
Charge and hydrophobicity are key
features in sequence-trained machine

learning models for predicting the
biophysical properties of clinical-stage

antibodies.

Max Hebditch1, Jim Warwicker1

1School of Chemistry, Manchester Institute of Biotechnology,

The University of Manchester, 131 Princess Street, Manchester, M1 7DN

max.hebditch@manchester.ac.uk, jim.warwicker@manchester.ac.uk

Abstract

Improved understanding of properties that mediate protein solubility and resistance to aggre-

gation are important for developing biopharmaceuticals, and more generally in biotechnology

and synthetic biology. Recent acquisition of large datasets for antibody biophysical properties

enables the search for predictive models. In this report, machine learning methods are used

to derive models for 12 biophysical properties. A physicochemical perspective is maintained

in analysing the models, leading to the observation that models cluster largely according to

charge (cross-interaction measurements) and hydrophobicity (self-interaction methods). These

two properties also overlap in some cases, for example in a new interpretation of variation in

hydrophobic interaction chromatography. Since the models are developed from differences of

antibody variable loops, the next stage is to extend models to more diverse protein sets.

Availability: The web application for the sequence based algorithms are available on the protein-

sol webserver, at https://protein-sol.manchester.ac.uk/abpred, with models and virtualisation

software available at https://protein-sol.manchester.ac.uk/software.
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Introduction

The promise of therapeutic monoclonal antibodies relies on the ability of the pharmaceutical

industry to develop large scale manufacturing processes that can produce safe, reproducible, and

economical formulations. Identifying problematic antibody formulations, as early as possible

in the drug discovery programme, has become a key area of research. To serve this interest,

researchers have identified various experimental platforms, and developed theoretical tools, in an

attempt to identify antibodies that may exhibit deleterious solution properties, also referred to

as developability issues (Jarasch et al., 2015; Kohli et al., 2015). The use of experimental methods

necessitate the production of a large number of candidates, which is both expensive and time

consuming. There is also the cost of conducting the biophysical characterisation assays and

interpreting the result. For these reasons, there has been interest in developing new techniques to

minimise sample requirements, or increase throughput (Razinkov et al., 2013; Man et al., 2019).

To help alleviate the sample requirement issues for experimental methods, several groups have

developed theoretical tools to assay the solubility, or developability, before any expression or

purification is required (Lauer et al., 2012; Obrezanova et al., 2015; Hou et al., 2018; Sankar et al.,

2018). Although excipients and solution conditions have a large effect on biophysical solution

behaviour, the properties of the formulation will be determined de novo by sequence and structure,

and thus form the basis for many theoretical approaches. There are a number of sequences based

predictors of protein aggregation, particularly as applied to amyloid proteins, in the literature

(Tartaglia and Vendruscolo, 2008; Conchillo-Solé et al., 2007; Walsh et al., 2014), and recent work

has applied these techniques for predicting the solubility of biotherapeutics (Sormanni et al., 2017;

Raybould et al., 2019).

The use of these in silico candidate screening techniques accelerates the biotherapeutic develop-

ment process, through the identification of high value leads and new engineering targets (Shan

et al., 2018), and in some cases even improving biological activity (Kumar et al., 2018), However,

the development of these tools is reliant on the availability of high quality experimental datasets

and is thus heavily dependent on the progress of experimental techniques. Notably, the recent

release of antibody biophysical characterisation datasets (Goyon et al., 2017; Jain et al., 2017a)

has allowed the development of further theoretical tools to predict, assess and understand the

2

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 2, 2019. ; https://doi.org/10.1101/625830doi: bioRxiv preprint 

https://doi.org/10.1101/625830
http://creativecommons.org/licenses/by-nc/4.0/


physicochemical properties that are correlated with the successful development of a therapeutic

antibody, on a scale previously unattainable to academic researchers. The Jain et al. (2017a) report

in particular is an excellent resource as it analysed 137 antibodies, representing a wide variety

of late stage clinical therapeutics, across 12 different biophysical characterisation platforms. The

study identified where there is overlap between complementary approaches and which platforms

should be prioritised for assaying candidate therapeutic mAbs.

When available, previous work from our group has used experimental data to produce

algorithms for both prediction and theoretical calculation which we have made freely and openly

available as web applications on the https://protein-sol.manchester.ac.uk web server. Prior to

the release of the high throughput biotherapeutic datasets, we have focussed on using other

large datasets, such as the Niwa et al. (2009) E.coli solubility dataset, as a proxy for therapeutic

proteins, to study the role of sequence information in predicting protein solubility (Hebditch et al.,

2017). Using the Goyon et al. (2017) dataset we studied the importance of CDR (complementarity-

determining regions) length and aromatic content for predicting behaviour on HIC (hydrophobic

interaction columns) (Hebditch et al., 2018). Lastly, we have developed tools for predicting

the presence of hydrophobic and charged patches as well as fold state stability (Hebditch and

Warwicker, 2019) from crystal structures available in the PDB (Berman et al., 2007) and applied

these observations to experimental work (Austerberry et al., 2017). After the release of the Jain et al.

(2017a) dataset, reports have appeared in the literature using the dataset. For example, predictive

models of HIC performance using QSPR models (Jetha et al., 2018) and a combined sequence and

structure approach (Jain et al., 2017b). CDR properties of the Jain et al. (2017a) dataset have also

been implicated in identifying antibodies with developmental issues (Raybould et al., 2019), and

the dataset has also been used to benchmark aggregation prediction algorithms (Sankar et al.,

2018).

In this report, we describe our approach to using machine learning algorithms trained on the

Jain et al. (2017a) dataset. Models for all 12 biophysical measurement platforms are produced,

with varying efficacies. Compared to other approaches, our models rely simply on sequence

information which is readily available in comparison to structural approaches. The models are

interrogated for which sequence features contribute most significantly for each measurement.

Clustering of models using according to sequence features in largely in accord with that from
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experiment. We associate charge and hydrophobicity as the features of most importance. In a novel

interpretation of results for HIC, a complexity is revealed whereby charge effects are hypothesised

to be minor at low retention times, but major at high retention times, owing to the ionic strength

gradient that is used to modulate hydrophobicity.

Materials and methods

Dataset

The Fv (concatenated VH and VL) sequences for the 137 antibodies (mAb137), as well as the experi-

mental result data for the 12 biophysical platforms were obtained from Jain et al. (2017a). The exper-

imental methods were: AC-SINS (affinity-capture self-interaction nanoparticle spectroscopy), CSI-

BLI (clone self-interaction by bio-layer interferometry), PSR (poly-specificity reagent), BVP-ELISA

(baculovirus particle ELISA), CIC (cross-interaction chromatography), ELISA (enzyme-linked

immunosorbent assay), HEK (HEK cell expression titer), HIC (hydrophobic interaction chromatog-

raphy), SGAC-SINS (salt-gradient affinity-capture self-interaction nano-particle spectroscopy),

SMAC (stand-up monolayer adsorption chromatography), SEC (size-exclusion chromatography),

DSF (differential scanning fluorescence).

Identifying explanatory variables

Following on from previous work where we used protein sequence features to estimate solution

behaviour (Hebditch et al., 2017), we have used the same 35 sequence features in an attempt to

understand the variance in the 137 antibodies with the 12 different biophysical characterisation

assays. The 35 features are composed of the standard 20 amino acid propensities, followed by 7

amino acid composite scores (KmR = K-R, DmE = D-E, KpR = K+R, DpE = D+E, PmN = K+R-D-E,

PpN = K+R+D+E, aro = F+W+Y) and a further 7 sequence features (fld = folding propensity

(Uversky et al., 2000), dis = disorder propensity (Linding et al., 2003), bet = beta strand propensities

(Costantini et al., 2006), mem = Kyte-Doolittle hydropathy (Kyte and Doolittle, 1982), pI, absolute

charge and sequence entropy (Hebditch et al., 2017)). The complementary determining regions

(CDRs) were identified for each Fv sequence using a set of sequence based rules (Abhinandan and

Martin, 2008).
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Feature engineering and preprocessing the experimental datasets

For each experimental method, we first determined which features should be selected as explana-

tory variables. If we desired to simply maximise the R2 value, we could retain all of the variables

as the R2 value will always increase with higher degrees of freedom (Kvålseth, 1985). However

in order to generate the most robust, and interpretable, model it is preferable to reduce the

number of variables used. For example, collinearity occurs in multivariate linear regressions when

input/explanatory variables are correlated, and this correlation can destabilise the estimation of

individual coefficients (Farrar and Glauber, 1967). If the VIF value is high, the variance of the

coefficient in the multivariate model is high, and thus the estimation of the standard error is

high. To account for this, for each experimental platform we selectively removed variables with a

high VIF score (traditionally considered 10 and above) to address the issue of multicollinearity

(O’brien, 2007). This list of non-collinear variables formed our first set of explanatory variables:

VIF all. To identify the most important coefficients we conducted a mixed stepwise selection

regression (Venables and Ripley, 2013) to minimise the Akaike information criterion (Akaike, 1998).

This process resulted in the second of our two sets of explanatory variables for each biophysical

platform: VIF selected. For each experimental dataset, we then scaled the explanatory variables to

ensure that the coefficient value of each explanatory variable would be comparable, as well as for

aiding the prediction of the statistical techniques.

Mathematical transformation of the experimental data

Many machine learning algorithms perform best on normally distributed datasets (James et al.,

2013), and it is common practise to mathematically transform non-normal distributions in order

to improve the predictive power of machine learning approaches. We noted that many of the

values are in fact better described by a generalized extreme value distribution type 1 (Gumbel

distribution). As many of the experimental distributions appeared to be significantly non-normal,

we normalised all of the distributions using a mathematical transformation (see Table 1). For each

dataset, we attempted to normalise the distribution of experimental values using the R package

bestNormalize and then trained the algorithm against both the standard and normalised datasets

using both the stepwise selected and complete sets of coefficients (Peterson, 2017). For the datasets

with significantly non-normal distributions, the machine learning algorithm was then trained on
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these transformed experimental values and will thus produce regressions in the context of the

transformed space. Although these transformed predictions do not have any physical meaning,

they are still mathematically related to the original experimental value, and can therefore be used

to compare between proteins in the mAb137 dataset.

Statistical model selection and cross-validation

We tested the performance of both parametric and non-parametric machine learning algorithms.

The advantage of non-parametric methods is that they are generally unbiased as they do not expect

the data to fit to an a priori approximation. This flexibility however comes at the cost of generally

requiring larger datasets in order to model the relationship, and the increased degrees of freedom

can lead to overfitting the data. Parametric algorithms are easier to interpret and are more useful

for inferential statistical approaches, but are however more likely to be biased as they assume a

structure to the data that may not exist (James et al., 2013). To determine which algorithm should

be used for each experimental method, we tested 11 different regression algorithms representing a

selection of parametric and non-parametric algorithms. Each algorithm was provided with both

sets of explanatory variables (VIF all and VIF selected) and the normalised and standard datasets

for each of the 12 experimental methods.

For predicting how machine learning models perform on unseen data a validation approach is

required. Traditionally a hold-out, or lock box, validation approach is favoured, however for a

dataset of this size (n = 137), a hold out-approach for estimating model performance would be

problematic. Firstly it would be difficult to ensure that both the validation and hold-out would

be truly representative of the sample, for this reason, any partition of the data would be highly

variable due to randomness in selecting the hold-out set. Secondly, machine learning approaches

perform worse with fewer observations, and by necessity a hold-out validation approach will

immediately remove a substantial portion of the data for validation. For these reasons, we chose

to use cross-validation for estimating the test error directly from the training data, a technique

common in life sciences (Krstajic et al., 2014). A traditional approach to cross-validation is the

k-fold technique where the data is divided into k folds, with 1 of the folds being put aside for

validating a model trained on the remaining k-1 folds. Compared to the hold-out validation

method, this ensures that we can use the entirety of our data for training the algorithms whilst
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still retaining an estimate of performance on future data. Other cross-validation approaches to

studying the mAb137 dataset (Jetha et al., 2018) have used leave-one-out cross-validation, which is

a special subset of k-fold cross-validation where the number of folds is equal to the number of

observations, and thus each validation fold consists of a single observation with the remaining

folds used to train the algorithm. The leave-one-out form of cross-validation will tend to have

higher variance than a k-fold of 10 approach due to the high similarity of the training sets, which

only differ by 1 sample (Kohavi, 1995). This means that each dataset in the leave-one-out approach

is highly correlated, whereas if a smaller number of k-folds are used, the training sets are more

diverse and should therefore provide a more accurate estimate of the test error as a proxy for

performance on unseen data due to the bias-variance trade-off (James et al., 2013). As we are most

concerned with providing a robust predictive algorithm which can be applied to future unseen

data, we chose to use a 50 times repeated 10-fold cross validation approach as a trade-off between

providing the model with as much training data as possible, whilst maintaining a robust and

diverse training set to avoid over fitting (Braga-Neto and Dougherty, 2004; Krstajic et al., 2014).

As part of the cross-validation process we used a grid search value of 5 for parameter tuning

to determine the optimal model instance. For the HIC dataset, we excluded the experimental

values with a value of 25, as these were arbitrarily assigned a value of 25 due to exceeding the

maximum measurement time and were thus misleading for the training. Both the algorithms and

cross-validation were implemented using the caret (Kuhn, 2008) package in R version 3.5.1.

Selection of machine learning algorithms and data input

After training each algorithm on the original untransformed and transformed experimental

data, the algorithms with the lowest MAE were chosen for further exploration. For most of the

experimental datasets, the best performing algorithms were the elastic net, a linear algorithm

(Zou and Hastie, 2005), using the stepwise selected variables, and the non-linear algorithms:

support vector machines (SVM) (Drucker et al., 1997), and random forest (Ho, 1995), both using

the complete set of non-collinear variables (see Table 1). The selected model for each experimental

method was then used to predict the entire experimental dataset to obtain predicted values for

each of the proteins.
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Meta score

We also provide a meta score which combines and averages multiple biophysical platforms. The

meta score is calculated by ranking the original Jain dataset in order from best to worst result,

and then calculating where the candidate sequence falls within that ranking for each biophysical

platform. We rescale the rankings from 1–100, with 1 being predicted to be the best, and 100

predicted to be the worst, with the rankings ordered dependent on whether higher or lower better

values are preferable. We then combine and average the ranks for the biophysical platform. For

META X we average the rankings for ELISA, BVP, PSR, CSI, ACC STAB and CIC, and for META Y

we average SMAC and HIC. The lower the ranking the better for each group, and thus the closer

to origin (0,0) the better we predict the candidate to behave on average across the platforms.

Web application and model availability

Previous work from our group has focussed on developing predictive models (Hebditch et al.,

2017) and theoretical tools (Hebditch and Warwicker, 2019) which we have made freely available

as a suite of web-tools for the wider research community at https://protein-sol.manchester.ac.uk.

Accordingly, we have made all twelve machine learning algorithms available at protein-sol. The

user can enter a candidate Fv sequence into the web application, which is then processed using

the same methodology as described in this study. The sequence composition scores of the new

sequence are preprocessed for scale, and where applicable mathematical transformations applied

(Table 1). The composition variables are then used as new inputs for the trained algorithms to

obtain predictions for the 12 biophysical experiments. The web application provides an interactive

scatter plot, with the original, or transformed, experimental value on the x-axis, and the predicted

value from the machine learning algorithm for the same protein on the y-axis (Figure 1). As

the new candidate sequence has only a predicted value, we assign x = y. The web application

presents the 12 predicted experimental values and the calculated META value in the context of the

original mAb137 dataset to allow the user to assess the prediction. Hovering over the individual

points on the scatter graph provides the name and FDA approval stage of the protein in question,

as well as the original experimental value and the predicted value from the machine learning

algorithm for comparison to the candidate protein. Where the machine learning algorithm has

been trained on a mathematically transformed dataset (see Section ) it is important to note that the
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Figure 1: Demonstration of the protein-sol web application. The x axis of the scatter plot is
the original experimental value, or mathematical transformation thereof, and the y axis is the
prediction for that protein. The protein submitted by the user is coloured orange, and the mAb137
dataset is coloured green with the three representing the FDA approval stage. The heat map
below is coloured red if the candidate protein is predicted to lie beyond the threshold and green
otherwise.
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HIC SMAC CIC ACSINS ELISA BVP SGAC-SINS PSR HEK DSF CSI ACC-STAB

Algorithm Elastic net Elastic net SVM Elastic net Random forest Random forest SVM SVM SVM SVM SVM SVM

Variables VIF selected VIF selected VIF all VIF selected VIF all VIF all VIF all VIF all VIF all VIF all VIF all VIF all

Transformation None Ordered quantile Ordered quantile Ordered quantile None None None None None None Ordered quantile None

R2 0.391 0.353 0.306 0.268 0.383 0.355 0.215 0.316 0.1121 0.13 0.169 0.086

Table 1: Chosen machine learning algorithm summary. For each experimental dataset we tested a
number of different algorithm, variable and mathematical transformation types.

values on the x and y axis are reported on the same transformed scale. For the candidate sequence

the user is also given a ranking, scaled from 1 − 100 where 1 is always the preferential ranking,

for each experiment, allowing the user to contextualise how the candidate sequence performs in

comparison to the mAb137 set of clinical stage therapeutics. The heat map is colour coded for each

Fv dependent on the threshold value. We use threshold values, available for 10/12 experimental

platforms, from the original Jain et al. (2017a) study, for the remaining 2/12 (HEK and DSF) we

set the threshold to mark values that rank within the worst 10% of the experimental values. If

the predicted value is above the threshold value for the experiment, the corresponding square is

coloured red, otherwise it is coloured green. Hovering over the heat map changes the displayed

scatter graph to display the predictions for that category, as well as the ranking of the candidate

sequence for that experiment.

The web application allows users to easily visualise and understand the predictions for single

Fv sequences. If the user wishes to make predictions for multiple proteins, or implement the

abpred software into their own pipelines, we are also providing the complete suite of software

both as a repository with instructions for installing dependencies, and also as a docker image

which is an industry standard form of operating system virtualisation allowing the user to

download a preconfigured image containing all of the required software designed to run cross

platform on Linux, Windows and macOS. These resources are available at https://protein-

sol.manchester.ac.uk/software.

Results and discussion

Models for 12 biophysical properties that characterise antibody behaviour

Using the sequence information for the 137 Fv (concatenated VH and VL) from the Jain et al.

(2017a) dataset (mAb137) we trained multiple different machine learning algorithms, on the
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Figure 2: The scatter graphs demonstrate the predictive power of the HIC model, where the
original experimental value is on the x axis, and the prediction is on the y axis. The closer each
data point is to the y = x line the better the prediction. Predictions for HIC are generally close to
the y = x line at lower, but not at higher retention times.

original, and mathematically transformed datasets. To ascertain generalisability, each algorithm

was trained using 50-repeat 10-fold validation. From the cross-validation we obtained the mean

average error (MAE) value which was used to choose determine which combination of algorithm

and experimental data transformation best described each of the 12 experimental datasets (see

methods). Finally, we then used the cross validated models to describe the entirety of the

experimental data in order to obtain predicted values corresponding to each experimental value

to power the prediction matrix (Figures 2, S1, and S2). Using MAE as a qualification metric for

model quality, we demonstrate that machine learning models trained simply on Fv sequence

information, can provide accurate predictions, although accuracy varies substantially over the

measured 12 properties (Table 1). Figure 2 shows one of the better performing models (HIC) with

good agreement at lower at lower HIC values but less effective prediction at higher HIC values.

The feature selection stage of the machine learning methods gives an indication of the sequence-

based features that are most associated with particular biophysical properties. A complementary

approach, is to examine correlations between sequence features and measured properties.

For each experimental dataset, we calculated the Pearson correlation coefficient between

each calculated sequence feature and the experimental value for the entire Fv chain (Figure 3).
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Figure 3: Heat map of the correlation between the Fv sequence composition scores used in the
abpred algorithms and the score on each of the experimental datasets for the mAb137 dataset.
Dark red values indicate a stronger positive correlation, and dark blue values indicate a stronger
negative correlation.

Inspection reveals that some biophysical measurements are associated with sets of sequence

correlations that are of larger magnitude than for other measurements. These largely reflect

our observations for models developed with machine learning. Generally, the models shown

in Figure S1, with greater overall correlation values, and giving predictions that lie close to the

y = x diagonal, are associated with greater correlation magnitudes reading across in Figure 3.

Consideration of sequence features that underlie models is important in further our understanding

of molecular behaviour, as demonstrated with presentation of a new model for mAb behaviour in

HIC, in a subsequent section.

Clustering of biophysical characterisations

Hierarchical clustering of biophysical characterisation for the 137 mAbs revealed 5 clusters (Jain

et al., 2017a), which we are able to now associate with enrichment for higher correlations with

certain sequence features. A grouping of positive correlations for charge-associated properties

is apparent (Figure 3) for the largest cluster identified previously (PSR, CSI, ACSINS, CIC), but

we would add in a second of the original clusters (ELISA, BVP) that sits next to the largest

cluster in the hierarchical tree. These 6 properties lie at the bottom of the heat maps in Figure

3 and (to varying degrees) give correlations for absolute charge and negative charge subtracted

from positive charge (PmN) i.e. overall net positive charge. The 6 assays in this cluster assess
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cross-interaction (BVP, ELISA, CIC, PSR) and self-interaction (CSI, ACSINS). We predict that,

for the cross-interactions, negatively-charged proteins (or regions of proteins) are being targeted

by more positively-charged CDRs in the mAbs. For self-interactions, absolute charge favours

interaction, but it is less clear that this is a positive charge.

Whereas SMAC, HIC and SGAC-SINS were clustered according to biophysical characterisation

(Jain et al., 2017a), Figure 3 indicates (according to sequence properties) that SMAC and HIC are

more closely related to each other than to SGAC-SINS, including positive correlation of aromatic

content with association to the hydrophobic medium. This observation is consistent with our

earlier modelling (Hebditch and Warwicker, 2019) for HIC measurements with a smaller dataset

(Goyon et al., 2017), given the multiple dependencies of biophysical properties on sequence features

it is unsurprising that models constructed with machine learning methods give correlations that

are useful, but far from precise. It is likely that consideration of 3D structure can improve

modelling when we have sufficient understanding of properties such as a shape-dependence

of the hydrophobic effect (Hebditch and Warwicker, 2019), but 3D structure will not always

be available and models are liable to error. In this context we have used the clustering of

biophysical characterisation methods, which largely agrees when clustering is based either on the

measurements themselves (Jain et al., 2017a), to generate two combinations for prediction. Further,

we loosely associate these two predictors with variation within a dataset of two overriding features.

For cross-interaction and self-interaction, BVP, ELISA, CIC, PSR, CSI and ACSINS predicted

rankings are averaged and displayed along the horizontal axis, and for hydrophobic interaction the

rankings from HIC and SMAC are averaged and displayed on the vertical axis. The background

to the plot, labelled ‘meta’ prediction, are the combined rankings calculated for the 137 mAb

set. There is some cross-over between these two combinations, for example the charge effects

in HIC (Figure 3), and a positive correlation between CIC data and aromatic content, which is

accommodated in the models for individual biophysical properties. In general terms though,

this ‘meta’ prediction can be thought of as displaying variation associated with charge-related

properties (horizontally), and variation associated with hydrophobicity (vertically).
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Figure 4: Plot of an interaction model trained on the aromatic content and absolute charge for the
mAb137 dataset and HIC experimental data. Red indicates areas of higher HIC retention time,
and blue areas of lower retention time. The schematic provides a suggested physical explanation
for differences in HIC values in sequences with high aromatic content denoted by green non-polar
interactions.

HIC and the interplay between charge and hydrophobicity

For HIC we note that (Figure 3) strong correlations between HIC value and aromatic content

(positive) and absolute charge (negative). From Figure S3, it is clear that there is no simple

delineation between the high and low charge sequences (Figure S3a) when considering the

relationship between aromatic content and HIC, and between the high and low aromatic content

sequences when considering the relationship between absolute charge and HIC (Figure S3b). This

suggests that the relationship between HIC and charge/hydrophobicity is not linear, and will thus

not be captured by traditional linear models. To account for this, we calculated an interaction

model between aromatic content and absolute charge for predicting HIC retention time (Figure 4).

Tracking the plot across at constant charge, about one third up along the charge axis, the expected

behaviour is evident, where aromatic content is used to represent hydrophobicity. More generally

though the plot shows that increased charge leads to lower retention times in HIC, for a uniform

content of aromatic residues, evidenced by a worsening of the correlation between measurement

and prediction at higher HIC values (Figure 2). Deconvoluting and keeping track of features that

are included in a model permits physical interpretation and re-evaluation that may be valuable

for research into HIC methodology.
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Figure 4 also includes a physical interpretation of these data. At higher ionic strength (relating

to lower retention times in HIC), charge interactions between bound proteins are screened and thus

high net charge proteins (Q) behave in a similar manner to those with low net charge (q). At lower

ionic strength (and longer elution times), charge interactions are no longer screened as effectively,

so that repulsion between proteins with higher net charge (Q) would lead to greater elution of

these proteins relative to those with smaller net charge (q). This combination of experimental

data, informatics, and physicochemical analysis, leads to a novel interpretation of the complexity

required in accounting for HIC data.

Applicability of models to other systems

Our models have been developed with specific biophysical characterisations and a single type

of protein therapeutic, giving rise to the question of whether they retain predictive ability when

either of these factors are changed. We have focussed on characterisation by HIC, largely since

careful comparison of the data yields the insight that ionic strength variation during elution leads

to a dependence on charge as well as hydrophobicity. Of the reported biophysical methods (Jain

et al., 2017a), HIC is widely used, however it is applied in variants of the format that lead to altered

ranges of measured retention times. A set of 97 mAb variants, targeting integrin α11, have HIC

elution times in the range of 20–30 minutes, compared with those used for the current models that

are centred around 10 minutes (Jetha et al., 2018). Models can still be assessed with correlation,

or relative ranking, even when the measurement domains are different. A scatter plot of HIC

values calculated with our model against experimental values has a similar appearance to a that

produced with a sequence-based prediction developed in the original study (not shown) (Jetha

et al., 2018). The correlation coefficient for the scatter plot in our calculation is 0.35, lower than

reported by Jetha et al. (2018) (0.46), but significant (p = 0.00044, 97 data points). The mAb variants

in this study consist of mutations designed to reduce hydrophobicity, with varying degrees of

success in the design, which are largely reflected in the scatter plot for model versus experimental

HIC. Interestingly, a group of mutations based on Y30 are amongst the more poorly predicted

set, and this residue is part of a relatively small hydrophobic patch and likely not involved in

binding to integrin α11. In contrast the sequence space of the 137 mAb set will be determined

mostly by altered binding to the various targets, and therefore qualitatively different to the 97
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mAb set. Jetha et al. (2018) observe that structure-based modelling can be used to distinguish

surface environments, consistent with our own report that an improved understanding of the

shape-dependence of the hydrophobic effect is needed (Hebditch and Warwicker, 2019).

With regard to measurements for non-mAb systems, we follow Jetha et al. (2018) in comparing

predicted HIC values with measured inclusion body (IB) percentage formation for 31 adnectin

loop variants (Trainor et al., 2016), i.e. assuming that hydrophobicity is a contributing factor in

IB formation. Our model for HIC correlates with the IB percentage data, yielding R = 0.668

(p = 0.00004, 31 data points).

These tests, against other mAbs and another loop-based protein affinity system, give us

confidence that the models can be used for relative ranking of candidate molecules. There are

clearly insufficiencies in the models, and correlations vary across models. Developments may

come from inclusion of 3-dimensional structure (where available). Careful analysis of models can

yield areas where improved physicochemical understanding is possible, illustrated here with HIC

data.

Conclusion

A set of predictive models are presented for the 12 biophysical properties assessed in a landmark

study of 137 mAbs (Jain et al., 2017a). The models have been developed from sequences of

the (heavy and light chain) variable domains, using the 20 amino acid compositions and 15

sequence-derived features that represent physicochemical properties (Hebditch et al., 2017), and

variation in those properties between the CDRs of the 137 mAbs. Machine learning methods

have been used to access fits to the data that would be missed by linear models. In the event it

turns out that linear models can account for much of the variation observed, whilst for some of

the measured properties it is difficult to obtain an effective predictive model. These deficits, for

example in DSF (Tm) and HEK (expression titer) may highlight where sequence fails to capture

salient structural features (Jetha et al., 2018; Raybould et al., 2019), or important factors in the

solution environment. Sequence-based prediction, though, is accessible to users without structural

information, it negates the requirement for comparative modelling (with its potential errors), and

in prior work we find that 3D-based methods are still in development in regard to assessment

of hydrophobic interactions at CDRs (Hebditch et al., 2018). An advantage of our methodology,
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with models for 12 biophysical properties, is that models can be clustered and examined in the

context of common sets of sequence features with higher correlations. This clustering is similar to

that established in the original report of the mAb137 set data. Further, the method allows new

interpretation of underlying physicochemical behaviour. The example given is for HIC, where

despite delivering one of the better models, we find that charge combines with hydrophobicity in

a way that is difficult to capture precisely. However, the fundamental nature of this combination

can plausibly be related to the HIC method. An ammonium sulphate gradient (high to low) is

used to modulate hydrophobicity. We hypothesise that at shorter elution times, charge plays less

of a role (with electrostatic interactions screened) but is more important at longer elution times, at

lower ionic strength and with proteins with higher net charge repelling each other on the support.

The current work complements other modelling studies, but of individual properties, built on the

mAb137 set (HIC, Jain et al. (2017a); CIC, Kizhedath et al. (2019)). It also adds to studies prior

to reporting of the mAb137 set, that identified QSAR as an effective area for prediction of mAb

solution properties (Sharma et al., 2014; Robinson et al., 2017).

A key question for prediction methods developed with data for mAbs, is how well they

transfer to other proteins, particularly since the emphasis is on differences in CDRs. Since the

detail of experimental procedures is likely to vary, the first step to other systems is to swap from a

comparison of absolute values to rankings or correlations, using the numerical values given in our

method. Following this procedure, our HIC prediction model is effective for another set of mAbs

(Jetha et al., 2018) and a set of adnectin variants (Trainor et al., 2016). Both of these additional sets

are centred on variation in defined loop regions. In the next stages of the work, wider variation in

proteins will be studied, requiring collaboration with experimental determination to both extend

the range of measurements, and to narrow the range of biophysical techniques to focus studies.
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