github.com/AllenInstitute/sonata), which is intended as a key resource for those wishing 625

to add support for SONATA to their applications and includes specification documentation, 626

open-source reference application programming interfaces, and model and simulation output 627

examples. 628

 629

As an open living format, SONATA may be extended in the future to reflect developments in 630

modeling and in experimental neuroscience. In turn, we invite experimentalist colleagues to 631

explore SONATA’s applicability to their circumstances, as the SONATA framework provides an 632

efficient description for a variety of network properties. Such cross-pollination will help 633

improve reproducibility and facilitate collaboration between experimental and computational 634

neuroscientists. 635

 636

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 20, 2019. ; https://doi.org/10.1101/625491doi: bioRxiv preprint

https://paperpile.com/c/2aR2bC/oqGy7
https://paperpile.com/c/2aR2bC/bwRBf
https://paperpile.com/c/2aR2bC/hrO3T
https://paperpile.com/c/2aR2bC/hrO3T
https://paperpile.com/c/2aR2bC/xP1JB+IFa22
https://paperpile.com/c/2aR2bC/pw9pK
https://paperpile.com/c/2aR2bC/pw9pK
https://paperpile.com/c/2aR2bC/B9mUv
https://github.com/AllenInstitute/sonata
https://doi.org/10.1101/625491
http://creativecommons.org/licenses/by-nc-nd/4.0/

22

Methods 637

JSON, CSV, and HDF5 638

JSON 639

JSON (JavaScript Object Notation) is a data exchange format that is easy for both humans and 640

machines to read and write. Being text based, JSON is platform and language independent. Data 641

organization is based on two common structures: key-value pairs and ordered lists, which have 642

equivalents in almost all programming languages. 643

CSV 644

CSV stands for “comma-separated values” and it is a very common way of laying out tabular 645

data in text files. CSV is not a standard per se; the choices that have been made for SONATA are 646

described in the official specification. It should be noted that, although the CSV abbreviation 647

suggests comma as a separator, CSV files can use many types of separator, and, in fact, 648

SONATA format specifies spaces as preferred separators for CSV. 649

HDF5 650

HDF5 (Hierarchical Data Format version 5) is a technology designed for storing very large 651

heterogeneous data collections and their metadata in a single container file. HDF5 defines a 652

binary container file format for which the HDF Group provides an implementation in C. 653

Bindings for several other languages exist as well. Basic concepts of HDF5 include groups, 654

datasets and attributes. Making an analogy to filesystems, groups are similar to directories and 655

datasets to files. The main differences between HDF5 and a general purpose filesystem are that 656

a) a dataset is not a stream of bytes like a file, but consists of a multidimensional array with a 657

single data type for all values and that b) groups and datasets can be annotated by means of 658

attributes. HDF5 defines some basic data types common to most programming languages: 659

integers, floats, strings. Data can be stored linearly (the elements of a dataset are stored in 660

increasing order, according to their index and dimension) or in “chunks” for computational 661

efficiency (the order in how dataset elements is interleaved according to their index and 662

dimension; for details, see https://support.hdfgroup.org/HDF5/doc/Advanced/Chunking/). 663

Benchmarking 664

Edge file benchmarks 665

The performance of navigating through an edge file in SONATA format is illustrated in Fig. 6, 666

which shows the results of selecting 1000 neurons and accessing one arbitrary property of all the 667

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 20, 2019. ; https://doi.org/10.1101/625491doi: bioRxiv preprint

https://support.hdfgroup.org/HDF5/doc/Advanced/Chunking/
https://doi.org/10.1101/625491
http://creativecommons.org/licenses/by-nc-nd/4.0/

23

edges of the selected neurons in the 45,000-cell recurrently connected model of Layer 4 of mouse 668

V1(Arkhipov et al., 2018) On average each cell receives input from 438.8 neighbors with the 669

number and strength of synapses between any two cells being determined by source and target cell 670

types. The network file contains over 39.2 million unique synapses partitioned into two groups, 671

those synapses that target multicompartment neurons and those that target point points. 672

Connections that target point neurons only require synaptic strength variable, while those that 673

target multi-compartment neurons also require information about section number and segment 674

distance for each synapse. The HDF5 edge file is 1.9 GB in size. 675

The benchmarks were conducted on an HPE SGI 8600 supercomputer. Each compute node had 676

two Intel Xeon Gold 6140 CPUs (each with 18 cores at 2.30 GHz) and 768 GB of DRAM. Nodes 677

were connected through a Mellanox Infiniband (IB) EDR fabric to two GS14K storage racks 678

with a total storage capacity of 4 PB. The computing system was running Linux 3.10.0 and the 679

filesystem was GPFS 4.2.3-6, configured with 4 MiB block size. The storage system did not have 680

dedicated metadata drivers. The software components used and their versions are the following: 681

glibc 2.25-49, gcc 6.4, boost 1.58, HDF5 1.10.1, Python 2.7, numpy 1.13.3 and MPI 2.16 682

provided by HPE. 683

 684

For reference, the maximum average read bandwidth obtained in pure I/O benchmark 685

experiments with IOR (https://ior.readthedocs.io/en/latest/) in this machine is 5.6 GiB/s using 1 686

single core accessing a 1 GiB file in 4 MiB blocks. The maximum average write bandwidth 687

measured is 9.5 GiB/s using 8 cores from 1 node writing 1 GiB per core in 4 MiB operations to a 688

shared file. POSIX I/O was used to obtain both measurements. 689

 690

To illustrate SONATA’s performance and flexibility, we use examples of ordering the edges data 691

in two different ways (Fig. 6A): target-major (Fig. 6B), where data is sorted according to the ID 692

of the target neuron (increasing), and hybrid ordering (Fig. 6C), where the connectivity matrix is 693

divided in blocks, and edges inside each block are enumerated, alternating (from block to block) 694

between source-major and target major orderings. We also compare the impact of selecting 1000 695

neurons randomly or sequentially. 696

 697

Note that SONATA supports arbitrary ordering of edges, and the two variants tested in the 698

benchmarks are only for demonstration purposes. 699

 700

A target-major sort is more efficient for instance in the case of a simulator creating the synapses 701

on the target cell when instantiating the network. A source-major sort (data sorted according to 702

the ID of the source neuron increasing) is favorable to analysis of efferent connectivity of large 703

network. The hybrid ordering is a compromise between the target-major and source-major 704

ordering. 705

 706

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 20, 2019. ; https://doi.org/10.1101/625491doi: bioRxiv preprint

https://paperpile.com/c/2aR2bC/Y08O
https://ior.readthedocs.io/en/latest/
https://doi.org/10.1101/625491
http://creativecommons.org/licenses/by-nc-nd/4.0/

24

Fig. 6D shows that ordering has an impact on the performance of data access (whereas selecting 707

neurons randomly or sequentially does not impact performance substantially). By using target-708

major ordering (or its symmetric source-major ordering) one can achieve optimal performance 709

when accessing data in the same access pattern as the ordering, but accessing data in the opposite 710

direction is much less efficient, by a factor of ~100. Ordering data in a hybrid manner is a 711

compromise to get balanced performance between the source-to-target and target-to-source 712

access patterns, but in this case the performance is not as good as the optimal performance for 713

non-hybrid ordering. Due to such large discrepancies, the SONATA format specification leaves 714

the choice of ordering open to users. Note that source-target pairs for each edge are always 715

defined in the edge files in the same way; it is the indexing of these edges that may differ 716

depending on user requirements. This means that the edges can always be read, but reading speed 717

for a particular application will depend on the choice of indexing, and this choice should be made 718

based on the desired application. Examples in Fig. 6D indicate that a rather high performance can 719

be achieved (close to 10,000 neurons processed per second for their edge attributes) in optimal 720

cases, but users should take advantage of the flexibility of SONATA specification to use edge 721

ordering that is most suitable for their needs. In situations where high performance for various 722

access patterns is essential, solutions may include two or more copies of edge files with different 723

orderings for different use cases. 724

 725

 726

 727

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 20, 2019. ; https://doi.org/10.1101/625491doi: bioRxiv preprint

https://doi.org/10.1101/625491
http://creativecommons.org/licenses/by-nc-nd/4.0/

25

 728

Figure 6. Target major and hybrid ordering of edges. (A) A simple example of connectivity 729

matrix (the number within each matrix element indicates the number of edges -- i.e., synapses -- 730

between the two nodes) and schematics of target major and hybrid orderings. (B) and (C) Edge 731

lists representing edges from the connectivity matrix in (A), sorted according to target major (B) 732

or hybrid (C) ordering. (D) Throughput of accessing edge information for target major or hybrid 733

ordering of edges in the SONATA files in a 45,000-cell model of Layer 4 of mouse V1 734

(Arkhipov et al., 2018). The target-to-source and source-to-target access patterns are illustrated 735

with either random or sequential selection of target or source neurons. 736

Simulation output benchmarks 737

The simulation output benchmarks (Fig. 3) were run on the aforementioned HPE SGI 8600 738

system. Since most simulators can run in parallel (multi-thread and/or multi-process), the 739

benchmarking of the report generation was also done in parallel, on 16 nodes and 36 processes 740

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 20, 2019. ; https://doi.org/10.1101/625491doi: bioRxiv preprint

https://paperpile.com/c/2aR2bC/Y08O
https://doi.org/10.1101/625491
http://creativecommons.org/licenses/by-nc-nd/4.0/

26

per node (using 1 core per process). All processes were periodically dumping data to a single, 741

shared HDF5 file in the SONATA format. At each write operation, each process was writing 742

several columns at its designated frame/trace region. The amount of data written at each 743

operation is presented as the “Write block size per process” illustrated in the performance plots 744

(the write block size applies for each process and for each write operation). 745

 746

Write benchmarks made use of the Neuromapp library 747

(https://github.com/BlueBrain/neuromapp, revision f03d3ea) (Ewart et al., 2017), which uses 748

parallel HDF5 and MPI underneath. Read benchmarks were implemented using the Python 749

binding of Brion/Brain (revision c16a694), the testing and plotting code can be found in the 750

SONATA github repository in the benchmarks branch. 751

Loading of simulation data 752

Benchmarks for loading simulation data (Fig. 4C) were obtained for the full simulation of the 753

45,000-neuron recurrently connected model of Layer 4 of mouse V1 (Arkhipov et al., 2018). 754

Figure Fig. 4C shows the amount of time required to parse through the SONATA network files 755

and instantiate the in-memory cell and synaptic objects to run a full NEURON (Carnevale and 756

Hines, 2006) simulation. Each simulation was instantiated with a computing cluster of Intel Xeon 757

E5 processors (each core either 2.1 or 2.2 GHz), using a minimum of 5 cores and a maximum of 758

390 cores. The network was built using the Brain Modeling Toolkit with Python 3.6 and 759

NEURON 7.5 with Python bindings. 760

 761

Acknowledgements 762

This project/research has received funding from the European Union’s Horizon 2020 Framework 763

Programme for Research and Innovation under the Specific Grant Agreement No. 785907 764

(Human Brain Project SGA2) and from the EPFL Blue Brain Project (funded by the Swiss 765

government’s ETH Board of the Swiss Federal Institutes of Technology). SD-B was funded by 766

NIH grants U01EB017695, R01EB022903 and 2R01DC012947-06A1, and New York State 767

grant DOH01-C32250GG-3450000. PG was supported by the Wellcome Trust (212941, 768

101445). This work benefited from interactions between the authors as part of the International 769

Neuroinformatics Coordinating Facility (INCF) Special Interest Group on Standardised 770

Representations of Network Structures. We are grateful to Christof Koch for inspiring and 771

supporting this work and to Michael Hines for many helpful discussions and suggestions. We 772

wish to thank the Allen Institute founder, Paul G. Allen, for his vision, encouragement, and 773

support. 774

 775

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 20, 2019. ; https://doi.org/10.1101/625491doi: bioRxiv preprint

https://github.com/BlueBrain/neuromapp
https://paperpile.com/c/2aR2bC/tfTN9
https://paperpile.com/c/2aR2bC/Y08O
https://paperpile.com/c/2aR2bC/WpLfl
https://paperpile.com/c/2aR2bC/WpLfl
https://doi.org/10.1101/625491
http://creativecommons.org/licenses/by-nc-nd/4.0/

27

References 776

Amunts, K., Ebell, C., Muller, J., Telefont, M., Knoll, A., and Lippert, T. (2016). The Human Brain 777
Project: Creating a European Research Infrastructure to Decode the Human Brain. Neuron 92, 778
574–581. 779

Arkhipov, A., Gouwens, N.W., Billeh, Y.N., Gratiy, S., Iyer, R., Wei, Z., Xu, Z., Abbasi-Asl, R., 780
Berg, J., Buice, M., et al. (2018). Visual physiology of the layer 4 cortical circuit in silico. PLoS 781
Comput. Biol. 14, e1006535. 782

Baker, M. (2016). 1,500 scientists lift the lid on reproducibility. Nature 533, 452–454. 783

Bezaire, M.J., Raikov, I., Burk, K., Vyas, D., and Soltesz, I. (2016). Interneuronal mechanisms of 784
hippocampal theta oscillation in a full-scale model of the rodent CA1 circuit. Elife 5, e18566. 785

Billeh, Y.N., Cai, B., Gratiy, S.L., Dai, K., Iyer, R., Gouwens, N.W., Abbasi-Asl, R., Jia, X., 786
Siegle, J.H., Olsen, S.R., et al. (2019). Systematic Integration of Structural and Functional Data 787
into Multi-Scale Models of Mouse Primary Visual Cortex. 788

Bouchard, K.E., Aimone, J.B., Chun, M., Dean, T., Denker, M., Diesmann, M., Donofrio, D.D., 789
Frank, L.M., Kasthuri, N., Koch, C., et al. (2016). High-Performance Computing in Neuroscience 790
for Data-Driven Discovery, Integration, and Dissemination. Neuron 92, 628–631. 791

Bower, J.M., and Beeman, D. (1997). The Book of GENESIS: Exploring Realistic Neural Models 792
with the GEneral NEural SImulation System (Springer, New York). 793

Brüderle, D., Petrovici, M.A., Vogginger, B., Ehrlich, M., Pfeil, T., Millner, S., Grübl, A., Wendt, 794
K., Müller, E., Schwartz, M.-O., et al. (2011). A comprehensive workflow for general-purpose 795
neural modeling with highly configurable neuromorphic hardware systems. Biol. Cybern. 104, 796
263–296. 797

Cain, N., Iyer, R., Koch, C., and Mihalas, S. (2016). The Computational Properties of a 798
Simplified Cortical Column Model. PLoS Comput. Biol. 12, e1005045. 799

Cannon, R.C., Turner, D.A., Pyapali, G.K., and Wheal, H.V. (1998). An on-line archive of 800
reconstructed hippocampal neurons. J. Neurosci. Methods 84, 49–54. 801

Cannon, R.C., Gleeson, P., Crook, S., Ganapathy, G., Marin, B., Piasini, E., and Silver, R.A. 802
(2014). LEMS: a language for expressing complex biological models in concise and hierarchical 803
form and its use in underpinning NeuroML 2. Front. Neuroinform. 8, 79. 804

Carnevale, N.T., and Hines, M.L. (2006). The NEURON Book (Cambridge University Press). 805

Davison, A.P., Brüderle, D., Eppler, J., Kremkow, J., Muller, E., Pecevski, D., Perrinet, L., and 806
Yger, P. (2009). PyNN: A Common Interface for Neuronal Network Simulators. Front. 807
Neuroinform. 2, 11. 808

Dura-Bernal, S., Suter, B.A., Gleeson, P., Cantarelli, M., Quintana, A., Rodriguez, F., Kedziora, 809
D.J., Chadderdon, G.L., Kerr, C.C., Neymotin, S.A., et al. (2019). NetPyNE, a tool for data-810
driven multiscale modeling of brain circuits. Elife 8, e44494. 811

Einevoll, G.T., Destexhe, A., Diesmann, M., Grün, S., Jirsa, V., de Kamps, M., Migliore, M., 812

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 20, 2019. ; https://doi.org/10.1101/625491doi: bioRxiv preprint

http://paperpile.com/b/2aR2bC/QXHdg
http://paperpile.com/b/2aR2bC/QXHdg
http://paperpile.com/b/2aR2bC/QXHdg
http://paperpile.com/b/2aR2bC/QXHdg
http://paperpile.com/b/2aR2bC/QXHdg
http://paperpile.com/b/2aR2bC/Y08O
http://paperpile.com/b/2aR2bC/Y08O
http://paperpile.com/b/2aR2bC/Y08O
http://paperpile.com/b/2aR2bC/Y08O
http://paperpile.com/b/2aR2bC/Y08O
http://paperpile.com/b/2aR2bC/N58ed
http://paperpile.com/b/2aR2bC/N58ed
http://paperpile.com/b/2aR2bC/N58ed
http://paperpile.com/b/2aR2bC/lSefI
http://paperpile.com/b/2aR2bC/lSefI
http://paperpile.com/b/2aR2bC/lSefI
http://paperpile.com/b/2aR2bC/lSefI
http://paperpile.com/b/2aR2bC/odOS
http://paperpile.com/b/2aR2bC/odOS
http://paperpile.com/b/2aR2bC/odOS
http://paperpile.com/b/2aR2bC/F78Cj
http://paperpile.com/b/2aR2bC/F78Cj
http://paperpile.com/b/2aR2bC/F78Cj
http://paperpile.com/b/2aR2bC/F78Cj
http://paperpile.com/b/2aR2bC/F78Cj
http://paperpile.com/b/2aR2bC/rutVh
http://paperpile.com/b/2aR2bC/rutVh
http://paperpile.com/b/2aR2bC/28XCj
http://paperpile.com/b/2aR2bC/28XCj
http://paperpile.com/b/2aR2bC/28XCj
http://paperpile.com/b/2aR2bC/28XCj
http://paperpile.com/b/2aR2bC/28XCj
http://paperpile.com/b/2aR2bC/28XCj
http://paperpile.com/b/2aR2bC/gZJPg
http://paperpile.com/b/2aR2bC/gZJPg
http://paperpile.com/b/2aR2bC/gZJPg
http://paperpile.com/b/2aR2bC/gZJPg
http://paperpile.com/b/2aR2bC/h1hdB
http://paperpile.com/b/2aR2bC/h1hdB
http://paperpile.com/b/2aR2bC/h1hdB
http://paperpile.com/b/2aR2bC/h1hdB
http://paperpile.com/b/2aR2bC/IFa22
http://paperpile.com/b/2aR2bC/IFa22
http://paperpile.com/b/2aR2bC/IFa22
http://paperpile.com/b/2aR2bC/IFa22
http://paperpile.com/b/2aR2bC/IFa22
http://paperpile.com/b/2aR2bC/WpLfl
http://paperpile.com/b/2aR2bC/hrO3T
http://paperpile.com/b/2aR2bC/hrO3T
http://paperpile.com/b/2aR2bC/hrO3T
http://paperpile.com/b/2aR2bC/hrO3T
http://paperpile.com/b/2aR2bC/hrO3T
http://paperpile.com/b/2aR2bC/pw9pK
http://paperpile.com/b/2aR2bC/pw9pK
http://paperpile.com/b/2aR2bC/pw9pK
http://paperpile.com/b/2aR2bC/pw9pK
http://paperpile.com/b/2aR2bC/pw9pK
http://paperpile.com/b/2aR2bC/Iyn7
https://doi.org/10.1101/625491
http://creativecommons.org/licenses/by-nc-nd/4.0/

28

Ness, T.V., Plesser, H.E., and Schürmann, F. (2019). The Scientific Case for Brain Simulations. 813
Neuron 102, 735–744. 814

Ewart, T., Planas, J., Cremonesi, F., Langen, K., Schürmann, F., and Delalondre, F. (2017). 815
Neuromapp: A Mini-application Framework to Improve Neural Simulators. Lecture Notes in 816
Computer Science 181–198. 817

Gewaltig, M.-O., and Diesmann, M. (2007). NEST (NEural Simulation Tool). Scholarpedia J. 2, 818
1430. 819

Gleeson, P., Steuber, V., and Silver, R.A. (2007). neuroConstruct: a tool for modeling networks 820
of neurons in 3D space. Neuron 54, 219–235. 821

Gleeson, P., Crook, S., Cannon, R.C., Hines, M.L., Billings, G.O., Farinella, M., Morse, T.M., 822
Davison, A.P., Ray, S., Bhalla, U.S., et al. (2010). NeuroML: a language for describing data 823
driven models of neurons and networks with a high degree of biological detail. PLoS Comput. 824
Biol. 6, e1000815. 825

Gleeson, P., Cantarelli, M., Marin, B., Quintana, A., Earnshaw, M., Piasini, E., Birgiolas, J., 826
Cannon, R.C., Alex Cayco-Gajic, N., Crook, S., et al. (2018). Open Source Brain: a collaborative 827
resource for visualizing, analyzing, simulating and developing standardized models of neurons 828
and circuits. bioRxiv 229484. 829

Goodman, D., and Brette, R. (2008). Brian: A simulator for spiking neural networks in Python. 830
Front. Neuroinform. 2, 5. 831

Goodman, S.N., Fanelli, D., and Ioannidis, J.P.A. (2016). What does research reproducibility 832
mean? Sci. Transl. Med. 8, 341ps12. 833

Gorgolewski, K.J., Auer, T., Calhoun, V.D., Craddock, R.C., Das, S., Duff, E.P., Flandin, G., 834
Ghosh, S.S., Glatard, T., Halchenko, Y.O., et al. (2016). The brain imaging data structure, a 835
format for organizing and describing outputs of neuroimaging experiments. Sci Data 3, 160044. 836

Gorur-Shandilya, S., Hoyland, A., and Marder, E. (2018). Xolotl: An Intuitive and Approachable 837
Neuron and Network Simulator for Research and Teaching. Front. Neuroinform. 12, 87. 838

Gouwens, N.W., Sorensen, S.A., Berg, J., Lee, C., and Jarsky, T. (2018a). Classification of 839
electrophysiological and morphological types in mouse visual cortex. bioRxiv. 840

Gouwens, N.W., Berg, J., Feng, D., Sorensen, S.A., Zeng, H., Hawrylycz, M.J., Koch, C., and 841
Arkhipov, A. (2018b). Systematic generation of biophysically detailed models for diverse cortical 842
neuron types. Nat. Commun. 9, 710. 843

Gratiy, S.L., Billeh, Y.N., Dai, K., Mitelut, C., Feng, D., Gouwens, N.W., Cain, N., Koch, C., 844
Anastassiou, C.A., and Arkhipov, A. (2018). BioNet: A Python interface to NEURON for 845
modeling large-scale networks. PLoS One 13, e0201630. 846

Hawrylycz, M., Anastassiou, C., Arkhipov, A., Berg, J., Buice, M., Cain, N., Gouwens, N.W., 847
Gratiy, S., Iyer, R., Lee, J.H., et al. (2016). Inferring cortical function in the mouse visual system 848
through large-scale systems neuroscience. Proceedings of the National Academy of Sciences 849
113, 7337–7344. 850

Hernando, J., Biddiscombe, J., Bohara, B., Eilemann, S., and Schürmann, F. (2013). Practical 851

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 20, 2019. ; https://doi.org/10.1101/625491doi: bioRxiv preprint

http://paperpile.com/b/2aR2bC/Iyn7
http://paperpile.com/b/2aR2bC/Iyn7
http://paperpile.com/b/2aR2bC/Iyn7
http://paperpile.com/b/2aR2bC/Iyn7
http://paperpile.com/b/2aR2bC/tfTN9
http://paperpile.com/b/2aR2bC/tfTN9
http://paperpile.com/b/2aR2bC/tfTN9
http://paperpile.com/b/2aR2bC/LvJhW
http://paperpile.com/b/2aR2bC/LvJhW
http://paperpile.com/b/2aR2bC/LvJhW
http://paperpile.com/b/2aR2bC/LvJhW
http://paperpile.com/b/2aR2bC/Uo9RG
http://paperpile.com/b/2aR2bC/Uo9RG
http://paperpile.com/b/2aR2bC/Uo9RG
http://paperpile.com/b/2aR2bC/Uo9RG
http://paperpile.com/b/2aR2bC/xP1JB
http://paperpile.com/b/2aR2bC/xP1JB
http://paperpile.com/b/2aR2bC/xP1JB
http://paperpile.com/b/2aR2bC/xP1JB
http://paperpile.com/b/2aR2bC/xP1JB
http://paperpile.com/b/2aR2bC/xP1JB
http://paperpile.com/b/2aR2bC/GcDc7
http://paperpile.com/b/2aR2bC/GcDc7
http://paperpile.com/b/2aR2bC/GcDc7
http://paperpile.com/b/2aR2bC/GcDc7
http://paperpile.com/b/2aR2bC/8vXHh
http://paperpile.com/b/2aR2bC/8vXHh
http://paperpile.com/b/2aR2bC/8vXHh
http://paperpile.com/b/2aR2bC/8vXHh
http://paperpile.com/b/2aR2bC/VbTr0
http://paperpile.com/b/2aR2bC/VbTr0
http://paperpile.com/b/2aR2bC/VbTr0
http://paperpile.com/b/2aR2bC/VbTr0
http://paperpile.com/b/2aR2bC/YcyzN
http://paperpile.com/b/2aR2bC/YcyzN
http://paperpile.com/b/2aR2bC/YcyzN
http://paperpile.com/b/2aR2bC/YcyzN
http://paperpile.com/b/2aR2bC/YcyzN
http://paperpile.com/b/2aR2bC/8e57
http://paperpile.com/b/2aR2bC/8e57
http://paperpile.com/b/2aR2bC/8e57
http://paperpile.com/b/2aR2bC/8e57
http://paperpile.com/b/2aR2bC/937v9
http://paperpile.com/b/2aR2bC/937v9
http://paperpile.com/b/2aR2bC/6yXCf
http://paperpile.com/b/2aR2bC/6yXCf
http://paperpile.com/b/2aR2bC/6yXCf
http://paperpile.com/b/2aR2bC/6yXCf
http://paperpile.com/b/2aR2bC/6yXCf
http://paperpile.com/b/2aR2bC/oqGy7
http://paperpile.com/b/2aR2bC/oqGy7
http://paperpile.com/b/2aR2bC/oqGy7
http://paperpile.com/b/2aR2bC/oqGy7
http://paperpile.com/b/2aR2bC/oqGy7
http://paperpile.com/b/2aR2bC/YQipU
http://paperpile.com/b/2aR2bC/YQipU
http://paperpile.com/b/2aR2bC/YQipU
http://paperpile.com/b/2aR2bC/YQipU
http://paperpile.com/b/2aR2bC/YQipU
http://paperpile.com/b/2aR2bC/YQipU
http://paperpile.com/b/2aR2bC/bwRBf
https://doi.org/10.1101/625491
http://creativecommons.org/licenses/by-nc-nd/4.0/

29

Parallel Rendering of Detailed Neuron Simulations. In EGPGV, pp. 49–56. 852

Jiang, X., Shen, S., Cadwell, C.R., Berens, P., Sinz, F., Ecker, A.S., Patel, S., and Tolias, A.S. 853
(2015). Principles of connectivity among morphologically defined cell types in adult neocortex. 854
Science 350, aac9462. 855

Kasthuri, N., Hayworth, K.J., Berger, D.R., Schalek, R.L., Conchello, J.A., Knowles-Barley, S., 856
Lee, D., Vázquez-Reina, A., Kaynig, V., Jones, T.R., et al. (2015). Saturated Reconstruction of a 857
Volume of Neocortex. Cell 162, 648–661. 858

Koch, C., and Jones, A. (2016). Big Science, Team Science, and Open Science for 859
Neuroscience. Neuron 92, 612–616. 860

Koch, C., and Reid, R.C. (2012). Neuroscience: Observatories of the mind. Nature 483, 397–861
398. 862

Lee, W.-C.A., Bonin, V., Reed, M., Graham, B.J., Hood, G., Glattfelder, K., and Reid, R.C. 863
(2016). Anatomy and function of an excitatory network in the visual cortex. Nature 532, 370–864
374. 865

Markov, N.T., Ercsey-Ravasz, M.M., Ribeiro Gomes, A.R., Lamy, C., Magrou, L., Vezoli, J., 866
Misery, P., Falchier, A., Quilodran, R., Gariel, M.A., et al. (2012). A weighted and directed 867
interareal connectivity matrix for macaque cerebral cortex. Cereb. Cortex 24, 17–36. 868

Markram, H., Muller, E., Ramaswamy, S., Reimann, M.W., Abdellah, M., Sanchez, C.A., 869
Ailamaki, A., Alonso-Nanclares, L., Antille, N., Arsever, S., et al. (2015). Reconstruction and 870
Simulation of Neocortical Microcircuitry. Cell 163, 456–492. 871

Martin, C.L., and Chun, M. (2016). The BRAIN Initiative: Building, Strengthening, and 872
Sustaining. Neuron 92, 570–573. 873

Oh, S.W., Harris, J.A., Ng, L., Winslow, B., Cain, N., Mihalas, S., Wang, Q., Lau, C., Kuan, L., 874
Henry, A.M., et al. (2014). A mesoscale connectome of the mouse brain. Nature 508, 207–214. 875

Ray, S., and Bhalla, U.S. (2008). PyMOOSE: interoperable scripting in Python for MOOSE. 876
Front. Neuroinform. 2:6. 877

Ray, S., Chintaluri, C., Bhalla, U.S., and Wójcik, D.K. (2016). NSDF: Neuroscience Simulation 878
Data Format. Neuroinformatics 14, 147–167. 879

Rhodes, O., Bogdan, P.A., Brenninkmeijer, C., Davidson, S., Fellows, D., Gait, A., Lester, D.R., 880
Mikaitis, M., Plana, L.A., Rowley, A.G.D., et al. (2018). sPyNNaker: A Software Package for 881
Running PyNN Simulations on SpiNNaker. Front. Neurosci. 12, 816. 882

Ruebel, O., Tritt, A., Dichter, B., Braun, T., Cain, N., Clack, N., Davidson, T.J., Dougherty, M., 883
Fillion-Robin, J.-C., Graddis, N., et al. (2019). NWB:N 2.0: An Accessible Data Standard for 884
Neurophysiology. bioRxiv. 885

Schmidt, M., Bakker, R., Hilgetag, C.C., Diesmann, M., and van Albada, S.J. (2018). Multi-scale 886
account of the network structure of macaque visual cortex. Brain Struct. Funct. 223, 1409–1435. 887

Tasic, B., Yao, Z., Graybuck, L.T., Smith, K.A., Nguyen, T.N., Bertagnolli, D., Goldy, J., Garren, 888
E., Economo, M.N., Viswanathan, S., et al. (2018). Shared and distinct transcriptomic cell types 889

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 20, 2019. ; https://doi.org/10.1101/625491doi: bioRxiv preprint

http://paperpile.com/b/2aR2bC/bwRBf
http://paperpile.com/b/2aR2bC/RMbh6
http://paperpile.com/b/2aR2bC/RMbh6
http://paperpile.com/b/2aR2bC/RMbh6
http://paperpile.com/b/2aR2bC/RMbh6
http://paperpile.com/b/2aR2bC/RMbh6
http://paperpile.com/b/2aR2bC/kkcDn
http://paperpile.com/b/2aR2bC/kkcDn
http://paperpile.com/b/2aR2bC/kkcDn
http://paperpile.com/b/2aR2bC/kkcDn
http://paperpile.com/b/2aR2bC/kkcDn
http://paperpile.com/b/2aR2bC/QKbiF
http://paperpile.com/b/2aR2bC/QKbiF
http://paperpile.com/b/2aR2bC/QKbiF
http://paperpile.com/b/2aR2bC/QKbiF
http://paperpile.com/b/2aR2bC/wTK5y
http://paperpile.com/b/2aR2bC/wTK5y
http://paperpile.com/b/2aR2bC/wTK5y
http://paperpile.com/b/2aR2bC/wTK5y
http://paperpile.com/b/2aR2bC/goTux
http://paperpile.com/b/2aR2bC/goTux
http://paperpile.com/b/2aR2bC/goTux
http://paperpile.com/b/2aR2bC/goTux
http://paperpile.com/b/2aR2bC/goTux
http://paperpile.com/b/2aR2bC/SqZpg
http://paperpile.com/b/2aR2bC/SqZpg
http://paperpile.com/b/2aR2bC/SqZpg
http://paperpile.com/b/2aR2bC/SqZpg
http://paperpile.com/b/2aR2bC/SqZpg
http://paperpile.com/b/2aR2bC/G6qo
http://paperpile.com/b/2aR2bC/G6qo
http://paperpile.com/b/2aR2bC/G6qo
http://paperpile.com/b/2aR2bC/G6qo
http://paperpile.com/b/2aR2bC/G6qo
http://paperpile.com/b/2aR2bC/k9gUH
http://paperpile.com/b/2aR2bC/k9gUH
http://paperpile.com/b/2aR2bC/k9gUH
http://paperpile.com/b/2aR2bC/k9gUH
http://paperpile.com/b/2aR2bC/A9Vsq
http://paperpile.com/b/2aR2bC/A9Vsq
http://paperpile.com/b/2aR2bC/A9Vsq
http://paperpile.com/b/2aR2bC/A9Vsq
http://paperpile.com/b/2aR2bC/snRNp
http://paperpile.com/b/2aR2bC/snRNp
http://paperpile.com/b/2aR2bC/snRNp
http://paperpile.com/b/2aR2bC/snRNp
http://paperpile.com/b/2aR2bC/VeinE
http://paperpile.com/b/2aR2bC/VeinE
http://paperpile.com/b/2aR2bC/VeinE
http://paperpile.com/b/2aR2bC/VeinE
http://paperpile.com/b/2aR2bC/MZHBN
http://paperpile.com/b/2aR2bC/MZHBN
http://paperpile.com/b/2aR2bC/MZHBN
http://paperpile.com/b/2aR2bC/MZHBN
http://paperpile.com/b/2aR2bC/MZHBN
http://paperpile.com/b/2aR2bC/B9mUv
http://paperpile.com/b/2aR2bC/B9mUv
http://paperpile.com/b/2aR2bC/B9mUv
http://paperpile.com/b/2aR2bC/nk10B
http://paperpile.com/b/2aR2bC/nk10B
http://paperpile.com/b/2aR2bC/nk10B
http://paperpile.com/b/2aR2bC/nk10B
http://paperpile.com/b/2aR2bC/pHyIO
http://paperpile.com/b/2aR2bC/pHyIO
https://doi.org/10.1101/625491
http://creativecommons.org/licenses/by-nc-nd/4.0/

30

across neocortical areas. Nature 563, 72–78. 890

Teeter, C., Iyer, R., Menon, V., Gouwens, N., Feng, D., Berg, J., Szafer, A., Cain, N., Zeng, H., 891
Hawrylycz, M., et al. (2018). Generalized leaky integrate-and-fire models classify multiple 892
neuron types. Nat. Commun. 9, 709. 893

Vogelstein, J.T., Mensh, B., Häusser, M., Spruston, N., Evans, A.C., Kording, K., Amunts, K., 894
Ebell, C., Muller, J., Telefont, M., et al. (2016). To the Cloud! A Grassroots Proposal to 895
Accelerate Brain Science Discovery. Neuron 92, 622–627. 896

de Vries, S.E.J., Lecoq, J., Buice, M.A., and Groblewski, P.A. (2018). A large-scale, 897
standardized physiological survey reveals higher order coding throughout the mouse visual 898
cortex. bioRxiv. 899

 900

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 20, 2019. ; https://doi.org/10.1101/625491doi: bioRxiv preprint

http://paperpile.com/b/2aR2bC/pHyIO
http://paperpile.com/b/2aR2bC/pHyIO
http://paperpile.com/b/2aR2bC/pHyIO
http://paperpile.com/b/2aR2bC/siCxw
http://paperpile.com/b/2aR2bC/siCxw
http://paperpile.com/b/2aR2bC/siCxw
http://paperpile.com/b/2aR2bC/siCxw
http://paperpile.com/b/2aR2bC/siCxw
http://paperpile.com/b/2aR2bC/vvxDp
http://paperpile.com/b/2aR2bC/vvxDp
http://paperpile.com/b/2aR2bC/vvxDp
http://paperpile.com/b/2aR2bC/vvxDp
http://paperpile.com/b/2aR2bC/vvxDp
http://paperpile.com/b/2aR2bC/63Gge
http://paperpile.com/b/2aR2bC/63Gge
http://paperpile.com/b/2aR2bC/63Gge
https://doi.org/10.1101/625491
http://creativecommons.org/licenses/by-nc-nd/4.0/

