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Abstract 

Motivation 

S-adenosyl-L-methionine (SAM) is one of the important cofactor present in the biological 

system and play a key role in many diseases. There is a need to develop a method for 

predicting SAM binding sites in a protein for designing drugs against SAM associated 

disease. Best of our knowledge, there is no method that can predict the binding site of SAM 

in a given protein sequence. 

Result 

This manuscript describes a method SAMbinder, developed for predicting SAM binding sites 

in a protein from its primary sequence. All models were trained, tested and evaluated on 145 

SAM binding protein chains where no two chains have more than 40% sequence similarity. 

Firstly, models were developed using different machine learning techniques on a balanced 

dataset contain 2188 SAM interacting and an equal number of non-interacting residues. Our 

Random Forest based model developed using binary profile feature got maximum MCC 0.42 

with AUROC 0.79 on the validation dataset. The performance of our models improved 

significantly from MCC 0.42 to 0.61, when evolutionary information in the form of PSSM 

profile is used as a feature. We also developed models on realistic dataset contains 2188 

SAM interacting and 40029 non-interacting residues and got maximum MCC 0.61 with 

AUROC of 0.89. In order to evaluate the performance of our models, we used internal as well 

as external cross-validation technique. 

Availability and implementation 

https://webs.iiitd.edu.in/raghava/sambinder/ . 
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Introduction 

Structural and functional annotation of a protein is one among the major challenges in the era 

of genomics. With the rapid advancement in sequencing technologies and concerted genome 

projects, there is an increasing gap between the sequenced protein and functionally annotated 

proteins which are very few in number (Casari et al., 1995; Yu et al., 2014). Therefore, there 

is an urgent need for the development of automated computational methods which can 

identify the residues playing an important role in protein functions. Protein-ligand interaction 

has been identified as one of the important functions which play a vital function in all 

biological processes (Agrawal, Singh, et al., 2019). In the past, considerable efforts have 

been to develop tools which can identify the ligand binding residues in a protein (Sousa et al., 

2006). In the early stage, generalized methods have been developed which predicts the 

binding site or pockets in the proteins regardless of their ligand (Hendlich et al., 1997; 

Dundas et al., 2006; Laskowski, 1995; Levitt and Banaszak, 1992; Le Guilloux et al., 2009). 

Later on, it was realized that all ligands are not the same and there is a wide variation in 

shape and size of binding pockets. Therefore, researchers started developing ligand specific 

methods (Chauhan, Mishra, and G. P. S. Raghava, 2009; Hu et al., 2018; Yu, Hu, Huang, et 

al., 2013; Chen et al., 2012; Chauhan et al., 2010; Hu et al., 2016), and it was observed that 

these ligand specific methods performed better than generalized methods (Yu, Hu, Yang, et 

al., 2013a; Chen et al., 2012; Hu et al., 2016). 

All living organism consists of small molecular weight ligands or cofactors which carries out 

an important function in some metabolic and regulatory pathways. S-adenosyl-L-methionine 

(SAM) is one such important cofactor, which was first discovered in the year 1952. After 

ATP, SAM is the second most versatile and widely used small molecule (Cantoni, 1975). It is 

a natural substance present in the cells of the body and is a direct metabolite of L-methionine 

which is an essential amino acid. SAM is a conjugate molecule of two ubiquitous biological 
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compounds; (i) adenosine moiety of ATP and (ii) amino acid methionine (CATONI, 1953; 

Waddell et al., 2000). One of the most important functions of the SAM is the transfer or 

donation of different chemical groups such as methyl (Thomas et al., 2004; Wuosmaa and 

Hager, 1990), aminopropyl (Lin, 2011), ribosyl (Kozbial and Mushegian, 2005), 

5’deocxyadenosyl and methylene group (Gana et al., 2013; Kozbial and Mushegian, 2005) 

for carrying out covalent modification of a variety of substrates. SAM is also used as a 

precursor molecule in the biosynthesis of nicotinamide phytosiderophores, plant hormone 

ethylene, spermine, and spermidine; carry out chemical reactions such as hydroxylation, 

fluorination which takes place in bacteria (Cadicamo et al., 2004). It has become the choice 

of various clinical studies and possess therapeutic value for treating diseases like 

osteoarthritis (Najm et al., 2004),  cancer (Chaib et al., 2011; Wagner et al., 2010), epilepsy 

(Item et al., 2004), Alzheimer’s (Borroni et al., 2004), dementia and depression (Bottiglieri et 

al., 1990; Rosenbaum et al., 1990), Parkinson (Zhu, 2004), and other psychiatric and 

neurological disorders (Bottiglieri, 1997). In the previous studies, it has been shown that 

mutation in the binding site of SAM has changed the protein function. For example, Aktas et. 

al. showed that Alanine substitution in the predicted SAM binding residues reduced the SAM 

binding affinity and enzyme activity dramatically (Aktas et al., 2011). Thus, there is a need to 

develop a method that can predict SAM binding sites in a protein as it is an important ligand. 

 

Material and Methods 

Dataset Creation 

In the first step, we extracted 244 SAM binding proteins PDB IDs from ccPDB 2.0 (Agrawal, 

Patiyal, et al., 2019). In total, we obtained 457 SAM binding protein chains. In the next step, 

we filtered all the sequences with 40% sequence similarity using CD-HIT software (Huang et 

al., 2010) and resolution better than 3 Å and obtained total of 145 protein chains. In the next 
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step, we run Ligand Protein Contact (LPC) software (Sobolev et al., 1999) on the chains to 

extract the contact information of SAM with residues present in the protein chains with cutoff 

criteria of 4 Å, which means if the distance of contact of SAM with a residue is less than or 

equal to 4 Å, the residue is called interacting otherwise the residue is called as non-

interacting. This is well-established criteria adopted in many previous studies (Chauhan et al., 

2010; Mishra and Raghava, 2010). 

Additional dataset creation 

An additional dataset was also created consisting of the SAM binding chains released after 

March 2018 and up to February 28, 2019. The dataset was generated following the same 

procedures as mentioned above and comprised of total 10 chains. 

Internal and External Validation 

Dataset was randomly divided into two parts; (i) training dataset, which comprises 80% of 

the protein chains and (ii) validation dataset, which consists of remaining 20% of the protein 

chains. Datasets were created at the protein level and not at pattern or residue level since in 

previous studies it has been shown that dataset generated at pattern level is biased and show 

higher performance (Yu et al., 2014). The balanced dataset contains 1798 SAM interacting 

and non-interacting residue in training dataset and 390 SAM interacting and non-interacting 

residue in the validation dataset. The realistic dataset consists of 1798 SAM interacting 

residues and 33314 SAM non-interacting residues in training dataset whereas validation 

dataset consists of 390 SAM interacting residues and 6715 SAM non-interacting residues. 

Five-fold cross-validation 

The five-fold cross technique was performed for evaluating the performance of different 

prediction models. This kind of performance evaluation has been used in many previous 

studies (Nagpal et al., 2018; Kumar et al., 2018). 
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Window or Pattern size 

We created overlapping patterns of each sequence of different window size ranging from 5-

23 amino acid length. If the pattern central residue is SAM interacting, it is assigned as a 

positive pattern; otherwise, it was assigned as a negative pattern. In order to generate the 

pattern for terminus residues, we added (L-1)/2 dummy residue ‘X’ at both the termini of the 

protein chain (where L is pattern length). 

Binary Profile 

We generated binary profile of each patterns by assigning binary values to the amino acids in 

fixed length pattern. A vector of dimension 21 represented each amino acid present in the 

pattern hence leading to final vector of N x 21, where N is length of the pattern. For example, 

residue ‘A’ was represented by 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0; which contains 20 

amino acids and one dummy amino acid ‘X’. X was represented by 

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 (Agrawal, Kumar, et al., 2019; Agrawal and Raghava, 

2018). 

Position Specific Scoring Matrix (PSSM) 

PSSM profiles containing evolutionary information has been shown as an important feature 

in many previous studies for predicting protein-ligand interaction and other bioinformatics 

problems (Yu, Hu, Huang, et al., 2013; Chen et al., 2012). PSSM profiles of a sequence were 

generated using Position-Specific Iterative Basic Local Alignment Search Tool (PSI-BLAST)  

and searching against the Swiss Prot database. Three iterations were performed with E-value 

cut-off of 0.001 against each sequence. The original PSSM profiles obtained were further 

normalized to get value in between 0 and 1, followed by calculation of position specific score 

for each residue. The final matrix obtained consists of 21 Χ N elements (20 amino acids 

residue and one dummy residue ‘X’). Here N, is the length of the pattern. 
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Machine Learning Techniques 

We implemented the python based machine learning package SCIKIT-learn (Pedregosa 

FABIANPEDREGOSA et al., 2011) for developing prediction models. We implemented 

Support Vector Classifier (SVC), Random Forest classifier (RFC), ExtraTree classifier 

(ETC), K-Nearest Neighbor (KNN), Multilayer Perceptron (MLP) and Ridge classifier for 

developing prediction models. Before, developing prediction models, we optimized different 

parameters on our internal dataset using Grid Search parameter present in the package.  

Evaluation Parameters 

Performance of developed prediction models was evaluated in terms of Sensitivity (Sen), 

Specificity (Spc), Accuracy (Acc), Matthew’s Correlation Coefficient (MCC) and Area 

Under Receiver Operating Characteristics (AUROC). ‘pROC package’ implemented in R 

was used for computing AUROC (Title Display and Analyze ROC Curves, 2019). The 

formula for calculating is explained in the equation 1-4. 
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Where TP represents correctly predicted positive value, TN represents the correctly predicted 

negative value, FP represents the actual negative value which has been wrongly predicted as 

positive, and FN represents the positive value which has been wrongly predicted as negative. 
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Results 

Composition Analysis 

We have analyzed the amino acid composition of SAM interacting and non-interacting 

residues in SAM binding proteins. As shown in Figure 1, composition of residues C, D, F, G, 

H, M, N, S, W, and Y are higher in SAM interacting sites whereas composition of residues 

like A, E, I, K, L, P, Q, R, and V are higher in SAM non-interacting sites. 

 

Figure 1. Percentage composition of SAM interacting and non-interacting residues. 

Propensity Analysis 

We also analyzed the propensities of amino acid residues in SAM interacting and non-

interacting sites. We observed that propensities of residues like C, D, F, G, H, M, N, S, W, 

and Y was higher in SAM interacting sites whereas propensities of residues like A, E, I, K, L, 

P, Q, R, T, and V was higher in SAM non-interacting sites (Supplementary Figure S1). 

Physiochemical Properties Analysis 

We also analyzed the various physiochemical properties in SAM binding proteins. We found 

that SAM interacting sites are rich in acidic, small, polar and aromatic amino acids whereas 
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SAM non-interacting sites are more predominant in charge, basic, and aliphatic amino acids. 

(Supplementary Figure S2).  

Machine learning model performance using binary patterns 

Various machine learning models were developed using binary patterns for window size 5-23 

on the balanced dataset. We compiled the best result obtained for each window size in Table 

1 and plot the AUROC obtained for both training and validation dataset as shown in Figure 

2(a) and Figure 2(b) respectively. In our analysis, we found that prediction model developed 

using random forest on the window size 21 performed best among all the prediction models. 

The model achieved accuracy of 70.79%, 0.42 MCC and 0.78 AUROC on the training 

dataset and accuracy of 70.85%, 0.42 MCC and 0.79 AUROC on the validation dataset. 

Detail result obtained for each window size by different machine learning techniques is 

provided in the Supplementary Table S1-S10. 

Table 1. The performance of best machine learning model developed using amino acid 

sequence (binary pattern) for individual window size on balanced dataset. 

 Training Dataset Validation Dataset 
 Sen Spc Acc MCC AUROC Sen Spc Acc MCC AUROC 

Pat5 
(SVC) 

64.98 64.31 64.65 0.29 0.70 65.54 68.65 67.10 0.34 0.73 

Pat7 
(RF) 

69.87 64.31 67.09 0.34 0.74 69.43 66.58 68.01 0.36 0.74 

Pat9 
(RF) 

72.05 65.66 68.86 0.38 0.76 69.95 68.65 69.30 0.39 0.76 

Pat11 
(RF) 

69.19 70.26 69.73 0.39 0.77 65.03 71.76 68.39 0.37 0.76 

Pat13 
(RF) 

73.06 66.05 69.56 0.39 0.77 70.98 65.03 68.01 0.36 0.77 

Pat15 
(RF) 

69.58 70.71 70.15 0.40 0.78 66.06 72.02 69.04 0.38 0.78 

Pat17 
(RF) 

70.37 71.10 70.74 0.41 0.78 67.36 71.50 69.43 0.39 0.78 

Pat19 
(RF) 

70.54 71.32 70.93 0.42 0.78 67.36 73.83 70.60 0.41 0.79 

Pat21 
(RF) 

70.37 71.21 70.79 0.42 0.78 67.62 74.09 70.85 0.42 0.79 

Pat23 
(RF) 

70.76 70.99 70.88 0.42 0.78 68.39 71.76 70.08 0.40 0.79 

* Sen: Sensitivity, Spc: Specificity, Acc: Accuracy, MCC: Matthews Correlation 
Coefficient, AUROC: Area Under the Receiver Operating Characteristic curve, SVC: 
Support Vector Classifier, RF: Random Forest. 
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Figure 2. AUROC plots obtained for various window length developed using binary profile 

on balanced dataset for (a) training dataset and (b) validation dataset. 

 

Machine learning model performance using evolutionary information (PSSM profile) 

Prediction models were developed using PSSM profiles for all the considered window size on 

the balanced dataset. Best result obtained for each window size is compiled in Table 2 and 

AUROC was plotted for the training (Figure 3(a)) and validation dataset (Figure 3(b)). We 

observed that, in case of PSSM profiles, the performance of the prediction models were 

increased. ExtraTree Classifier model developed on the window size 17 performed best 

among all the developed models. It achieved the highest accuracy of 80.39%, MCC of 0.61 

and AUROC of 0.88 on training dataset whereas on validation dataset it achieved accuracy of 

77.07%, MCC of 0.54, and AUROC of 0.86. Result obtained by different classifiers on each 

window size has been provided in the Supplementary Table S11-S20. 
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Table 2. The performance of best machine learning model developed using PSSM profile 

for individual window size on balanced dataset. 

 Training Dataset Validation Dataset 
 Sen Spc Acc MCC AUROC Sen Spc Acc MCC AUROC 

Pat5 
(RF) 

78.40 77.50 77.95 0.56 0.86 74.35 76.94 75.65 0.51 0.83 

Pat7 
(ETree) 

79.85 79.12 79.49 0.59 0.87 73.32 79.53 76.42 0.53 0.85 

Pat9 
(ETree) 

81.48 76.49 78.98 0.58 0.87 76.68 77.46 77.07 0.54 0.85 

Pat11 
(ETree) 

81.54 76.32 78.93 0.58 0.87 75.39 78.50 76.94 0.54 0.86 

Pat13 
(ETree) 

79.29 80.42 79.85 0.60 0.88 74.87 81.61 78.24 0.57 0.86 

Pat15 
(ETree) 

81.59 77.10 79.35 0.59 0.88 76.68 78.24 77.46 0.55 0.86 

Pat17 
(ETree) 

79.24 81.54 80.39 0.61 0.88 72.54 81.61 77.07 0.54 0.86 

Pat19 
(SVC) 

80.47 79.97 80.22 0.60 0.87 75.13 78.24 76.68 0.53 0.85 

Pat21 
(SVC) 

80.92 78.84 79.88 0.60 0.87 75.39 77.46 76.42 0.53 0.85 

Pat23 
(ETree) 

79.91 81.14 80.53 0.61 0.88 73.06 81.61 77.33 0.55 0.86 

* Sen: Sensitivity, Spc: Specificity, Acc: Accuracy, MCC: Matthews Correlation 
Coefficient, AUROC: Area Under the Receiver Operating Characteristic curve, SVC: 
Support Vector Classifier, RF: Random Forest, ETree: Extratree 
 

 

Figure 3. AUROC plots obtained for various window length developed using evolutionary 

profile on balanced dataset for (a) training dataset and (b) validation dataset. 
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Machine learning model performance using hybrid feature 

We also developed models on the hybrid feature where we sum up the values of binary 

profile and the evolutionary information obtained for the residue. Best result obtained for 

each window length is compiled in the Supplementary Table S21 and plotted AUROC for the 

training dataset  (Supplementary Figure S3 (a)) and validation dataset (Supplementary Figure 

S3 (b)). Maximum accuracy of 80.58%, MCC of 0.61 and AUROC of 0.89 was obtained by 

SVC on the training dataset for window size 19. In case of validation dataset, accuracy of 

78.50%, MCC of 0.57 and AUROC of 0.87 was obtained. Result for all the window size 

obtained by different classifiers is provided in the Supplementary Table S22-S31. 

 

Performance of the machine learning models developed on the realistic dataset 

Window size 17 was found to be optimum window size as the model developed using PSSM 

profile performed best among all the models. Therefore, we used this window size for 

developing prediction models on the realistic dataset using PSSM profile as an input feature. 

When balanced specificity and sensitivity was considered SVC based model achieved 

maximum MCC value of 0.32 on training dataset and 0.31 on independent dataset. However, 

MCC value increases to 0.61 on training dataset and 0.52 on validation dataset when 

balanced sensitivity and specificity was not taken into account (Table 3). The AUROC 

achieved on the training dataset and validation dataset was 0.89 and 0.87 respectively 

(Figure 4).  

 

Table 3. The performance of PSSM profile based models developed using different 

machine learning techniques for window size 17 on realistic dataset. 

Machine Learning 

Techniques 

(Parameters) 

Main Dataset Validation Dataset 

Sen Spc Acc MCC AUROC Sen Spc Acc MCC AUROC 
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SVCMaxMCC# 

(g=0.01, c=5) 

53.65 98.94 96.64 0.61 0.89 36.53 99.40 95.99 0.52 0.87 

SVCbalanced* 

(g=0.01, c=5) 

81.48 80.14 80.21 0.32 0.89 77.72 79.88 79.76 0.31 0.87 

Random ForestMaxMCC# 

(Ntree = 700) 

43.27 99.44 96.59 0.58 0.86 36.53 98.97 95.58 0.48 0.86 

Random Forestbalanced* 

(Ntree = 700) 

80.25 74.64 74.93 0.27 0.86 76.94 79.73 79.58 0.30 0.86 

Extra TreeMaxMCC# 

(Ntree = 1000) 

46.13 99.42 96.72 0.60 0.87 47.67 97.93 95.20 0.50 0.86 

Extra Treebalanced* 

(Ntree = 1000) 

78.90 79.79 79.74 0.31 0.87 74.09 83.70 83.18 0.33 0.86 

Nearest NeighborsMaxMCC# 

(neighbors=10, 
algorithm=auto, 
weights=distance) 

46.91 99.27 96.61 0.59 0.84 34.72 99.36 95.85 0.50 0.79 

Nearest Neighborsbalanced* 

(neighbors=10, 

algorithm=auto, 

weights=distance) 

76.04 79.72 79.53 0.29 0.84 68.13 80.56 79.89 0.27 0.79 

Muti Layer 

PerceptronMaxMCC# 

(activation=relu, 
solver=adam, 
hidden_layer_sizes=21, 
max_iter=10) 

37.49 98.59 95.49 0.45 0.85 34.46 98.01 94.55 0.39 0.83 

Muti Layer 

Perceptronbalanced* 

(activation=relu, 

solver=adam, 

hidden_layer_sizes=21, 

max_iter=10) 

78.84 75.84 76.00 0.27 0.85 65.28 83.26 82.28 0.28 0.83 

Ridge ClassifierMaxMCC# 

(alpha=1) 

38.61 97.55 94.55 0.39 0.83 37.31 96.13 92.93 0.33 0.80 

Ridge Classifierbalanced* 

(alpha=1) 

79.57 67.37 67.99 0.22 0.83 77.46 67.42 67.97 0.21 0.80 

Note: Sen: Sensitivity, Spc: Specificity, Acc: Accuracy, MCC: Matthews Correlation Coefficient, 
AUROC: Area Under the Receiver Operating Characteristic curve. 
*: Results are reported on balanced sensitivity and specificity; #: Results are reported for which 
maximum MCC was obtained. 
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Figure 4. AUROC plots obtained for window length 17 developed using evolutionary profile 

on realistic dataset for (a) training dataset and (b) validation dataset. 

Performance on additional dataset 

We also checked the performance of our best model developed on realistic dataset using 

PSSM profile and window size 17 on an additional dataset. As shown in Supplementary 

Table S32, model developed using SVC classifier achieved the best performance with 

accuracy of 82.27%, and 0.33 MCC with balanced sensitivity and specificity. However the 

maximum accuracy of 97.14% and MCC of 0.62 was obtained when no balanced sensitivity 

and specificity were considered. The AUROC obtained was 0.88. 

 

Implementation of Model in Web server 

In order to help biologist for predicting SAM interacting residues, we implemented our best 

models in a web server “SAMbinder”. The web server consists of several modules such as 

“Sequence”, “PSSM Profile”, “Peptide Mapping”, “Standalone” and “Download”. These 

modules have been explained below in detail. 
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(i) Sequence: This module allows users to predict SAM interacting residue in a protein from 

its primary sequence. A user can submit either single or multiple sequences or upload the 

sequence file in the FASTA format and can select the desired probability cut-off and machine 

learning classifier for prediction. The module utilizes the binary profile as an input feature 

and number of machine learning models has been implemented into it. The classifier provides 

the prediction score which is normalized in between propensity score 0-9. Residues having 

the propensity score equal or above the selected cut-off threshold are highlighted in blue 

colour and remaining residues are highlighted in black colour. Blue colour indicates that the 

probability of these residues in SAM binding is high in comparison to the residues present in 

black colour. The result is downloadable in the “csv” file format and will be sent to email 

also if the user has provided the email. 

(ii) PSSM Profile: As the name suggests, this module utilizes the PSSM profile as an input 

feature for predicting SAM interacting residues in a given protein sequence. This feature is 

better than the binary profile however the only limitation is that it is very computer intensive. 

Therefore, a user can use this module if the number of the sequences are very few. The output 

is provided in the same format as Sequence module provides. For doing the prediction for 

multiple sequences using PSSM profile, we suggest user to use the standalone version of the 

software. 

(iii) Peptide Mapping: In this module, we have provided the facility where a user can map 

the peptide that contains SAM interacting central residue. We pre-computed propensity 

(between 0-9) of each tri and penta-peptides which contains SAM interacting central residues 

from known PDB protein structure. The propensity was computed using all SAM interacting 

protein chains i.e. redundancy was not removed, in order to avoid loss of information. Once a 

user submits sequence in FASTA format, all the possible segment of selected length is 

generated and mapped on the protein sequence along with the propensity score. Based on that 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 2, 2019. ; https://doi.org/10.1101/625806doi: bioRxiv preprint 

https://doi.org/10.1101/625806
http://creativecommons.org/licenses/by-nc/4.0/


mapping server predicts whether the peptide segment is SAM interacting or non-interacting. 

If propensity of residue is equal to greater than the selected threshold, it is known as SAM 

interacting residue. 

Standalone 

Standalone of SAMbinder is Python-based and is available at the Github site. The user can 

download it from the site https://github.com/raghavagps/sambinder/ . SAMbinder standalone 

version is also implemented in the docker technology. Complete usage of downloading the 

image and its implementation is provided in the docker manual “GPSRdocker” which can be 

downloaded for the website https://webs.iiitd.edu.in/gpsrdocker/ . 

Discussion 

SAM is one of the important essential metabolic cofactor/intermediates which is found in 

almost every cellular life forms and enzymes. SAM binding proteins are predominant in two 

major types of folds; (i) Rossman fold and TIM barrel fold and different motifs (Motif I-VI) 

(Gana et al., 2013). SAM binding proteins play a vital role in many metabolic and regulatory 

pathways in almost all form of living organism and acts as a potential drug target in a number 

of diseases. In Europe, SAMe is used as drug for treating diseases like liver disorder, 

depression, fibromyalgia and osteoarthritis. It has also been used as dietary supplements in 

United States for supporting the bones and joints. Therefore, it is very important to predict 

the SAM interacting residues in a given protein. We analysed various properties of SAM 

interacting protein chains such as composition, propensity and physiochemical properties and 

developed various machine learning models for predicting SAM interacting residue in new 

protein using number of input features. The models were first developed on the balanced 

dataset and different window sizes. We observed that model developed using PSSM profile 

and window size 17 performed best among all the models. Performance of the models was 

also validated on an independent dataset and an additional dataset. Python-based machine 
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learning package scikit-learn was implemented for developing the prediction models. In order 

to assist the scientific community, we have created a python-based standalone version of our 

software and also developed a web server where a user can predict the SAM interacting 

residues in the target protein. The server can be freely accessible at 

http://webs.iiitd.edu.in/raghava/sambinder . Complete workflow of SAMbinder is shown in 

figure 5. 

 

 

Figure 5. Architecture of SAMbinder. 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 2, 2019. ; https://doi.org/10.1101/625806doi: bioRxiv preprint 

https://doi.org/10.1101/625806
http://creativecommons.org/licenses/by-nc/4.0/


 

 

Conflict of Interest Statement 

The authors declare that they have no conflict of interest.  

Author’s Contribution 

PA collected and compiled the datasets. PA performed the experiments. PA and GPSR 

developed the web interface. PA and GM developed the standalone software. PA, and GPSR 

analysed the data and prepared the manuscript. GPSR conceived the idea and coordinated the 

project. All authors read and approved the final paper. 

Acknowledgement 

Authors are thankful to J.C. Bose National Fellowship, Department of Science and 

Technology (DST), Government of India, and DST-INSPIRE for fellowships and the 

financial support. 

 

Funding Information 

This work was supported by J.C. Bose National Fellowship, Department of Science and 

Technology, Govt. of India. 

 

References 

Agrawal,P., Singh,H., et al. (2019) Benchmarking of different molecular docking methods 

for protein-peptide docking. BMC Bioinformatics, 19, 426. 

Agrawal,P., Patiyal,S., et al. (2019) ccPDB 2.0: an updated version of datasets created and 

compiled from Protein Data Bank. Database (Oxford)., 2019. 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 2, 2019. ; https://doi.org/10.1101/625806doi: bioRxiv preprint 

https://doi.org/10.1101/625806
http://creativecommons.org/licenses/by-nc/4.0/


Agrawal,P., Kumar,S., et al. (2019) NeuroPIpred: a tool to predict, design and scan insect 

neuropeptides. Sci. Rep., 9, 5129. 

Agrawal,P. and Raghava,G.P.S. (2018) Prediction of Antimicrobial Potential of a Chemically 

Modified Peptide From Its Tertiary Structure. Front. Microbiol., 9, 2551. 

Aktas,M. et al. (2011) S-adenosylmethionine-binding properties of a bacterial phospholipid 

N-methyltransferase. J. Bacteriol., 193, 3473–81. 

Borroni,B. et al. (2004) Catechol-O-methyltransferase gene polymorphism is associated with 

risk of psychosis in Alzheimer Disease. Neurosci. Lett., 370, 127–9. 

Bottiglieri,T. (1997) Ademetionine (S-adenosylmethionine) neuropharmacology: 

implications for drug therapies in psychiatric and neurological disorders. Expert Opin. 

Investig. Drugs, 6, 417–426. 

Bottiglieri,T. et al. (1990) Cerebrospinal fluid S-adenosylmethionine in depression and 

dementia: effects of treatment with parenteral and oral S-adenosylmethionine. J. Neurol. 

Neurosurg. Psychiatry, 53, 1096–8. 

Cadicamo,C.D. et al. (2004) Enzymatic fluorination in Streptomyces cattleya takes place 

with an inversion of configuration consistent with an SN2 reaction mechanism. 

Chembiochem, 5, 685–90. 

Cantoni,G.L. (1975) Biological methylation: selected aspects. Annu. Rev. Biochem., 44, 435–

51. 

Casari,G. et al. (1995) A method to predict functional residues in proteins. Nat. Struct. Biol., 

2, 171–8. 

CATONI,G.L. (1953) S-Adenosylmethionine; a new intermediate formed enzymatically from 

L-methionine and adenosinetriphosphate. J. Biol. Chem., 204, 403–16. 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 2, 2019. ; https://doi.org/10.1101/625806doi: bioRxiv preprint 

https://doi.org/10.1101/625806
http://creativecommons.org/licenses/by-nc/4.0/


Chaib,H. et al. (2011) [Histone methyltransferases: a new class of therapeutic targets in 

cancer treatment?]. Med. Sci. (Paris)., 27, 725–32. 

Chauhan,J.S., Mishra,N.K., and Raghava,G.P. (2009) Identification of ATP binding residues 

of a protein from its primary sequence. BMC Bioinformatics, 10, 434. 

Chauhan,J.S. et al. (2010) Prediction of GTP interacting residues, dipeptides and tripeptides 

in a protein from its evolutionary information. BMC Bioinformatics, 11, 301. 

Chen,K. et al. (2012) Prediction and analysis of nucleotide-binding residues using sequence 

and sequence-derived structural descriptors. Bioinformatics, 28, 331–41. 

Dundas,J. et al. (2006) CASTp: computed atlas of surface topography of proteins with 

structural and topographical mapping of functionally annotated residues. Nucleic Acids 

Res., 34, W116-8. 

Gana,R. et al. (2013) Structural and functional studies of S-adenosyl-L-methionine binding 

proteins: a ligand-centric approach. BMC Struct. Biol., 13, 6. 

Le Guilloux,V. et al. (2009) Fpocket: an open source platform for ligand pocket detection. 

BMC Bioinformatics, 10, 168. 

Hendlich,M. et al. (1997) LIGSITE: automatic and efficient detection of potential small 

molecule-binding sites in proteins. J. Mol. Graph. Model., 15, 359–63, 389. 

Hu,J. et al. (2018) ATPbind: Accurate Protein-ATP Binding Site Prediction by Combining 

Sequence-Profiling and Structure-Based Comparisons. J. Chem. Inf. Model., 58, 501–

510. 

Hu,X. et al. (2016) Recognizing metal and acid radical ion-binding sites by integrating ab 

initio modeling with template-based transferals. Bioinformatics, 32, 3260–3269. 

Huang,Y. et al. (2010) CD-HIT Suite: a web server for clustering and comparing biological 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 2, 2019. ; https://doi.org/10.1101/625806doi: bioRxiv preprint 

https://doi.org/10.1101/625806
http://creativecommons.org/licenses/by-nc/4.0/


sequences. Bioinformatics, 26, 680–2. 

Item,C.B. et al. (2004) Characterization of seven novel mutations in seven patients with 

GAMT deficiency. Hum. Mutat., 23, 524. 

Kozbial,P.Z. and Mushegian,A.R. (2005) Natural history of S-adenosylmethionine-binding 

proteins. BMC Struct. Biol., 5, 19. 

Kumar,V. et al. (2018) Prediction of Cell-Penetrating Potential of Modified Peptides 

Containing Natural and Chemically Modified Residues. Front. Microbiol., 9, 725. 

Laskowski,R.A. (1995) SURFNET: a program for visualizing molecular surfaces, cavities, 

and intermolecular interactions. J. Mol. Graph., 13, 323–30, 307–8. 

Levitt,D.G. and Banaszak,L.J. (1992) POCKET: a computer graphics method for identifying 

and displaying protein cavities and their surrounding amino acids. J. Mol. Graph., 10, 

229–34. 

Lin,H. (2011) S-Adenosylmethionine-dependent alkylation reactions: when are radical 

reactions used? Bioorg. Chem., 39, 161–70. 

Mishra,N.K. and Raghava,G.P.S. (2010) Prediction of FAD interacting residues in a protein 

from its primary sequence using evolutionary information. BMC Bioinformatics, 11 

Suppl 1, S48. 

Nagpal,G. et al. (2018) Computer-aided prediction of antigen presenting cell modulators for 

designing peptide-based vaccine adjuvants. J. Transl. Med., 16, 181. 

Najm,W.I. et al. (2004) S-adenosyl methionine (SAMe) versus celecoxib for the treatment of 

osteoarthritis symptoms: a double-blind cross-over trial. [ISRCTN36233495]. BMC 

Musculoskelet. Disord., 5, 6. 

Pedregosa FABIANPEDREGOSA,F. et al. (2011) Scikit-learn: Machine Learning in Python 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 2, 2019. ; https://doi.org/10.1101/625806doi: bioRxiv preprint 

https://doi.org/10.1101/625806
http://creativecommons.org/licenses/by-nc/4.0/


Gaël Varoquaux Bertrand Thirion Vincent Dubourg Alexandre Passos PEDREGOSA, 

VAROQUAUX, GRAMFORT ET AL. Matthieu Perrot. 

Rosenbaum,J.F. et al. (1990) The antidepressant potential of oral S-adenosyl-l-methionine. 

Acta Psychiatr. Scand., 81, 432–6. 

Sobolev,V. et al. (1999) Automated analysis of interatomic contacts in proteins. 

Bioinformatics, 15, 327–32. 

Sousa,S.F. et al. (2006) Protein-ligand docking: current status and future challenges. 

Proteins, 65, 15–26. 

Thomas,D.J. et al. (2004) Elucidating the pathway for arsenic methylation. Toxicol. Appl. 

Pharmacol., 198, 319–26. 

Title Display and Analyze ROC Curves (2019). 

Waddell,T.G. et al. (2000) Prebiotic methylation and the evolution of methyl transfer 

reactions in living cells. Orig. Life Evol. Biosph., 30, 539–48. 

Wagner,J.M. et al. (2010) Histone deacetylase (HDAC) inhibitors in recent clinical trials for 

cancer therapy. Clin. Epigenetics, 1, 117–136. 

Wuosmaa,A.M. and Hager,L.P. (1990) Methyl chloride transferase: a carbocation route for 

biosynthesis of halometabolites. Science, 249, 160–2. 

Yu,D.-J., Hu,J., Yang,J., et al. (2013a) Designing template-free predictor for targeting 

protein-ligand binding sites with classifier ensemble and spatial clustering. IEEE/ACM 

Trans. Comput. Biol. Bioinforma., 10, 994–1008. 

Yu,D.-J., Hu,J., Yang,J., et al. (2013b) Designing Template-Free Predictor for Targeting 

Protein-Ligand Binding Sites with Classifier Ensemble and Spatial Clustering. 

IEEE/ACM Trans. Comput. Biol. Bioinforma., 10, 994–1008. 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 2, 2019. ; https://doi.org/10.1101/625806doi: bioRxiv preprint 

https://doi.org/10.1101/625806
http://creativecommons.org/licenses/by-nc/4.0/


Yu,D.-J. et al. (2014) Enhancing protein-vitamin binding residues prediction by multiple 

heterogeneous subspace SVMs ensemble. BMC Bioinformatics, 15, 297. 

Yu,D.-J., Hu,J., Huang,Y., et al. (2013) TargetATPsite: a template-free method for ATP-

binding sites prediction with residue evolution image sparse representation and classifier 

ensemble. J. Comput. Chem., 34, 974–85. 

Zhu,B.T. (2004) CNS dopamine oxidation and catechol-O-methyltransferase: importance in 

the etiology, pharmacotherapy, and dietary prevention of Parkinson’s disease. Int. J. 

Mol. Med., 13, 343–53. 

 

 

 

 

 

 

 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 2, 2019. ; https://doi.org/10.1101/625806doi: bioRxiv preprint 

https://doi.org/10.1101/625806
http://creativecommons.org/licenses/by-nc/4.0/

