1	Word count: 2,740
2	
3	Electronic Health Records Based Prediction of Future Incidence of
4	Alzheimer's Disease Using Machine Learning
5	Ji Hwan Park, PhD ¹ *, Han Eol Cho, MD ² *, Jong Hun Kim, MD, PhD ³ , Melanie Wall, PhD ⁴ ,
6	Yaakov Stern, PhD ^{4,5} , Hyunsun Lim, PhD ⁶ , Shinjae Yoo, PhD ¹ , Hyoung-Seop Kim, MD ⁷ ,
7	Jiook Cha, PhD ^{4,8} (*equally contributed)
8	
9 10 11	1. Computational Science Initiative, Brookhaven National Laboratory, Upton, New York, USA; 2. Department of Rehabilitation Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea;
12 13	 Department of Neurology, Dementia Center, National Health Insurance Service Ilsan Hospital, Goyang, Republic of Korea;
14	4. Department of Psychiatry, Columbia University, New York, USA;
15 16	5. Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, USA;
17 18	6. Research and Analysis Team, National Health Insurance Service Ilsan Hospital, Goyang, Republic of Korea;
19 20	 Department of Physical Medicine and Rehabilitation, Dementia Center, National Health Insurance Service Ilsan Hospital, Goyang, Republic of Korea;
21 22	8. Data Science Institute, Columbia University, New York, USA.
23	Correspondence to:
24	Hyoung-Seop Kim, MD
25	rekhs@nhimc.or.kr
26 27	100 ilsan-ro ilsan-donggu Goyang City Gyeoggi Do, 10444, Republic of Korea
28	Jiook Cha, PhD
29	jc4248@cumc.columbia.edu
30	1051 Riverside Dr.
31	New York, NY, 10033, USA

32 Key Points

- 33 **Question** Can machine learning be used to predict future incidence of Alzheimer's disease
- 34 using electronic health records?

35

- 36 **Findings** We developed and validated supervised machine learning models using the EHR
- data from 40,736 South Korean elders (age above 65 years old). Our model showed acceptable
- accuracy in predicting up to four year subsequent incidence of AD.

39

- 40 **Meaning** This study shows the potential utility of the administrative EHR data in predicting risk
- 41 for AD using data-driven machine learning to support physicians at the point of care.

43 **Abstract**

Background: Accurate prediction of future incidence of Alzheimer's disease may facilitate
intervention strategy to delay disease onset. Existing AD risk prediction models require
collection of biospecimen (genetic, CSF, or blood samples), cognitive testing, or brain imaging.
Conversely, EHR provides an opportunity to build a completely automated risk prediction model
based on individuals' history of health and healthcare. We tested machine learning models to
predict future incidence of AD using administrative EHR in individuals aged 65 or older.

50 Methods: We obtained de-identified EHR from Korean elders age above 65 years old 51 (N=40,736) collected between 2002 and 2010 in the Korean National Health Insurance Service 52 database system. Consisting of Participant Insurance Eligibility database, Healthcare Utilization 53 database, and Health Screening database, our EHR contain 4,894 unique clinical features 54 including ICD-10 codes, medication codes, laboratory values, history of personal and family 55 illness, and socio-demographics. Our event of interest was new incidence of AD defined from 56 the EHR based on both AD codes and prescription of anti-dementia medication. Two definitions were considered: a more stringent one requiring a diagnosis and dementia medication resulting 57 58 in n=614 cases ("definite AD") and a more liberal one requiring only diagnostic codes (n=2,026; 59 "probable AD"). We trained and validated a random forest, support vector machine, and logistic 60 regression to predict incident AD in 1,2,3, and 4 subsequent years using the EHR available 61 since 2002. The length of the EHR used in the models ranged from 1,571 to 2,239 days. Model training, validation, and testing was done using iterative (5 times), nested, stratified 5-fold cross 62 63 validation.

Results: Average duration of EHR was 1,936 days in AD and 2,694 days in controls. For
predicting future incidence of AD using the "definite AD" outcome, the machine learning models
showed the best performance in 1 year prediction with AUC of 0.781; in 2 year, 0.739; in 3 year,

- 0.686; in 4 year, 0.662. Using "probable AD" outcome, the machine learning models showed the
- best performance in 1 year prediction with AUC of 0.730; in 2 year, 0.645; in 3 year, 0.575; in 4
- 69 year, 0.602. Important clinical features selected in logistic regression included hemoglobin level
- 70 (b=-0.902), age (b=0.689), urine protein level (b=0.303), prescription of Lodopin (antipsychotic
- drug) (b=0.303), and prescription of Nicametate Citrate (vasodilator) (b=-0.297).
- 72 **Conclusion:** This study demonstrates that EHR can detect risk for incident AD. This approach
- 73 could enable risk-specific stratification of elders for better targeted clinical trials.

74 Introduction

75 Screening individuals at risk for Alzheimer's disease (AD) based on medical health records in 76 preclinical stages may lead to more widespread early detection of AD pathology and ultimately to better therapeutic strategies for delaying the onset of AD.¹⁻³ In contrast to biomarkers 77 78 requiring the collection of bio-specimen (e.g., serum or fluid) or imaging data, electronic health 79 records (EHR) does not require additional time or effort for data collection. Furthermore, with 80 advent of digitalization, the amounts of the EHR available for predictive modeling have exponentially increased.⁴ Because it is ubiquitous and affordable, developing risk prediction of 81 82 AD using the EHR will have a great impact on the AD research and clinical care. However, 83 despite of the tremendous potential value of EHR-based predictive models, little is known about 84 the utility of such models for AD screening.

For population AD screening, prior models are based on predefined features including 85 health profiles, such as sociodemographic (age, sex, education), lifestyle (physical activity), 86 midlife health risk factors (systolic blood pressure, BMI and total cholesterol level);^{5,6} and 87 cognitive profiles.^{7,8} Despite of the demonstrated accuracy of these models, an important 88 outstanding question is whether the several curated variables may sufficiently account for the 89 90 heterogeneous etiology of multi-factorial AD. Indeed, a meta-analysis study shows that multifactor models best predict risk for dementia, whereas single-factor models do poorly,⁶ 91 92 suggesting accurate AD screening with practical utility in large populations require sufficiently large feature space. An important new approach for developing individualized predictive 93 94 modeling is the use of the rigorous data-driven machine learning that can harvest salient 95 information from large-scale EHR to make an individual-specific prediction.

Machine learning is an optimal choice of the analytic method for analyzing large-scale EHR containing thousands of descriptors in hundreds of thousands of individuals. Studies show successful application of machine learning to the EHR in predicting incident diseases (cancer,

diabetes, schizophrenia, etc) or mortality.⁹⁻¹² Given the recent rapid growth of the machine 99 100 learning technology, application of the AI technology to clinical predictive modeling is likely to have a deep impact on medicine.¹³⁻¹⁵ But to our knowledge data-driven predictive modeling with 101 102 EHR data has not been previously used to predict incident AD. 103 When developing machine learning models, it is important to use sufficiently large data 104 105 representative of a target population of interest. The size and breadth of the data is important for model precision, while the representativeness of the data is important for minimizing potential 106 bias an improving generalizability. In the present study, we use a large nationally representative 107 (South Korea) sample cohort taken from the Korean National Health Insurance Service 108 database.¹⁶ We construct and validate data-driven machine learning models to predict future 109 110 incidence of AD using the extensive measures collected within the EHR. We demonstrate the 111 feasibility of developing accurate prediction models for AD which may then provide a starting 112 point for future.

114 Materials and Methods

115 Datasets

We used the National Health Insurance Service (NHIS)-National Elderly cohort Database, a 116 subsample of the National Health Insurance Service-national sample cohort.¹⁷ This database 117 118 contains for each individual features of services, diagnoses, and prescriptions associated with 119 all the health care services provided by the NHIS. All EHR was binned monthly. Clinical features include demographics and socioeconomics from the Participant Insurance Eligibility database; 120 121 disease and medication codes from the Healthcare Utilization database; and laboratory values, health profiles, and history of personal and family illness from the National Health Screening 122 123 database (from bi-annual health check-up required for elders with age above 40). The database 124 consists of a 10% sample of randomly selected elderly individuals (430,133 individuals) over 65 125 years of age containing health and insurance billing data of from 2002 to 2010 in South Korea. Individuals who died between 2002 and 2010 were not included in this cohort. This database is 126 representative of the Korean population because for the years investigated in this study, the 127 128 Korean NHIS covered over 96% of the entire 50-million South Korean population; thus, presents 129 minimal selection bias (Supplemental Figure 1).

130

Of those samples, 40,736 elders were selected in this study, whose records exist in all the three
databases (Participant Insurance Eligibility database, Healthcare Utilization database, and
National Health Screening database). The Korean NHIS Electronic Health Records Detailed
description of the EHR including access is available elsewhere
(https://nhiss.nhis.or.kr/bd/ab/bdaba000eng.do). Ethics review and institutional review boards

136 approved the study with exemption of informed consent (for retrospective, de-identified, publicly

available data) (IRB number NHIMC 2018-12-006).

138

139 **Definition of AD**

- 140 Incident AD was the outcome variable. We used the two criteria to define AD: ICD-10 codes of
- 141 AD¹⁸ (F00, F00.0, F00.1, F00.2, F00.9, G30, G30.0, G30.1, G30.8, G30.9) and dementia
- medication prescribed with an initial AD diagnosis (e.g., donepezil, rivastigmine, galantamine,
- and memantine). When both criteria were used, we labeled it as *definite AD*. We also
- 144 considered a broader definition of AD using only ICD-10 codes to minimize false negative cases
- 145 (e.g. individuals with AD diagnose who did not take medication); this was labeled as probable
- 146 *AD*. Within each individual with AD incidence, the EHR after the AD incidence was excluded.
- 147 We conducted predictive modeling using both outcome variables.
- 148

149 Data and Preprocessing

150 We used the following variables from the EHR data: 21 features including laboratory values,

151 health profiles, history of family illness from the Health Screening database; 2 features including

age and sex from the Participant Insurance Eligibility database; and 6,412 features including

153 ICD-10 codes and medication codes. Descriptions of data coding and exclusion criteria for all

the features except for ICD-10 codes and medication codes are available in **Supplementary**

155 **Table 1.**

156

Our data preprocessing steps are as follows. (i) EHR alignment: We aligned the EHRs to each 157 158 individual's initial AD diagnosis (event-centric ordering). (ii) ICD-10 and medication coding: Since ICD-10 and medication codes have hierarchical structures, we used the first disease 159 160 category codes (e.g., F00 [Dementia in Alzheimer's disease] including F00.0 [Dementia in 161 Alzheimer's disease with early onset], F00.1 [Dementia in Alzheimer's disease with late onset], F00.2 [Dementia in Alzheimer's disease, atypical or mixed type], and F00.9 [Dementia in 162 Alzheimer's disease, unspecified]), and the first 4 characters for the medication codes 163 164 representing main ingredients. (iii) Rare disease or medication codes found less than five times

in the entire data were excluded from the analysis (1,179 disease and 362 medication codes).
(iv) if a participant has no health screening data (laboratory values, health profiles, and history of
personal and family illness from the National Health Screening database) during the last two
years of the processed data (in Korea an biannual health screening is required for every elder),
we excluded that participant from the analysis. This preprocessing procedure yielded 4,894
unique variables used in the models (see **Table 3** for detailed information).

of incident AD – *n* because it requires at least *n* years prior to the incident AD. Within the non-AD group, we used the EHR from 2002 to 2010 - n. For example, for 1 year prediction, if a patient was diagnosed with AD at 2009, we used the EHR between 2002 and 2008; for 2 year prediction, 2002-2007; for 3 year, 2002-2006; and for 4 year, 2002-2005.

177

178 Machine learning analysis

179 We implemented three machine learning algorithms: random forest, support vector machine 180 with linear kernel, and logistic regression. Model training, validation, and testing was done using 181 nested stratified 5-fold cross validation with 5 iterations. Feature selection was done within train sets using the variance threshold method.¹⁹ Hyper-parameters optimization was done within 182 validation sets. The following parameters were tuned: for random forest, the minimum number 183 184 of samples required at a leaf node and the number of trees in the forest; for support vector machine, regularization strength; for logistic regression, the inverse of regularization strength. In 185 186 logistic regression L2 regularization was used. Generalizability of model performance was 187 assessed on the test sets. We measured the following model performance metrics in the test set: The area under the receiver operating characteristic curve (ROC), sensitivity and specificity. We 188 189 comply with the Transparent Reporting of a Multivariable Prediction Model for Individual

- 190 Prognosis or Diagnosis (TRIPOD) reporting guideline. Codes are available at
- 191 https://github.com/a011095/koreanEHR.

193 **Results**

194 Sample characteristics

- 195 Of 40,736 individuals with age above 65 years in 2002, we identified 614 unique individuals with
- AD incidence using the definite AD outcome, 2,026 with AD incidence using the probable AD
- definition, and 38,710 elders with no AD incidence. The rate of AD in this cohort was 1.56%
- using the definite AD definition, and 4.97% using the probable AD definition. Demographic
- 199 characteristics showed significant differences in age between both AD groups and non-AD
- groups and non-significant differences in income and sex (**Table 1**).
- 201

202 Model prediction

- 203 Classifiers were trained on these to predict 0,1,2,3, and 4 subsequent-year incidence of AD.
- 204 When using the definite AD definition (based on ICD-10 codes and dementia prescription), in
- predicting 0yr incidence of AD, random forest (RF) showed the best performance with AUC of
- 206 0.887 (**Table 2** and **Figure 2**). When using the probable AD definition (based on ICD-10 codes),
- 207 classification performance was slightly lower with AUC of 0.805 (RF). Classification
- 208 performance decreased in predicting future incident AD of later years: using the definite AD
- definition, AUC of 0.781 (1 year), 0.739 (2 year), 0.686 (3 year), and 0.662 (4 year); using the
- 210 probable AD definition, AUC of 0.730 (1 year), 0.645 (2 year), 0.575 (3 year), and 0.602 (4 year).
- 211 Numbers of features and look-back periods also decreased in later year (**Table 3**).
- 212

213 Important features

- Logistic regression identified the features positively related to incident AD. These included age
- 215 (b value = 0.689), elevated urine protein (0.303), prescription of Zotepine (antipsychotic drug)
- 216 (0.303), and the features negatively related to incident AD, such as, decreased hemoglobin (-

- 217 0.902), prescription of Nicametate Citrate (-0.297), diagnosis of other degenerative disorders of
- nervous systems (-0.292), and disorders of the external ear (-0.292) (**Table 4**).

Discussion 220

221 This study assessed the utility of the EHR in predicting the future incidence of AD. Using 222 machine learning, we predicted future incidence of AD with acceptable accuracy in terms of 223 AUC (0.781 in one-year prediction). The high accuracy of our models based on large nation-224 wide samples may lend a support to the potential utility of the EHR-based predictive modeling in 225 AD. Despite of the limitations inherent to the use of administrative EHR, such as the inability to 226 directly ascertain clinical phenotypes, this study demonstrates the potential utility of the EHR for 227 AD screening, when combined with rigorous data-driven machine learning. 228 229 Our model performance with AUC of 0.887, 0.781, and 0.662 in predicting baseline, subsequent 230 one-year, and four-year incident AD is relatively accurate compared with the literature. In all-

231 cause dementia risk prediction based on genetic (ApoE) or neuropsychological evaluations, MRI, health indices (diabetes, hypertension, lifestyle), and demographic (age, sex, education)

variables, prior models show accuracy ranging from 0.5 to 0.78 in AUC (reviewed in ²⁰). Of note, 233

234 compared with these studies, our approach is solely based on administrative EHR without

235 neuropsychological, genetic testing, or brain imaging. This has important implications for the

236 practical utility of the EHR-based risk prediction, in that it can provide an early indication of AD

237 risk to clinicians. Together with existing screening tools (e.g., MMSE), this may assist deciding

238 when to seek a further clinical assessment to a given patient in an individual-specific manner.

239

232

240 Our model detected interesting EHR-based features associated with incident AD. The datadriven selection of features is consistent with risk factors found in the literature. A decrease in 241 hemoglobin level was selected as the feature most strongly associated with incident AD. Indeed, 242 anemia is known as an important risk factor for dementia.²¹⁻²³ A study using National Health 243 244 Insurance Service-National Health Screening Cohort (NHIS-HEALS), the NHIS health screening

data in Korea, not only found that anemia was associated with dementia, but also revealed a
dose-dependent relationship between anemia and dementia.²⁴ Likewise, our data-driven model
shows the hemoglobin level as the most significant predictor. This finding has implications for
public health because anemia is a modifiable factor. Given our finding and the consistent
literature on the large association between hemoglobin level and AD and other dementia, future
research may investigate the biological pathway of anemia's contribution to AD pathology and
cognitive decline.

252

We also noted a positive association between urine protein level and incident AD. In the EHR, protein in urine is typically measured using urine dip stick. This approach is not a quantitative measure of urine protein, but it is useful as a screening method for proteinuria.^{25,26} Literature shows association between albuminuria and dementia.²⁷ Our finding suggests the potential utility of a urine test as part of the routine health check-up in AD risk prediction.

258

259 Four medications were also associated with incident dementia within top ten features. We found 260 that Zotepine, Eperisone hydrochloride had a positive association and Nicametate Citrate and 261 Tolfenamic acid had a negative association with incident AD. It is interesting that patients prescribed tolfenamic acid showed lower incidence of AD. This drug used in Korea for pain 262 263 control in conditioner such as rheumatoid arthritis. It is known to lower the gene expression of Amyloid precursor protein 1(APP1) and beta-site APP cleaving enzyme 1(BACE1) by promoting 264 the degradation of specificity protein 1(Sp1).²⁸⁻³⁰ As a potential modifier of tau protein, 265 266 Tolfenamic acid is under investigation as a potential drug to prevent and modify the progression of AD.³¹ The results of this study support the above experimental result and show that 267 268 tolfenamic acid may be a potential anti-dementia medication.

269

270 Zotepine is an atypical antipsychotic drug with proven efficacy for treatment of schizophrenia. 271 Our model showed the use of zotepine positively correlated with incident AD. There are two possible interpretations. Some studies indicate that individuals with schizophrenia may have an 272 increased risk for the development of dementia.³² It is possible that the incident AD was high in 273 274 patients with schizophrenia using zotepine. Alternatively, zotepine may have been used to control behavioral and psychological symptoms before incident AD.³³ Further research is 275 276 required to address why other schizophrenia drugs or other drugs used to treat behavioral and 277 psychological symptoms of dementia (BPSD) were not detected. 278 Nicametate Citrate, a vasodilator, was also negatively associated with incident AD. This may be 279 280 in line with the literature showing effects of vasodilators on increasing cognitive function and 281 reducing the risk of vascular dementia, although the exact mechanism remains unclear.^{34,35}

282 Further research is required.

283

284 Limitations

285 One of the limitations of this study is that diagnose of AD in our EHR is not clinically ascertained. 286 This is inevitable in nation-wide administrative data. Nevertheless, some aspects may worth 287 noting. Firstly, we confirmed the comparable prediction outcomes using definitions of incident AD, that is, "probable AD" based on AD disease codes and "definite AD" based on both AD 288 289 disease codes and anti-dementia medication, separately. Secondly, in South Korea, every elder with age 60 years old is required to have complementary dementia screening supported by the 290 291 National Health Insurance Service at public healthcare centers, where individuals that high-risk 292 for dementia get referred to physicians for further clinical examination. This healthcare system 293 may help reduce false negative cases. These aspects may alleviate potential concerns of the validity of AD diagnoses in terms of false positive and negative cases. Lastly, the health 294 295 insurance system and policies unique to Korea support the reliability of the AD diagnoses. In

296	Korea, the Health Insurance Review and Assessment Service (HIRA) of NHIS reviews and
297	supervises the medical claims of drugs to treat AD. For example, HIRA requires the following
298	conditions to consider the insurance coverage of dementia medication: for donepezil and
299	rivastigmine patches, MMSE (Mini-Mental State Examination) =< 26 and CDR (Clinical
300	Dementia Rating) = $1 \sim 3$ or GDS (Global Deterioration Scale)= $3 \sim 7$; for galantamine and
301	rivastigmine capsules, MMSE = $10 \sim 26$ and CDR = $1 \sim 2$ or GDS = $3 \sim 5$; for memantine, MMSE
302	=< 20 and CDR = $2 \sim 3$ or GDS = $4 \sim 7$. Furthermore, these medications can be only refilled when
303	the patients meet the same criteria on follow-up neurocognitive tests every 12 months
304	(Supplementary Figure 2). Thus, it is highly likely that individuals with records of receiving
305	dementia medication meet strong diagnostic criteria.
306	
307	Another limitation of this study is that generalizability of our findings to ethnicities other than
308	Asian or to different healthcare systems remains to be tested.
309	
310	
311	Conclusions
312	In sum, this study presents the first data in predicting future incident AD using data-driven
313	machine learning based on large-scale EHR. Our results lend support to the development of
314	EHR-based AD risk prediction that may enable better selection of individuals at risk for AD in
315	clinical trials or early detection in clinical settings.

317 Acknowledgement

- Ilsan Hospital Research Support Program (PI: Kim, HS); NIMH K01 MH109836 (PI: Cha);
- 319 Young Investigator Award, Brain Behavior Research Foundation (PI: Cha); Young Investigator
- 320 Grant, Korean Scientists and Engineers Association (PI: Cha).

321 **References**

- 322 1. Brookmeyer R, Gray S, Kawas C. Projections of Alzheimer's disease in the United
- 323 States and the public health impact of delaying disease onset. *Am J Public Health*.
- 324 1998;88(9):1337-1342.
- 2. Hurd MD, Martorell P, Delavande A, Mullen KJ, Langa KM. Monetary costs of dementia
- in the United States. *N Engl J Med.* 2013;368(14):1326-1334.
- Zissimopoulos J, Crimmins E, St Clair P. The Value of Delaying Alzheimer's Disease
 Onset. *Forum Health Econ Policy*. 2014;18(1):25-39.
- 4. Raghupathi W, Raghupathi V. Big data analytics in healthcare: promise and potential.
- 330 *Health Inf Sci Syst.* 2014;2:3.
- 5. Kivipelto M, Ngandu T, Laatikainen T, Winblad B, Soininen H, Tuomilehto J. Risk score
- for the prediction of dementia risk in 20 years among middle aged people: a longitudinal,
 population-based study. *Lancet Neurol.* 2006;5(9):735-741.
- 6. Stephan BC, Kurth T, Matthews FE, Brayne C, Dufouil C. Dementia risk prediction in the population: are screening models accurate? *Nat Rev Neurol.* 2010;6(6):318-326.
- Backman L, Jones S, Berger AK, Laukka EJ, Small BJ. Multiple cognitive deficits during
 the transition to Alzheimer's disease. *J Intern Med.* 2004;256(3):195-204.
- 338 8. Jorm AF, Masaki KH, Petrovitch H, Ross GW, White LR. Cognitive deficits 3 to 6 years
- before dementia onset in a population sample: the Honolulu-Asia aging study. *J Am Geriatr Soc.* 2005;53(3):452-455.
- 9. Rajkomar A, Oren E, Chen K, et al. Scalable and accurate deep learning with electronic
 health records. *npj Digital Medicine*. 2018;1(1):18.
- 10. Marafino BJ, Park M, Davies JM, et al. Validation of prediction models for critical care
- outcomes using natural language processing of electronic health record data.
- 345 2018;1(8):e185097-e185097.

346	11.	Wong A, Young AT, Liang AS, Gonzales R, Douglas VC, Hadley DJJNO. Development
347		and validation of an electronic health record-based machine learning model to estimate
348		delirium risk in newly hospitalized patients without known cognitive impairment.
349		2018;1(4):e181018-e181018.
350	12.	Miotto R, Li L, Kidd BA, Dudley JT. Deep Patient: An Unsupervised Representation to
351		Predict the Future of Patients from the Electronic Health Records. Sci Rep.
352		2016;6:26094.
353	13.	Obermeyer Z, Emanuel EJ. Predicting the Future - Big Data, Machine Learning, and
354		Clinical Medicine. N Engl J Med. 2016;375(13):1216-1219.
355	14.	Naylor CD. On the Prospects for a (Deep) Learning Health Care System. JAMA.
356		2018;320(11):1099-1100.
357	15.	Hinton G. Deep Learning-A Technology With the Potential to Transform Health Care.
358		<i>JAMA</i> . 2018;320(11):1101-1102.
359	16.	Shin DW, Cho B, Guallar E. Korean National Health Insurance Database. JAMA Intern
360		Med. 2016;176(1):138.
361	17.	Lee J, Lee JS, Park S-H, Shin SA, Kim K. Cohort profile: The national health insurance
362		service-national sample cohort (NHIS-NSC), South Korea. International journal of
363		epidemiology. 2016;46(2):e15-e15.
364	18.	WHO. International Statistical Classification of Diseases and Related Health Problems
365		10th Revision (ICD-10)-WHO Version for 2016.
366		http://apps.who.int/classifications/icd10/browse/2016/en#/F00. Accessed.
367	19.	Guyon I, Elisseeff A. An introduction to variable and feature selection. J Mach Learn Res.
368		2003;3(Mar):1157-1182.
369	20.	Tang EY, Harrison SL, Errington L, et al. Current Developments in Dementia Risk
370		Prediction Modelling: An Updated Systematic Review. PLoS One. 2015;10(9):e0136181.

371	21.	Atti AR, Palmer K, Volpato S, Zuliani G, Winblad B, Fratiglioni L. Anaemia increases the
372		risk of dementia in cognitively intact elderly. Neurobiology of aging. 2006;27(2):278-284.
373	22.	Shah RC, Buchman AS, Wilson RS, Leurgans SE, Bennett DA. Hemoglobin level in
374		older persons and incident Alzheimer disease: prospective cohort analysis. Neurology.
375		2011;77(3):219-226.
376	23.	Hong CH, Falvey C, Harris TB, et al. Anemia and risk of dementia in older adults:
377		findings from the Health ABC study. Neurology. 2013;81(6):528-533.
378	24.	Jeong SM, Shin DW, Lee JE, Hyeon JH, Lee J, Kim S. Anemia is associated with
379		incidence of dementia: a national health screening study in Korea involving 37,900
380		persons. Alzheimer's research & therapy. 2017;9(1):94.
381	25.	Chotayaporn T, Kasitanon N, Sukitawut W, Louthrenoo W. Comparison of proteinuria
382		determination by urine dipstick, spot urine protein creatinine index, and urine protein 24
383		hours in lupus patients. Journal of clinical rheumatology : practical reports on rheumatic
384		& musculoskeletal diseases. 2011;17(3):124-129.
385	26.	White SL, Yu R, Craig JC, Polkinghorne KR, Atkins RC, Chadban SJ. Diagnostic
386		accuracy of urine dipsticks for detection of albuminuria in the general community.
387		American journal of kidney diseases : the official journal of the National Kidney
388		Foundation. 2011;58(1):19-28.
389	27.	Deckers K, Camerino I, van Boxtel MP, et al. Dementia risk in renal dysfunction: A
390		systematic review and meta-analysis of prospective studies. Neurology. 2017;88(2):198-
391		208.
392	28.	Subaiea GM, Adwan LI, Ahmed AH, Stevens KE, Zawia NH. Short-term treatment with
393		tolfenamic acid improves cognitive functions in Alzheimer's disease mice. Neurobiology
394		of aging. 2013;34(10):2421-2430.

395	29.	Adwan L, Subaiea GM, Basha R, Zawia NH. Tolfenamic acid reduces tau and CDK5
396		levels: implications for dementia and tauopathies. Journal of neurochemistry.
397		2015;133(2):266-272.
398	30.	Adwan L, Subaiea GM, Zawia NH. Tolfenamic acid downregulates BACE1 and protects
399		against lead-induced upregulation of Alzheimer's disease related biomarkers.
400		Neuropharmacology. 2014;79:596-602.
401	31.	Chang JK, Leso A, Subaiea GM, et al. Tolfenamic Acid: A Modifier of the Tau Protein
402		and its Role in Cognition and Tauopathy. Current Alzheimer research. 2018;15(7):655-
403		663.
404	32.	Cai L, Huang J. Schizophrenia and risk of dementia: a meta-analysis study.
405		Neuropsychiatric disease and treatment. 2018;14:2047-2055.
406	33.	Rhee Y, Csernansky JG, Emanuel LL, Chang CG, Shega JW. Psychotropic medication
407		burden and factors associated with antipsychotic use: an analysis of a population-based
408		sample of community-dwelling older persons with dementia. Journal of the American
409		Geriatrics Society. 2011;59(11):2100-2107.
410	34.	Perng CH, Chang YC, Tzang RF. The treatment of cognitive dysfunction in dementia: a
411		multiple treatments meta-analysis. Psychopharmacology. 2018;235(5):1571-1580.
412	35.	McLennan SN, Lam AK, Mathias JL, Koblar SA, Hamilton-Bruce MA, Jannes J. Role of
413		vasodilation in cognitive impairment. International journal of stroke : official journal of the
414		International Stroke Society. 2011;6(3):280.
415		

416 **Table 1. Sample characteristics**

1	1	1	417
	Definite AD	Probable AD	Non-AD 418
Number	614	2,026	38,710
Income	6.00 (5.73-6.27)	5.90 (5.87-5.93)	6.02 (5.87-6.17)
Age	80.67 (80.2-	79.2 (79.0-79.5)	74.5 (74.4-74.5)
	81.1)		
sex	Male:229	Male:733	Male:18,200
	Female:285	Female:1,293	Female:20,510

*Based on the 0-year prediction model.

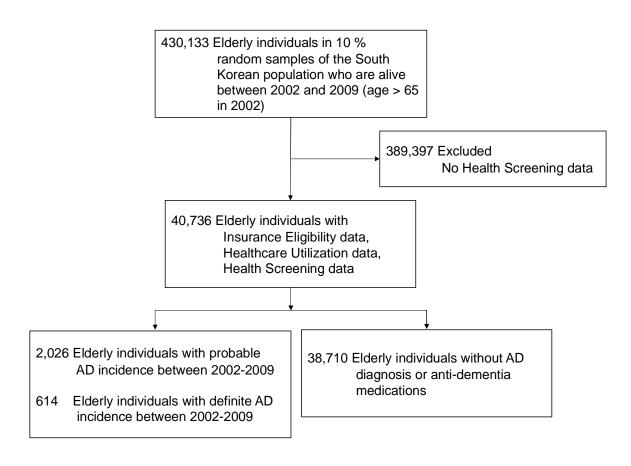
419 **Table 2. Performance of predictive models trained on EHR.**

				420
Definite AD	(AD codes and	dementia	prescription)	
				421
			Sensitivity**	Specificity**
Classifier*	AD/non-AD	AUC	(when 90%	(when 90%
			specificity)	Sensitivity)
RF	614/38,710	0.887	0.687	0.737
SVM	672/38,967	0.781	0.380	0.475
SVM	640/38,605	0.739	0.281	0.400
SVM	605/29,983	0.686	0.227	0.291
RF	491/14,196	0.662	0.000	0.151
	Probable AD ((AD codes)		
			Sensitivity**	Specificity**
Classifier*	AD/non-AD	AUC	(when 90%	(when 90%
			specificity)	Sensitivity)
RF	2,026/38,710	0.805	0.240	0.456
RF	2,049/38,967	0.730	0.170	0.338
LR	1,892/38,605	0.645	0.136	0.301
LR	1,697/29,983	0.575	0.085	0.253
RF	1,412/14,196	0.602	0.020	0.018
	Classifier* RF SVM SVM RF Classifier* RF RF LR LR LR	Classifier* AD/non-AD RF 614/38,710 SVM 672/38,967 SVM 640/38,605 SVM 605/29,983 RF 491/14,196 Probable AD Classifier* AD/non-AD RF 2,026/38,710 RF 2,049/38,967 LR 1,892/38,605 LR 1,697/29,983	Classifier* AD/non-AD AUC RF 614/38,710 0.887 SVM 672/38,967 0.781 SVM 640/38,605 0.739 SVM 605/29,983 0.686 RF 491/14,196 0.662 RF 491/14,196 0.662 Classifier* AD/non-AD AUC Classifier* AD/non-AD AUC RF 2,026/38,710 0.805 RF 2,049/38,967 0.730 LR 1,892/38,605 0.645 LR 1,697/29,983 0.575	Classifier* AD/non-AD AUC (when 90% specificity) RF 614/38,710 0.887 0.687 SVM 672/38,967 0.781 0.380 SVM 640/38,605 0.739 0.281 SVM 605/29,983 0.686 0.227 RF 491/14,196 0.662 0.000 Probable AD codes) Classifier* AD/non-AD AUC (when 90% specificity) RF 491/14,196 0.662 0.000 Probable AD codes) Classifier* AD/non-AD AUC (when 90% specificity) RF 2,026/38,710 0.805 0.240 RF 2,049/38,967 0.730 0.170 LR 1,892/38,605 0.645 0.136 LR 1,697/29,983 0.575 0.085

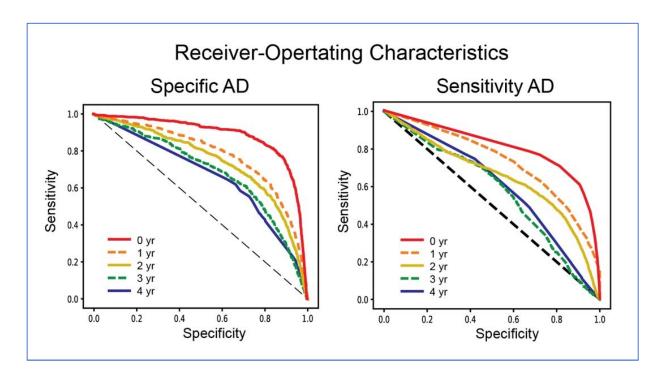
*best classifiers based on AUC. **closest values with sensitivity or specificity set to 90%.

LR, logistic regression; RF, random forest; SVM, support vector machine

422 Table 3. Lengths of EHR (look-back periods) and number of features

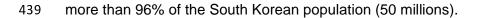

		Definite AD		Probable AD		Non-AD	
	Number of features	Average EHR length per subject in days	Average number of non-zero features per subject	Average EHR length per subject in days	Average number of non-zero features per subject	Average EHR length per subject in days	Average number of non- zero features per subject
0 yr	4,894	1936 (1906-1967)	162 (156-167)	2239 (2205-2273)	185 (179-192)	3033 (3028-3038)	176 (174-177)
1 yr	4,722	1851 (1800-1902)	172 (161-182)	1936 (1906-1967)	162 (156-167)	2694 (2690-2698)	164 (163-165)
2 yr	4,622	1571 (1524-1619)	141 (133-149)	1656 (1627-1684)	139 (134-144)	2381 (2378-2384)	151 (150-152)
3 yr	4,494	1666 (1622-1710)	146 (138-154)	1736 (1709-1763)	144 (139-150)	2045 (2042-2047)	135 (134-136)
4 yr	4,353	1736 (1691-1781)	158 (147-169)	1822 (1796-1848)	152 (146-158)	1711 (1708-1714)	116 (114-117)

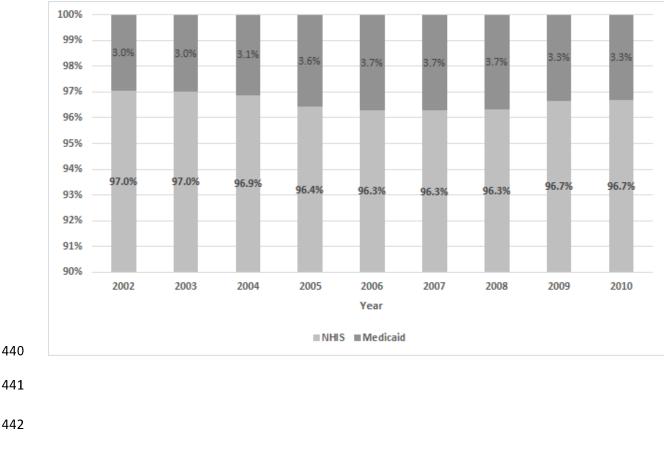
423


425 Table 4. Top ten features and weights from logistic regression (0-yr prediction).

Type of data	Name	b value
health	hemoglobin	-0.902
checkup		
demography	age	0.689
health	urine protein	0.303
checkup		
medication	Zotepine (antipsychotic drug)	0.303
medication	Nicametate Citrate (vasodilator)	-0.297
disease code	other degenerative disorders of nervous system	-0.292
	in diseases classified elsewhere	
disease code	disorders of external ear in diseases classified	-0.274
	elsewhere	
medication	Tolfenamic acid 200mg (pain killer)	-0.266
disease code	adult respiratory distress syndrome	-0.259
medication	Eperisone Hydrochloride (antispasmodic drug)	0.255

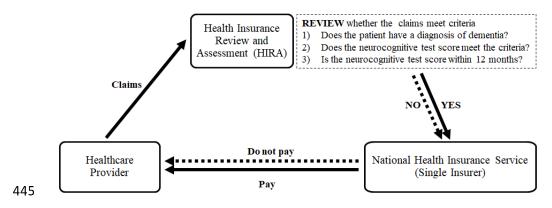
Figure 1. Consort Diagram.


- 431 Figure 2. Performance of machine learning models in predicting incident AD. Receiver-
- 432 Operating Characteristic plots are shown for 0,1,2,3,4-year prediction. Incident AD was defined
- 433 based on ICD-10 AD codes and anti-dementia medication for AD, "Definite AD", or based on AD
- 434 codes only, "Probable AD".



435

437 Supplementary Materials


438 Supplementary Figure 1. For the years investigated in this study, the Korean NHIS covered

443

444 **Supplementary Figure 2.** Medical insurance system dementia medication in Korea.

446 Supplementary Table1. Sociodemographic and Health Profile Variables Use in

447 The Model.

Variables	Type of variable	Explanation
Age	continuous	In years
Sex	binary	0: Female; 1 : Male
Body mass index	continuous	Weight(kg) / (Height*Height)(m2)
Systolic blood pressure	continuous	mmHg Below 60mmHg or Above 400mmHg : Treated as null
Diastolic blood pressure	continuous	mmHg Below 30mmHg or Above 250mmHg : Treated as null
Fasting glucose	continuous	mg/dL Below 25mg/dL or Above 999mg/dL : Treated as null
Hemoglobin	continuous	Measured from 2009 g/dL Above 25.0g/dL : Treated as null ~
Urine protein	ordinal	Measured from 2009 1 : negative (-) 2 : weak positive (±) 3 : positive (1+) 4 : positive (2+) 5 : positive (3+) 6 : positive (4+)
Serum creatinine	continuous	mg/dL
Serum AST	continuous	U/L
Serum ALT	continuous	U/L
r-GTP	continuous	U/L
Family history of liver disease	binary	
Family history of hypertension	binary	
Family history of stroke	binary	1.00
Family history of cardiac disease	binary	- 1:no
Family history of diabetes mellitus	binary	— 2 : yes
Family history of cancer	binary	
Smoking status	continuous	1 : Never smoked 2 : Not current smoker but smoked in the past 3 : Current smoker
Total smoking period	ordinal	1 : below 5 years 2 : 5-9 years 3 : 10-19 years 4 : 20-29 years 5 : over 30 years
Current daily amount of smoking	ordinal	1 : 1~ 12 cigarettes 2: 13-24 cigarettes 3 : 25~48 cigarettes 4 : over 49 cigarettes
Frequency of drinking alcohol	ordinal	1 : almost none 2 : 2~3 per month 3: 1~2 per week 4 : 3~4 per week 5 : almost everyday
Amount of alcohol intake in one day	ordinal	 below 30g of alcohol below 60g of alcohol below 90g of alcohol over 120g of alcohol