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Abstract 

Unveiling the mechanism of action of a drug is key to understand the benefits and adverse 

reactions of drug(s) in an organism. However, in complex diseases such as heart diseases there 

is not a unique mechanism of action but a wide range of different responses depending on the 

patient. Exploring this collection of mechanisms is one of the clues for a future personalised 

medicine. The Therapeutic Performance Mapping System (TPMS) is a Systems Biology approach 
that generates multiple models of the mechanism of action of a drug. This is achieved by (1) 

modelling the responses in human with an accurate description of the protein networks and (2) 

applying a Multilayer Perceptron-like and sampling method strategy to find all plausible solutions. 

In the present study, TPMS is applied to explore the diversity of mechanisms of action of the drug 

combination sacubitril/valsartan. We use TPMS to generate a range of mechanism of action 

models explaining the relationship between sacubitril/valsartan and heart failure (the indication), 

as well as evaluating their relationship with macular degeneration (a common/recurrent adverse 

effect). We found that a lower response in terms of heart failure treatment is more associated to 
macular degeneration development, although good response mechanisms can also associate to 

the adverse effect. A set of 30 potential biomarkers are proposed to identify mechanisms (or 

patients) more prone to suffering macular degeneration when presenting good heart failure 

response. As each molecular mechanism can be particular not only of cells but also individuals, 

we conclude that the study of the collection of models generated using TPMS technology can be 

used to detect adverse effects personalized to patients. 
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Introduction 

Cardiovascular diseases are the major cause of death in the Western world, causing 17.9 million 

deaths per year (2015).1 The prevalence of cardiovascular diseases is influenced by many 

factors: age, nutritional habits, lifestyles or genetics. This complicates the co-development of 
treatments and the identification of universal biomarkers to stratify the population. To facilitate 

this segmentation, it is necessary to understand the molecular details of the treatment and the 

pathology. 

Sacubitril/valsartan (marketed by Novartis as Entresto®) is a drug combination that improves the 

results of the conventional treatments by reducing cardiovascular deaths and heart failure (HF) 

readmissions.2 In pharmacological terms, it is an angiotensin receptor-neprilysin inhibitor: it 

increases the natriuretic peptide system by inhibiting neprilysin (NEP) and inhibits renin-

angiotensin-aldosterone system by blocking the type-1 angiotensin II receptor (AT1R).3 In a 
previous work, the Mechanism of Action (MoA) of sacubitril/valsartan synergy was unveiled: the 

synergistic effect of the drug combination was mainly reflected on left ventricular extracellular 

matrix remodelling, mediated by proteins like gap junction alpha-1 protein or matrix 

metalloproteinase-9, and also affects cardiomyocyte apoptosis through modulation of glycogen 

synthase kinase-3 beta.4 However, several publications warned about the potential long-term 

negative implications of using a neprilysin inhibitor like sacubitril.3,5,6 Neprilysin plays a critical role 

at maintaining the amyloid-𝛽 homeostasis in the brain. The alteration of amyloid-𝛽 levels could 

lead to the development of Alzheimer’s disease or macular degeneration (MD).7,8 During the 

clinical trial PARADIGM-HF of sacubitril/valsartan, there were no serious effects detected.2 

However, the patient follow-up of PARADIGM-HF was relatively short and not specialised in 
finding neurodegenerative specific symptoms. For this reason, in the recent sacubitril/valsartan 

clinical trial PARAGON-HF, there will be a Mini Mental State exam, and in the forthcoming 

PERSPECTIVE trial there will be a battery of cognitive tests6; however, any of the future studies 

will focus on potential MD consequences. A solution to explore the potential impact of 

sacubitril/valsartan on MD would be to apply computational methods that predict all the possible 

responses of the drug in the population. These computational simulations of real clinical trials are 

called In Silico Clinical Trials (ISCT), and they are based on systems biology principles. 

Systems biology-based methods are increasingly becoming a reliable strategy to understand the 
molecular effects of a drug in complex clinical settings. However, current methodologies do not 

consider the inter-patient variability intrinsic to pharmacological treatments and thus miss relevant 

information that should be incorporated into the models. Indeed, there are many parameters 

influencing the MoA of such therapies, including demographic data of the patient, co-treatments 

or clinical history. The unexpected responses a patient might experience during a specific 

treatment could be explained by modeling the different mechanisms by which a drug exerts its 

effect on the patient. In this study, we will use the Therapeutic Performance Mapping System 

(TPMS)9 to elucidate all the possible MoAs of a sacubitril/valsartan in MD. TPMS is a systems 
biology approach based on the simulation of patient-like characteristics. It has been broadly used 
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in the last years in different clinical areas and with different objectives.4,10–14 The TPMS 

incorporates data from massive databases publicly available and experimental information 

obtained for the diseases and drugs under study to generate multiple models of potential MoAs. 

Our hypothesis is that the set of MoAs could represent the different responses of the drug in cells 

and assume that a real population of patients is the result of a myriad of cell responses. Thus, a 

prototype-patient is defined as an abstract case with all cells responding with a single MoA. In 
this study, we analyse the population of MoAs associated with the response of HF and MD 

phenotypes to sacubitril/valsartan. We cluster the MoAs in groups by their response intensity. We 

analyse the MoAs with higher and lower susceptibility to treat HF and/or produce MD. We 

compare these MoAs and propose biomarkers to identify potential cases of MD when using 

sacubitril/valsartan. Finally, we use GUILDify v2.0 web server15 to analyse the comorbidity of both 

phenotypes and analyse the relevance of the proposed biomarkers with a different approach. 

 

Materials and Methods 

 

1. Biological Effectors Database (BED) to molecularly describe specific 
clinical conditions 

Biological Effectors Database (BED) describes more than 300 clinical phenotypes by means of 

gene and protein networks, which can be “active”, “inactive” or “neutral”.10,16 For example, in a 

metabolic network, proenzymes are “inactive” enzymes that become “active”, or enzymes are 

inactivated when they interact with an inhibitor (see further details in supplementary material). 

 

2. TPMS modelling of phenotypes. 

The Therapeutic Performance Mapping System (TPMS) is a tool that creates mathematical 

models of a drug/pathology response to explain a clinical outcome or phenotype4,9–14. We applied 

TPMS to the drug-indication pair sacubitril/valsartan and HF: for the drug we retrieved and 

manually curated the sacubitril/valsartan targets from DrugBank17, PubChem18, STITCH19, 

SuperTarget20 and hand curated literature revision, while for the indication we used the proteins 
associated with the phenotype from the BED.10,16 We defined the Human Protein Network (HPN) 

by integrating data on functions and interactions of proteins (see further details in supplementary 

material). 

2.1. Defining restrictions from gene expression data 

We define the state of human proteins as active or inactive for a particular phenotype, including 

its expression (as active) or repression (as inactive) extracted from the GSE57345 gene 

expression dataset21 as in Iborra-Egea et al4 (see further details in supplementary material).  

2.2. Description of the mathematical models 
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The algorithm of TPMS uses as input signals the values of activation (+1) and inactivation (-1) of 

the drug protein targets. The outputs are then the values of activation and inactivation of the 

proteins defining the indication’s phenotype (retrieved from the BED), named effectors. Each 

node of the protein network receives as input the output of the connected nodes and each link 

receives a weight (𝜔#). The sum of inputs is transformed by a hyperbolic tangent function to 

generate the score of the node, which becomes the “output signal” towards the connected nodes. 

The 𝜔# parameters are obtained by optimization, using a Stochastic Optimization Method based 

on Simulated Annealing.22 The models are trained by using the restrictions defined by the BED 

and the specific conditions set by the user. We ranked all solutions by the number of restrictions 

satisfied and selected the top 200 solutions representing potential MoAs of the drug, which we 

assumed equally acceptable. Here, we hypothesized that these solutions can represent different 

cells, while combinations of them would correspond to different patients. Hence, 200 prototype or 
representative mathematical solutions can be considered for an individual and personalized 

approach. Details of the approach are shown in Figure 1 and supplementary material. 

 

3. Measures to compare sets of MoAs 

To understand the relationships between all potential mechanisms we defined measures of 

comparison between different sets of solutions. We expect that a drug will revert the conditions 

of a disease phenotype. Consequently, a drug should inactivate the active protein effectors of a 

pathology-phenotype and activate the inactive ones. Here, we defined several measures in order 

to study and compare sets of MoAs from different views (see further details in supplementary 

material). 

3.1. TSignal 

To quantify the intensity of the response of a MoA and compare it with others, we created a 

measure called TSignal. The TSignal is the average of the output signals of the protein effectors 

(equation in supplementary material).  

3.2. Distance between two sets of MoAs 

We calculated the distance between two or more sets of MoAs in order to determine their 

similarity. For that, we used a modified Hausdorff distance (MHD) introduced by Dubuisson and 

Jain.23  Details of equations are in supplementary material. 

3.3. Potential biomarkers extracted from MoAs 

For HF, MoAs are ranked by their TSignal and split in four quartiles: the first quartile (top 25%) 

contains MoAs with higher intensity of the response (TSignal), which in turn reduces the values 

of the effectors associated with a disease phenotype (we named them as Low-disease MoAs). 

The fourth quartile (bottom 25%) collects MoAs with lower intensity of response (thus, we named 

as High-disease MoAs). On the other hand, for MD, the first quartile (top 25%) contains MoAs 

with higher intensity, which in this case, as an adverse event, it increases the values of the 
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effectors associated to the comorbidity (we name them as High-adverseEvent MoAs). The fourth 

quartile (bottom 25%) collects MoAs with lower intensity of response (thus, we named as Low- 

adverseEvent MoAs). 

We use the comparison between both groups of High- and Low- MoAs to identify the best-

classifier proteins. Best-classifier proteins are those that classify the best between High- and Low- 

groups and are determined by a Data-Science strategy (see supplementary material). Best-
classifier proteins are strongly related to the intensity of a response and are differently distributed 

between High- and Low- MoAs. We only select the 200 proteins (or pair of proteins) reproducing 

with higher accuracy the classification. Assuming the hypothesis that the selected MoAs are 

representative of individual prototype patients, these proteins can be used as biomarkers to 

classify a cohort of patients by the activity or inhibition of the protein.  

Each best-classifier protein has different output signals in the Low- and High- group MoAs and 

the distribution in both sets can be compared. We use a Mann-Whitney U test to compare the two 

distributions of output signals and select those proteins for which the difference is significant (p-
value< 0.01), having an average output signal in Low-HF with opposite sign to the average output 

signal in High-HF (i.e. positive vs. negative or vice versa). We name these as differential best-

classifier proteins. By following this strategy, we can identify two groups of differential best-

classifier proteins: those active in Low-disease (positive output signal in average) and inactive in 

High-disease (negative output signal in average), and those active in High-disease and inactive 

in Low-disease. 

 

Results and discussion 

We applied TPMS to the HPN using as input signals the drug targets of sacubitril/valsartan (NEP 

/ AT1R) and as output signals the proteins associated with Heart Failure (HF) extracted from the 

BED. As described in the methodology, out of all MoAs found by TPMS, we selected 200 

satisfying the largest number of restrictions (and at least 80% of them) to perform further analysis. 

To rank the MoAs according to the intensity of the signal arriving from the drug, we calculated the 
TSignal of every MoA associated with HF and MD, i.e. the average output signal arriving to the 

protein effectors of both pathologies. According to the TSignal of HF and following the procedure 

described in Materials and Methods, we defined two groups of MoAs: Low-HF, containing the 

MoAs with a higher intensity of the response and therefore a healthier phenotype, and High-HF, 

with the MoAs of lower intensity of the response and therefore an increased HF disease 

phenotype. We also calculated the TSignal of MD and define two groups of MoAs: Low-MD, 

producing a reduced adverse effect, and High-MD, producing an increased adverse effect. 

Note that TPMS was only executed once, optimising the results to satisfy the restrictions on HF 

data. The values of MD are obtained by measuring the signal arriving at the MD effectors, which 

are part of the HPN and also receive signal. This procedure was chosen because we treat HF as 

the indication of the drug (sacubitril/valsartan), while MD is a potential adverse effect. 
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In the following sections, we analysed and compared the four groups of MoAs and searched for 

biomarkers that can potentially identify MD as an adverse effect of the drug (and consequently 

classify patients). We used the web server GUILDify v2.015 to analyse the comorbidity of both 

phenotypes and analyse the relevance of the proposed biomarkers in a different context. 

 

1. Analysis of MoAs of high/low intensity response associated to HF 

We ranked the MoAs by the TSignal on HF effectors. Consequently, the MoAs on the set High-

HF corresponds to those with lower signal affecting the effectors of HF, while MoAs on the set 

Low-HF are the opposite. Most of the High-HF models have TSignal between 0.15 and 0.25, while 
for Low-HF TSignal ranges between 0.3 and 0.4 (Supplementary Figure 1a).  

We selected the 200 best-classifier proteins after defining the two groups of MoAs. These are 

defined as the proteins (or pairs of proteins) that can allocate better the MoAs in High-HF and 

Low-HF. Among these proteins, we identified the differential best-classifier proteins. These are 

proteins that have output signals significantly different between Low-HF and High-HF (Mann-

Whitney U test, adjusted p-value<0.01) and for which the average has opposite sign between the 

cohorts (i.e. active in Low and inactive in High or vice versa). We identified two groups of 
differential best-classifier proteins: those active in Low-HF (the average of output signals in Low-

HF MoAs is positive) and inactive in High-HF (the average of output signals in High-HF MoAs is 

negative), and those active in High-HF and inactive in Low-HF. Out of the starting 200 best-

classifier proteins, 45 are differential (6 in the first group and 39 in the second) (see 

Supplementary Table 1). Figure 2a shows a plot for all the proteins in the MoAs and their 

average output signals in the MoAs of Low-HF and High-HF. Most of the proteins with opposite 

signs between the cohorts are found as best-classifier proteins. 

We calculated the Gene Ontology (GO) enriched functions of the differential best-classifier 
proteins that are active in Low-HF MoAs and inactive in High-HF MoAs. The enrichment was 

calculated using the software FuncAssociate.24 Among the enriched functions we find processes 

associated with the SCAR complex, the positive regulation of actin nucleation, the regulation of 

neurotrophin TRK receptor and dendrite extension. We did the same for GO functions of the 

differential best-classifier proteins that are inactive in Low-HF and active in High-HF. We find 

functions such as phosphatidylinositol kinase activity, MAP kinase activity, DNA damage induced 

protein phosphorylation and superoxide anion generation. Although some functions are enriched 

in both sets, such as Fc gamma receptor signalling, the majority of functions enriched in different 
groups of differential best-classifier proteins are different (see Supplementary Table 2). 

Some of the proteins and functions highlighted in the current analysis have been related to 

myocardial function. On the one hand, our differential best-classifier proteins active in Low-HF 

MoAs and inactive in High-HF MoAs point towards an important role for actin nucleation and 

polymerization mechanisms in drug response (reflected by the functions regulation of actin 

nucleation, regulation of Arp2/3 complex-mediated actin nucleation, SCAR complex, filopodium 
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tip, or dendrite extension); in fact, the alteration of actin nucleation and polymerization 

mechanisms has been reported in heart failure.25–27 Interestingly, a role for the activation of 

another differential best-classifier candidate, ATGR2, has been proposed to mediate some of the 

beneficial effects of angiotensin II receptor type 1 antagonists, such as valsartan.28,29 

On the other hand, results for the differential best-classifier proteins inactive in Low-HF and active 

in High-HF point towards the importance of phosphatidylinositol kinase mediated pathways 
(phosphatidylinositol-3,4-bisphosphate 5-kinase activity) and MAP kinase mediated pathways 

(MAP kinase kinase activity, best classifier proteins MAPK1, MAPK3, MAPK11, MAPK12 or 

MAPK13) in response to sacubitril/valsartan; furthermore, both signalling pathways have been 

associated to cardiac hypertrophy and subsequent heart failure.30,31 

 

2. Analysis of MoAs of high/low TSignal associated to MD 

We also ranked the MoAs by the TSignal on MD effectors. We similarly classified MoAs in High-

MD and Low-MD. High-MD involve MoAs with high signal and higher probability to develop the 

adverse effect phenotype, while MoAs on the set Low-MD corresponds to healthier MoAs. TSignal 

ranges between 0.20 and 0.30 for Low-MD models and between 0.35 and 0.45 for High-MD 
(Supplementary Figure 1b). 

We identified the 200 best-classifier proteins to divide MoAs in Low-MD and High-MD. We also 

identified the differential best-classifier proteins active in Low-MD and inactive in High-MD and 

vice versa. As before, we compared the distributions of Low-MD and High-MD output signals of 

the best-classifier proteins and calculate the average of the signal in all MoAs in Low- and High- 

MD. Out of 200 best-classifier proteins, we identified 28 active in Low-MD (inactive in High-MD) 

and 29 active in High-MD (inactive in Low-MD) (see Supplementary Table 3). Figure 2b shows 

the plot for all proteins classified by their average output signal in Low-MD and High-MD models. 

We calculated the GO enriched functions for these groups of proteins (see Supplementary Table 
4). For the first group (Low-MD active / High-MD inactive) we obtain unique functions such as 

dendritic spine development, positive regulation of vascular endothelial growth factor production 

and phosphotyrosine binding. For the second group (Low-MD inactive / High-MD active) we 

observe functions such as dorsal/ventral axon guidance, fibroblast growth factor receptor binding 

and response to toxic substance. Then, phosphatidylinositol bisphosphate kinase activity is 

clearly the enriched function in both groups. 

Some of the proteins and functions highlighted in the current analysis have been related to MD. 
The presence of dendritic spine development related proteins among the differential best-

classifiers proteins (Low-MD active and High-MD inactive) and dorsal/ventral axon guidance 

related proteins among the inverse classifiers (Low-MD inactive and High-MD active)  points 

towards a role for sacubitril/valsartan-associated MD in dendritic and synaptic plasticity 

mechanisms, which have been previously linked to the condition.32 Furthermore, valsartan 

treatment has been reported to promote dendritic spine development in other related 

.CC-BY-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 2, 2019. ; https://doi.org/10.1101/625889doi: bioRxiv preprint 

https://doi.org/10.1101/625889
http://creativecommons.org/licenses/by-nd/4.0/


neurodegenerative diseases, such as Alzheimer’s disease.33 Other functions enriched within the 

differential best-classifier proteins (Low-MD inactive and High-MD active) are implicated in growth 

factor related pathways, which are known to be involved in wet MD pathogenesis.34 Moreover, 

neovascularization in the wet variant of MD has been linked to the signalling of some of the growth 

factors detected as sacubitril/valsartan-associated MD classifiers in this study, including FGF134  

and PDGF35,36. 

 

3. Comparison of MoAs of high/low TSignal associated with HF and MD 

We calculated the modified Hausdorff distance between the sets of MoAs in High-MD, Low-MD, 
High-HF and Low-HF (Supplementary Table 5). It is remarkable that the distances between 

Low-HF and High-HF and between Low-MD and High-MD are larger than the cross distances 

between HF and MD. We used these distances to calculate a dendrogram tree (see 

Supplementary Figure 2) showing that MoAs associated with a bad response of 

sacubitril/valsartan for HF (high-HF) are more similar (i.e. closer) to MoAs linked to a stronger MD 

adverse effect (high-MD) than those corresponding to Low HF and MD. However, by the definition 

of distance (equation 3 in supplementary material), we cannot account for the dispersion among 
the MoAs within and between each group. Therefore, we calculated for each set the mean 

Euclidean distance between all the points and its centre defined by the average of all (see 

Supplementary Table 6). We expect to find common MoAs between different HF and MD-

defined sets, meaning that some MoAs belonging to one of the two HF sets are also found in one 

of the MD sets. 

In order to have a global view of the distance between the MoAs in sets High- and Low- of HF 

and MD, we used the multidimensional scaling (MDS) plot calculated with the MATLAB function 

“mdscale” and the metric scaling “metricsstress” (see Figure 3). MDS plots pairwise distances in 
two dimensions that preserve the clustering characteristics (i.e. close MoAs are also close in the 

2D-plot and far MoAs are also far in 2D). Focusing on Low-HF, depicted in orange, we observe 

that, despite its dispersion, some MoAs are close to High-MD, while others are closer to the Low-

MD set. This implies that the response to sacubitril/valsartan of HF patients, in the best scenario 

when the TSignal of the disease effectors is decreased, it does not necessarily imply an 

improvement on the intensity of MD (i.e. Low-MD). Assuming the hypothesis that different MoAs 

correspond with prototype patients, we can conclude that taking sacubitril/valsartan could 

produce MD in a scarce number of patients. When focusing in the set of High-HF MoAs, we 
differentiate between two clusters of MoAs: one related to the High-MD set; and other MoAs close 

to MoAs in the “Low-MD” set. Assuming that each MoA corresponds with a prototype patient, we 

conclude that for a specific set of patients sacubitril/valsartan does not reduce HF and increases 

the MD TSignal while for others it does not produce MD. Such view of the MoAs of 

sacubitril/valsartan can help us stratify patients depending on the biomarkers that characterize 

the sets of MoAs as seen in previous sections. 
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We calculated the number of common MoAs for High- and Low-HF and High- and Low-MD 

(Supplementary Table 7). High-HF and High-MD have the largest number of common MoAs 

(17), while Low-HF and High-MD have the lowest (9). Focusing on Low-HF, we analysed those 

proteins potentially responsible of MD adverse effect (i.e. High-MD). We analysed the distribution 

of output signals of proteins in common MoAs of Low-HF and Low-MD (Low-HF Ç Low-MD) and 

the distribution of output signals of proteins in common MoAs of Low-HF and High-MD (Low-HF 

Ç High-MD). We selected those nodes (i.e. proteins) with significant differences (using a Mann-

Whitney U test) for which the averages of output signals have opposite signs in both sets (see 

methods in 3.3). Table 1 shows 30 proteins selected, which are the potential biomarkers to 

identify MoAs of High-MD. On the one hand, 16 of them are active in Low-HF Ç Low-MD MoAs 

and inactive in Low-HF Ç High-MD. We note that 15 of these are best-classifier proteins of MD. 

On the other hand, 14 proteins are inactive in Low-HF Ç Low-MD and active in Low-HF Ç High-

MD MoAs, and 12 of them are best-classifier proteins of MD. We calculated the GO enriched 

functions of these two groups, observing that “phosphatidylinositol bisphosphate kinase activity” 

is the function enriched among proteins that are active in Low-HF Ç Low-MD MoAs, while 

“fibrinolysis” is the enriched function among proteins active in Low-HF Ç High-MD MoAs (Table 
2). With this, we conclude that while trying to improve the health of patients for HF, in specific 

patients we may induce MD through the modulation of fibrinolysis (specifically involving 12 best-

classifier proteins that may be considered as good biomarkers for this prognosis). 

In fact, since neovascular MD development is characterized by subretinal extravasations of novel 
vessels derived from the choroid (CNV) and the subsequent haemorrhage into the photoreceptor 

cell layer in the macula region37, it might be reasonable to think that the modulation of fibrinolysis 

and blood coagulation pathways might play a role. The reported implication of some fibrinolysis 

related classifiers, such as FGB, SERPINE1 (PAI-1), and SERPING1, in neovascular MD 

development seems to support this hypothesis.38–40 Moreover, valsartan might be implicated in 

this mechanism, since it has been reported to modulate PAI-1 levels and promote fibrinolysis in 

different animal and human models.41,42 

In addition, the presence of several other MD related classifiers in this list, such as IRS243, 
PTGS244, DCN45 and FGF146, further supports the interest of the classifiers as biomarkers of MD 

development in sacubitril/valsartan good responders.  

 

4. Analysis of comorbidity and potential biomarkers with GUILDify 

We used GUILDify v2.015 to deep on the potential comorbidity between HF and MD. We proved 

in previous works the use of gene-prioritization algorithms to study the mechanisms involved in 

comorbiditites.47 The principle of the approach is that GUILDify v2.0 extends the information of 

disease-gene associations through the PPI network and helps to connect the original associations 

(seeds) through the network. As seeds, we used the effectors of the BED database: 124 seeds 

for HF and 163 seeds for MD. We selected the top 2% nodes scored by GUILDify (i.e. 262 nodes 

.CC-BY-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 2, 2019. ; https://doi.org/10.1101/625889doi: bioRxiv preprint 

https://doi.org/10.1101/625889
http://creativecommons.org/licenses/by-nd/4.0/


for each patho-phenotype, named “top-HF” and “top-MD” respectively). We obtained 36 proteins 

and 19 GO enriched biological processes in common, suggesting the potential relationship of 

both diseases (see more details in Supplementary Figure 3). 

The top scoring nodes selected by GUILDify tend to have an important role on transmitting the 

information of the phenotype through the network. Thus, we used GUILDify to indicate which of 

the differential best-classifier proteins identified by TPMS may have a relevant role in the 
phenotype. We ran GUILDify using the two targets of sacubitril/valsartan (NEP, AT1R) as seeds, 

and selected the top 2% scored nodes (defined as the “top-drug” set). We merged the top scored 

sets of HF, MD and top-drug (“top-drug È top-HF È top-MD”) and studied the overlap with the set 

of differential best-classifier proteins of the MoAs associated with MD and HF. Supplementary 
Table 8 shows the result of this analysis, with a significant representation of best-classifier 
proteins in most of the sets, especially significant on MD best-classifier proteins. In Figure 2, the 

differential best-classifier proteins with higher score can be identified by a larger area. 

Supplementary Table 9 shows the list of 13 proteins involved in this overlap. We have also 

checked the overlap with the 30 biomarkers proposed in the previous section, of which 10 are 

found in the merged set “top-drug È top-HF È top-MD” and are consequently significant (see 

Supplementary Tables 10 and 11). 

Some of these candidates can be functionally linked to both diseases and the drug under study. 

For example, among these 10 classifiers, AGER has been implicated in both HF48, through 

extracellular matrix remodelling, and MD development49, through inflammation, oxidative stress, 

and basal laminar deposit formation between retinal pigment epithelium cells and the basal 

membrane; furthermore, this receptor is known to be modulated by AT1R50, valsartan target. 

Similarly, FGF1 has been proposed to improve cardiac function after HF51, as well as to promote 

choroid neovascularization leading to MD.34 Moreover, FGF1 is regulated by angiotensin II 
through ATGR252, another protein suggested as classifier in the current analysis that is known to 

mediate some of the effects of AT1R antagonists, such as valsartan.28,29 Another candidate, 

NRG1, has been linked to myocardial regeneration after HF53 and is known to lessen the 

development of neurodegenerative diseases such as Alzheimer’s disease54, which shares similar 

pathological features with MD55. NRG1 is also linked to the expression of neprilysin54, sacubitril 

target. ITGB5 has been identified as risk locus for HF56 and its modulation has been linked to 

lipofucsin accumulation in MD57. Interestingly, ATGR1 inhibitors have been reported to modulate 

ITGB5 expression in animal models58. Finally, IL1A has been proposed as an essential mediator 
of HF pathogenesis59,60 through inflammation modulations, and serum levels of this protein have 

been found increased in MD patients.61 In addition, as described in previous sections, classifiers 

FGB, SERPINE1, and SERPING1 have been linked to MD38–40 and are also known to play a role 

in HF development.62–65 

According to these findings, the identified classifiers might represent potential biomarkers for the 

identification of sacubitril/valsartan good responder HF patients at risk of MD development.  
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Limitations 

Although TPMS returns the amount of signal from the drug arriving to the rest of the proteins in 

the HPN, this signal is only a qualitative measure. We are not using data about the dosage of the 

drug or the quantity of expression of the proteins. However, we are already working to make 
TPMS move towards the growing tendency of Quantitative Systems Pharmacology. The 

quantification of the availability of drugs in the target tissue for each patient opens the opportunity 

to have an accurate patient simulation to do in silico clinical trials. 

 

Conclusions 

There is a need of systems biology-based methods to simulate the different responses of a drug 
in patients. The specific case of sacubitril/valsartan stands out because of the amount of 

resources invested in the safety of the drug and the concern on the risk of MD. In this study, we 

apply TPMS to uncover the different MoAs of sacubitril/valsartan over HF and reveal its 

relationship with MD. We hypothesize that all MoAs coexist in cells, but in a population of patients 

some cells may have more proclivity to certain MoAs than others. We define a prototype-patient 

as one with a single MoA for a drug and study the in silico trial of HF treatment with 

sacubitril/valsartan and its potential adverse effect MD. TPMS achieves this by modelling an 
accurate representation of the HPN and applying a Multilayer Perceptron-like and sampling 

method strategy to find all plausible solutions. We found that HF low responder MoAs are more 

associated to MD development at the same time, although good responders are also associated 

to MD. Different sets of proteins have been found to classify the mechanisms according to HF 

and MD response, which include functions such as PI3K and MAPK kinase signalling pathways, 

involved in HF-related cardiac hypertrophy, or fibrinolysis and coagulation processes (e.g. FGB, 

SERPINE1 or SERPING1) and growth factors (e.g. FGF1 or PDGF) related to MD induction. We 

propose 30 biomarkers to identify patients potentially developing MD under the successful 
treatment with sacubitril/valsartan. Out of this 30, we propose 10 biomarkers that have been found 

to be involved in the comorbidity between HF and MD predicted by a different approach 

(GUILDify), including well-known HF and MD effectors also related to the mechanisms of 

sacubitril/valsartan and/or HF, such as AGER, NRG1, ITGB5 or IL1A. 
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FIGURES 

 

 

Figure 1: Scheme of the method, transmitting information over the Human Protein Network (HPN) 

using a Multilayer Perceptron-like and sampling (a). After a given number of iterations, we obtain 

a collection of Mechanisms of Actions (MoA) (b). Rows represent the MoAs and columns the 

output signal values of the proteins (nodes of the network). The final column shows the accuracy 

of the model as a percentage of the number restrictions accomplished and 200 MoAs are selected 

(coloured in the slide) and sorted by TSignal. The first quartile is defined as the Low-disease 

group, and the fourth quartile as High-disease group (c). The distribution of the output signals of 
the two groups of MoA are shown in (d) (High-disease in red and Low-disease is in blue). 

 

 

     (a)                                                                       (b) 
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Figure 2: Scatter plot of the mean signal values of Low-“disease” and High-“disease” MoAs for 

each protein using as disease Heart Failure (HF) in (a) and Macular Degeneration (MD) in (b). 
The average of the output signal of each protein in High-group is presented versus its value in 

Low-group. Differential signals (Diff., shown as triangles) are defined as those with opposite sign 

when comparing High versus Low average, and a p-value < 0.01 when calculating the Mann-

Whitney U test between the two distributions of signals. Best-classifier proteins (BCP) are 
coloured in red, otherwise they are blue. Sizes of markers are proportional to GUILDify score. 

 

 

Figure 3: Multidimensional scaling plot of the distances between the MoAs of the four groups 

defined. Each point represents a MoA. Axes are defined by the most representative dimensions. 
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TABLES 

Table 1: Biomarker proteins, with opposite signal in Low-HF Ç Low-MD and Low-HF Ç High-MD 
MoAs. Highlighted cells correspond to proteins that are part of the Top-HF È Top-MD È Top-
Drug set, the top-scoring proteins according to GUILDify. Columns show: the protein name (as 
UniprotID, gene-symbol and gene-name), the average of the signal in in Low-MD (<LMD>) and  
High-MD (<HMD>) in the selected sets of MoAs and a measure of the strength of the signal in 
both distributions (calculated as √𝑳𝑴𝑫𝒙𝑯𝑴𝑫), the significance (adjusted P-value) ensuring that both 
distributions of signals are different, and whether the protein has been considered best-classifier 
in MD of HF (BCP). 
 

 Uniprot ID Gene 
symbol Gene name 〈𝑳𝑴𝑫〉 〈𝑯𝑴𝑫〉 ,|𝑳𝑴𝑫𝒙𝑯𝑴𝑫| Adjusted P-

value BCP 

1 P02675 FGB Fibrinogen beta chain -0.576 0.814 0.685 1.297E-03 MD 

2 O43639 NCK2 Cytoplasmic protein NCK2 0.620 -0.697 0.657 1.656E-04 MD 

3 P54762 EPHB1 Ephrin type-B receptor 1 0.317 -0.677 0.464 3.669E-04 HF&MD 

4 Q9Y4H2 IRS2 Insulin receptor substrate 2 0.417 -0.465 0.440 8.181E-04 MD 

5 O60674 JAK2 Tyrosine-protein kinase 
JAK2 -0.747 0.249 0.431 1.656E-04 MD 

6 P06241 FYN Tyrosine-protein kinase Fyn 0.591 -0.236 0.373 2.466E-04 HF&MD 

7 P30530 AXL Tyrosine-protein kinase 
receptor UFO 0.392 -0.330 0.360 2.111E-04 MD 

8 Q02297 NRG1 Pro-neuregulin-1, 
membrane-bound isoform 0.672 -0.188 0.355 2.111E-04 MD 

9 P32004 L1CAM Neural cell adhesion 
molecule L1 -0.373 0.309 0.339 1.297E-03 HF&MD 

10 Q05586 GRIN1 Glutamate receptor 
ionotropic, NMDA 1 -0.174 0.620 0.329 1.955E-04 MD 

11 P05230 FGF1 Fibroblast growth factor 1 -0.152 0.688 0.323 8.181E-04 HF&MD 

12 P18084 ITGB5 Integrin beta-5 0.436 -0.236 0.321 2.111E-04 MD 

13 P01583 IL1A Interleukin-1 alpha 0.174 -0.472 0.287 1.955E-04 MD 

14 P10275 AR Androgen receptor 0.349 -0.201 0.265 8.008E-04 MD 

15 P15941 MUC1 Mucin-1 subunit alpha 0.099 -0.652 0.254 6.905E-04 HF&MD 

16 O14757 CHEK1 Serine/threonine-protein 
kinase Chk1 0.436 -0.142 0.248 1.549E-03 MD 

17 P15391 CD19 B-lymphocyte antigen CD19 -0.131 0.357 0.216 8.160E-03 MD 

18 P61981 YWHAG 14-3-3 protein gamma, N-
terminally processed 0.174 -0.236 0.203 2.783E-03 - 

19 Q9Y478 PRKAB1 5'-AMP-activated protein 
kinase subunit beta-1 0.261 -0.142 0.192 5.682E-03 MD 

20 P62158 
CALM1 ; 
CALM2 ; 
CALM3 

Calmodulin-1 
{ECO:0000312|HGNC:HGN

C:1442} 
-0.282 0.107 0.174 9.405E-03 MD 

21 P06748 NPM1 Nucleophosmin 0.261 -0.107 0.167 3.618E-03 MD 

22 O15357 INPPL1 
Phosphatidylinositol 3,4,5-

trisphosphate 5-
phosphatase 2 

-0.261 0.094 0.157 3.618E-03 MD 

23 P17081 RHOQ Rho-related GTP-binding 
protein RhoQ -0.218 0.094 0.143 9.794E-03 MD 

24 P35354 PTGS2 Prostaglandin G/H synthase 
2 0.044 -0.472 0.143 3.669E-04 MD 

25 P42684 ABL2 Abelson tyrosine-protein 
kinase 2 -0.218 0.094 0.143 9.794E-03 MD 

26 Q15109 AGER 
Advanced glycosylation 

end product-specific 
receptor 

-0.267 0.063 0.130 8.160E-03 - 
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27 P07585 DCN Decorin -0.044 0.236 0.101 5.682E-03 MD 

28 P05155 SERPING1 Plasma protease C1 
inhibitor -0.044 0.236 0.101 5.682E-03 MD 

29 P05121 SERPINE1 Plasminogen activator 
inhibitor 1 -0.044 0.236 0.101 5.682E-03 - 

30 P14770 GP9 Platelet glycoprotein IX 0.044 -0.236 0.101 5.682E-03 MD 

 
 
 
Table 2: Top 10 gene Ontology functions enriched from proteins with opposite signal in Low-HF 
Ç Low-MD and Low-HF Ç High-MD MoAs. Functional enrichment analysis from 
FuncAssociate[REF]. 
 

 Low-HF Ç LMD+ HMD- Low-HF Ç HMD+ LMD- Overlapped functions 

 GO name LOD P-val. GO name LOD P-val. GO name LOD P-val. 

1 
phosphatidylinositol-
4,5-bisphosphate 3-
kinase activity 

1.89 0.03600 fibrinolysis 2.51 0.00050 response to 
stimulus 1.19 <0.00050 

2 cellular response to 
UV 1.87 0.04200 negative regulation of 

wound healing 2.13 0.00050 
positive 
regulation of 
transport 

1.24 <0.00050 

3 
phosphatidylinositol 
bisphosphate kinase 
activity 

1.87 0.04200 negative regulation of 
blood coagulation 2.12 0.00850 

positive 
regulation of 
biological 
process 

1.13 0.00051 

4 

vascular endothelial 
growth factor 
receptor signaling 
pathway 

1.86 0.04200 negative regulation of 
hemostasis 2.12 0.00850 

positive 
regulation of 
developmental 
process 

1.18 <0.00050 

5 
positive regulation of 
protein kinase B 
signaling 

1.70 0.01050 negative regulation of 
coagulation 2.10 0.01050 

positive 
regulation of 
cellular 
process 

1.04 0.00294 

6 
negative regulation 
of apoptotic 
signaling pathway 

1.68 0.00050 platelet alpha granule 
lumen 1.96 0.02300 

positive 
regulation of 
response to 
stimulus 

1.04 0.00417 

7 peptidyl-tyrosine 
phosphorylation 1.63 0.01400 

regulation of 
epithelial cell 
apoptotic process 

1.96 0.02300 - - - 

8 
regulation of 
apoptotic signaling 
pathway 

1.63 <0.00050 regulation of blood 
coagulation 1.91 0.02800 - - - 

9 peptidyl-tyrosine 
modification 1.62 0.01400 regulation of 

hemostasis 1.91 0.02800 - - - 

10 protein tyrosine 
kinase activity 1.61 0.01850 regulation of 

coagulation 1.89 0.03450 - - - 
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