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ABSTRACT  

 

Here we introduce CROSSalive, an algorithm to predict the RNA secondary structure profile (double 

and single stranded regions) in vivo and without sequence length limitations. Using predictions of 

protein interactions CROSSalive predicts the effect of N6 adenosine methylation (m6a) on RNA 

structure.  Trained on icSHAPE data in presence (m6a+) and absence (m6a-) of methylation 

CROSSalive achieves an accuracy of 0.88 on the test set. The algorithm was also applied to the murine 

long non-coding RNA Xist (17900 nt, not present in the training) and shows a Pearson’s correlation 

of 0.45 with SHAPE-map data.  CROSSalive webserver is freely accessible at the following page: 

http://service.tartaglialab.com/new_submission/crossalive 
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INTRODUCTION  

 

The in vitro RNA structure differ from that in vivo for the action of interactions such as RNA-binding 

proteins (Livi et al., 2015). The complex mechanisms contributing to the formation of structure in 

vivo are poorly characterized and previous analysis suggests a prevalence of single stranded regions 

for all RNA types (Rouskin et al., 2014), although conservation of double-stranded regions has been 

observed for some non-coding RNAs (Spitale et al., 2015). In the cellular environment RNA 

undergoes a number of modifications such as methylation that can influence the stability and turnover 

of the whole transcriptome (Liu and Jia, 2014). Mettl3 is the key component of the complex that 

methylates adenosine residues at N6 (m6a) and plays a central role in determining RNA structure. 

Indeed, a method of probing RNA structure using the chemical probe NAI-N3, icSHAPE, indicated 

that m6a promotes transition from double- to single-stranded regions (Spitale et al., 2015). Through 

analysis of icSHAPE data, we developed the CROSSalive method for the prediction of RNA 

secondary structure in vivo. One key element of our approach is the use of catRAPID predictions of 

protein interactions to classify single- and double-stranded regions of RNA molecules (Bellucci et 

al., 2011). catRAPID builds on top of accurate RNA structure calculations performed with the 

algorithm RNAfold (Lorenz et al., 2011). 

 

 

METHODS 

 

CROSSalive profiles a RNA sequence computing the corresponding secondary structure in vivo with 

(m6a+) and without methylation (m6a-). The algorithm uses predictions of protein interactions to 

assign single- and double-stranded regions (Spitale et al., 2015): 

•  For the training and testing we selected RNA fragments carrying the central nucleotide with the 

highest (single-stranded; 105 sequences) and lowest icSHAPE reactivity (double-stranded; 105 

sequences). Each RNA fragment contains 51 nucleotides to allow calculations of protein 
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interactions using catRAPID (Bellucci et al., 2011). The nucleotides are represented as 4-mers: 

A = (1, 0, 0, 0), C = (0, 1, 0, 0), G = (0, 0, 1, 0) and U = (0, 0, 0, 1).  

• The catRAPID approach uses a phenomenological potential that exploits RNAfold algorithm to 

provide accurate information on RNA structure (Bellucci et al., 2011). 7797 regions from a 

library of 640 canonical RNA-binding proteins (Agostini et al., 2013) were analyzed to identify 

those able to discriminate nucleotides in single and double-stranded state with an accuracy > 0.6 

(m6a+: 228 regions; m6a-: 206 regions).  

• The dataset is enriched for proteins with gene ontology (Klus et al., 2015) related to RNA 

structure (double- and single-stranded RNA binding; helicase activity; m6a+: 101 regions; m6a-

: 81 regions; Supplementary Data). The Youden cut-off was computed on the catRAPID scores 

for each protein in the dataset. Scores above the cut-off were set to 1 (0 otherwise).  

• Neural networks (m6a+ and m6a-, with and without protein contributions) were trained using the 

architecture described in our previous publication for icSHAPE in vitro data prediction (Delli 

Ponti et al., 2017) and cross-validated against each other (Supplementary Data). Each RNA 

fragment is assigned a score between -1 (high propensity to be single-stranded) to 1 (high 

propensity to be double-stranded).  

 

 

RESULTS 

 

CROSSalive scores were ranked by their absolute value and equal groups of positives and negatives 

were selected to assess the overall performances of the algorithm. From low (50%) to high-confidence 

(HC) scores (1%, Figure 1A) the accuracy of all the models increases monotonically reaching a 

maximum of 0.86 for the m6a+ one when protein interactions are used (10-fold cross-validation, CV). 

In comparison, the in vitro icSHAPE model based on RNA sequence information only (Delli Ponti 

et al., 2017) discriminates single- and double-stranded regions with a 0.88 accuracy (10-fold CV on 

1% HC scores). The m6a- in vivo model shows lower accuracy (0.74 in 10-fold CV on 1% HC scores) 
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most likely because m6a removal affects the quality of the training set by altering the stability and 

turnover of the transcriptome (Liu and Jia, 2014). We applied CROSSalive to an independent in vivo 

SHAPE-Map experiment (Smola et al., 2016) on the long non-coding Xist (17900 nt; not in the 

training). We used the in vivo m6a- model because Mettl3 is poorly abundant in the trophoblasts (Thul 

et al., 2017) employed in SHAPE-Map and only few nucleotides are methylated at the 5’ and 3’ of 

Xist (Patil et al., 2016). CROSSalive profile shows a correlation of 0.45 with the SHAPE-Map one 

(Figure 1B). The algorithm achieves an Area under the ROC curve (AUC) of 0.83 on the 15% HC 

single- and double-stranded regions ranked by SHAPE reactivity. By contrast, the m6a- model trained 

on RNA sequence information only achieves an AUC of 0.53. 

 

 

Figure 1. CROSSalive performances. (A) 10-fold cross validation for each specific algorithm (in vitro, in 

vivo m6a+, in vivo m6a-) with the same training and testing conditions (balanced training set, filtering out 

sequence redundancy). The accuracies are reported for the scores ranked by their absolute value (same 

number of positives and negatives were selected), where 50% is the complete set (median). Integrating 

predictions with protein interactions improves the accuracy. (B) Secondary structure profile of Xist using 

m6a- model. Known repetitive regions of Xist such as Rep A and Rep C are reported to be very structured 

(i.e. score > 0). The predicted profile has an overall correlation of 0.45 with in vivo SHAPE data. In the top 

right we report the ROC curve of CROSSalive on the top and bottom 15% ranked SHAPE data (AUC of 

0.83). 
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CONCLUSIONS 

 

By using sequence-based information, CROSSalive profiles the RNA secondary structure in vivo. The 

use of different models (in vivo / in vitro, m6a+ / m6a-) could help to identify structural regions to 

investigate experimentally. As previously done with CROSS (Delli Ponti et al., 2017), CROSSalive 

can be integrated as a constrain in thermodynamics-based approaches such as RNAfold, which will 

allow study structural differences of RNAs in vivo and in vitro (Lorenz et al., 2016).  
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Supplementary Figure 1. Cross-validation between neural networks trained on strong signal 

100’000 icSHAPE fragments (equal size groups). The accuracy is reported for the 5% highest 

confidence set. Each comparison is done against the other datasets. 

 

Supplementary Figure 2. Pipeline summarizing the process of filtering for protein contributions for 

m6a+ data. 

 

Supplementary Figure 3. Pipeline summarizing the process of filtering for protein contributions for 

m6a- data. 

 

Supplementary Figure 4. Distribution of in vivo minus in vitro icSHAPE scores along the entire 

murine transcriptome. Several regions are highly-variable, showing drastic changes from double- to 

single-stranded in vivo (score>0.5; d->s), or from single- to double-stranded (score<-0.5; s->d). 
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