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Abstract

Significant progress has been made in applying deep learning on natural language
processing tasks recently. However, deep learning models typically require a large
amount of annotated training data while often only small labeled datasets are available
for many natural language processing tasks in biomedical literature. Building large-size
datasets for deep learning is expensive since it involves considerable human effort and
usually requires domain expertise in specialized fields. In this work, we consider
augmenting manually annotated data with large amounts of data using distant
supervision. However, data obtained by distant supervision is often noisy, we first apply
some heuristics to remove some of the incorrect annotations. Then using methods
inspired from transfer learning, we show that the resulting models outperform models
trained on the original manually annotated sets.

Introduction 1

In recent years, deep learning has achieved notable results in several fields, and there is 2

growing interest in applying deep learning for new tasks. With the explosive growth of 3

text in the biomedical literature, applying natural language processing (NLP) 4

techniques and deep learning to this field has attracted considerable attention. Relation 5

extraction (RE) plays a key role in information extraction and aids the database 6

curation for many disciplines [1] [2] [3]. The RE task is to identify relations between 7

entities mentioned in natural language texts and its importance in biomedical domain 8

stems in large part due to the fact that manual curation lags behind the growth in 9

biomedical research literature. Developing high-performing systems to automatically 10

extract relations from text is critical, and filling an important need. 11

There has been considerable effort invested in the extraction of different relations in 12

BioNLP. It is fairly typical to cast relation extraction as a binary classification problem: 13

where an instance comprising of a sentence and entities mentioned in the sentence are 14

annotated as positive or negative depending on whether that sentence expresses a 15

relation of interest among the marked entities. Many traditional (non-deep learning) 16

machine learning methods have been applied on these problems (see e.g. [4] [5] [6] [7]) 17

with most of them being feature-based or kernel-based methods. However, 18
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features/kernels have to be manually designed and their performance are not up to par 19

with deep learning models when there is sufficient data. 20

Recently, deep learning methods show great advancement in various NLP tasks. 21

Convolutional neural network and recurrent neural network are two well-studied types 22

of deep learning architecture in NLP field. Promising results have been achieved by 23

CNN model [8] [9] and current state-of-art CNN systems on relation extraction usually 24

utilize refined architecture to incorporate more lexical and syntactic information. In [2], 25

they applied piecewise max pooling process after convolutional layer to extract the 26

structural features between the entities. The proposed method (piecewise CNN) 27

exhibits superior performance compared with pure CNN. Peng et al. [10] proposed 28

multiple channels in CNN to incorporate the syntactic dependency information and 29

better capture longer distance dependencies. Also, RNN model shows its advantage on 30

relation extraction, the model in [11] achieves state-of-the-art results on protein-protein 31

interaction (PPI) task only using the word embedding as the input of LSTM model. 32

However, each new task requires its own annotated data for training the deep 33

learning model. The annotation process of data needs considerable human effort to put 34

a label on each data instance and often requires domain expertise, especially in 35

specialized fields like Biomedicine. This issue is particularly onerous with deep learning 36

since the models require setting of a large number of parameters and hence typically 37

require large datasets. Currently, only small datasets are available for a number of tasks 38

and this situation can hinder us from achieving the full potential of deep learning 39

models. In order to alleviate the data limitation problem, Mintz et al. [12] first 40

introduced the terminology of distant supervision (DS) and applied this technique to 41

generate a large dataset for Freebase relation extraction, which assumes that a piece of 42

text (often a sentence) expresses a relation between entities if these entities are related 43

according to a known knowledge base. Before that, Craven et al. [13] already used the 44

relation instances (tuples) gathered from some databases to label abstracts gathered 45

from Medline, which pioneered the distant supervision method. Since then, distant 46

supervision has been applied on many NLP tasks. Go et al. [14] applied distant 47

supervision to automatically classify the sentiment of Twitter messages, and Surdanu et 48

al. [15] used distant supervision approach for the TAC-KBP slot filling task. In the 49

biomedical field, distant supervision has also been proven to be effective on extracting 50

protein subcellular localizations [7] and microRNA-gene relations [16]. In the case of 51

RE, distant supervision can be used to automatically obtain large training datasets 52

using a knowledge base and large amounts of literature. 53

Noise in the labeling from distant supervision is a well-known problem and this 54

labeling problem can adversely affect the performance of deep learning models [17]. To 55

reduce the noise, many techniques have been proposed and the results show their 56

effectiveness on the improving performance of DS-based models. One solution is to relax 57

the originally strong assumption of DS, which assumes that all mentions of entity pair 58

from the knowledge base express that relation. Riedel et al. [18] proposed the 59

at-least-one assumption, which assumes at least one relation expression for entity pair 60

from the DS holds, and built a multi-instance single-label model based on the DS data 61

to reduce the noise. Then the work of [19] and [20] extended it to multi-instance 62

multi-label model, which allows more than one label for each entity pair mention. At 63

the same time, many other methods have also shown their advantages of reducing noise 64

in DS data. Zheng et al. [7] introduced a threshold for the frequency of dependency 65

paths among positive examples to filter out noisy examples. A novel generative model 66

that directly models the heuristic labeling process of distant supervision was presented 67

in [21]. Min et al. [22] proposed algorithm that learns from only positive and unlabeled 68

data to alleviate the incomplete knowledge base problem. In the paper [23], the authors 69

applied three heuristics (closest pairs, top trigger words, high-confidence patterns) to 70
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reduce the noise in the generated data, and demonstrated the improvement on 71

performance. Like [23], we explore the behaviors of machine learning model on different 72

DS-generated datasets with different noise reduction heuristics. Next, we will design 73

methods to train models that use two data sets, the DS-obtained data and manually 74

annotated (MA) data. Normally, DS data has been used by itself and not in 75

combination with manually annotated data. In this work, we consider transfer learning 76

for this purpose. Transfer learning is a technique where a model (often called the source 77

model) developed for a task is reused as the starting point for training a second (target) 78

model on another related task [24]. The hypothesis is that since the target model starts 79

with learned knowledge from the source model, it will achieve better performance than 80

the models trained from a random start. Transfer learning is proven to be effective to 81

improve the performance (see, for example [25] and [26]). It has been applied on many 82

tasks in natural language processing with good effect [27] [28]. 83

In this work, we will test our methods using two well-known relation extraction tasks 84

in biomedical field. The first is the protein-protein interaction extraction task [29], 85

probably the most widely-studied relation extraction task in the BioNLP domain. Our 86

experiments on this task use AIMed [30], a widely used benchmark corpus. To verify 87

that our results generalize beyond this task, we consider second task; one of extracting 88

protein subcellular localization task (PLOC) [31], which had previously been a focus of 89

DS research in the BioNLP domain. The amount of human-labeled datasets available 90

for this task is small and might not be sufficient for training deep models. We will 91

evaluate our methods for this task on a recently available human-annotated corpus – 92

LocText [32]. Also, for learning we consider previously proposed methods that have 93

been successfully used for RE: we choose the piecewise CNN (PCNN) model [2] from 94

CNN models and pick LSTM-based model proposed by [11] from RNN models. 95

We have conducted experiments to address different questions regarding the use of 96

DS-data to augment manually annotated data. The first set of experiments consider 97

developing DS data and training models on the raw DS data as well as after applying 98

noise-reduction technique on the raw data. We also consider training models on the 99

manually annotated data. Thus, we obtain three sets of models give us baselines whose 100

performance provides context to compare and interpret the results of the next two sets 101

of experiments. 102

The second set of experiments focus on the main concern of this work: using 103

DS–derived data to augment manually annotated data to obtain larger amounts of 104

training sets with the hopes of achieving better performance of deep learning models. 105

Our next set of experiments considers alternate ways of using DS-derived and manually 106

annotated data. We evaluate the effectiveness of trained models using a simple 107

combination of the two data sets as well as by using two different ways of applying 108

transfer learning. 109

Our motivation in this work is to supplement manually labeled data especially when 110

it might not be sufficient for effectively training deep neural models. In our final set of 111

experiments, we try to experimentally determine how much DS-derived data can 112

compensate for small size of manually labeled data. Therefore we vary the size of the 113

manually labeled data and see how the performance changes with the size of the 114

manually annotated data set. 115

Materials and Methods 116

Experiments Conducted 117

In this section, we conduct several experiments to build and evaluate models based on 118

DS data and manually annotated (MA) data. As mentioned earlier, we test our 119
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methods on two tasks, the protein-protein interaction task and the protein subcellular 120

location task. The details of the development of the DS data for both tasks and the use 121

of existing manually annotated benchmark sets for training and evaluation are discussed 122

later in this section. We use two ways to combine these two types of data: pure data 123

augmentation and transfer learning. In addition, we also explore the effect of using 124

reduced amount of MA data after acquiring a large-sized DS-labeled dataset. 125

Developing DS-trained Models 126

We start off by investigating how well the models trained on only automatically derived 127

DS data. In [23], the logistic regression model performs better on noise-reduced DS data 128

(DSNR). We conduct a similar exercise using the noise-reduction heuristics in 129

conjunction with our deep learning models. Specifically, we will train the deep learning 130

model on DS-obtained dataset, test the model on manually annotated data and then 131

apply the same process on datasets obtained after applying different heuristics. 132

The human-labeled data for the two tasks can also be used to train the models. 133

These models will also be evaluated on these labeled sets using 10-fold cross-validation. 134

The models discussed here, i.e., the ones trained on DSO (original DS data), DSNR and 135

MA can serve as our baseline models to evaluate the models discussed in the next 136

subsection. 137

Using DS and MA Data 138

After obtaining DS-labeled datasets, an obvious question is to consider how to combine 139

it with the manually annotated dataset. The most straightforward way to combine two 140

datasets is to simply take the union of DS data and MA data, and we will use it as a 141

baseline here. We will also employ transfer learning as discussed below to combine 142

DS-obtained and MA data in this paper. 143

Transfer learning focuses on storing knowledge gained while solving one problem and 144

applying it to a different but related problem and has been proven effective for deep 145

learning. Typically, a learned model for a task is used as a pre-trained source model and 146

then used as a starting point for training on a dataset for a related task. In this paper, 147

we will pre-train the model on (noise-reduced) DS datasets, then fine tune the model on 148

MA training set to further adjust the parameters of the model. As we explained 149

previously, the source model of transfer learning is a model from a similar task. Given 150

the DS data may not exactly meet the guidelines used in developing the MA corpus, we 151

can take the two as representing training data for closely related tasks. 152

In the pre-trained model, the learned knowledge of data stores in the hidden layers’ 153

weights. These weights mean convolution filter (feature map) weights and the fully 154

connected layers weights for CNN model, meanwhile mean recurrent cell weights and 155

the fully connected layer weights in RNN model. Since the fully connected layer weights 156

play the role of classifying the label of instance based acquired features in theory, 157

convolution filter weights and recurrent cell weights contain the most important 158

information learned from pre-training data. In this paper, we do not eliminate fully 159

connected layers weights directly, since their functionality is not well studied. Instead, 160

we design two options for transfer learning: 1). only transfer the convolution filter 161

weights/recurrent cell weights; 2). transfer both convolution filter weights/recurrent cell 162

weights and fully connected layer weights. 163

Fig 1 shows the pipeline of transfer learning model. When we use manually 164

annotated data in both training and test process, we will perform cross validation to 165

obtain the final results. 166
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Fig 1. Pipeline of transfer learning model on both DS data and
human-labeled data.

Impact of Size of MA Training Data 167

The motivation for distant supervision is to have improved performance when there is 168

only a limited amount of human-labeled data. Thus, it is worth examining the impact 169

of the size of manually annotated data on the performance. For this set of experiments, 170

we obtain transfer learning models pretrained on DS data and then use different sizes of 171

manually annotated data to evaluate the dataset size effect. Specially, we will utilize 172

25%, 50% and 75% of the manually annotated data in the transfer learning training 173

process to evaluate the performance of models. 174

Experimental Setup Choices 175

Neural Network Architectures 176

We have used both a CNN-based model as well as a RNN-based model in our 177

experiments. The architectures were proposed in [2] and [11] respectively and shown to 178

obtain excellent results. 179

In this section, we will briefly introduce the architecture of PCNN and LSTM model. 180

Usually, the CNN model for classification problem contains: 1). convolution layer(s) to 181

detect the local features; 2). pooling layer(s) to summarize the local features; 3). fully 182

connected layer(s) to classify each category; 4) a softmax layer to output a normalized 183

probability of each category. Fig 2 shows the structure of piecewise CNN model. 184

Fig 2. Structure of Piecewise CNN model.

The PCNN model is different with regular CNN models, whose max pooling is 185

operated piecewisely based on the location of the entities in the sentence in order to 186

include more structural information between the two entities. In this model, we divide 187

the sentence into three parts using the entities as the segment points, and apply max 188

pooling on these three parts separately. Let us take this sentence ”We report an 189

interaction between the human PS1PROTEIN or PS2 hydrophilic loop and 190

Rab11PROTEIN , a small GTPase belonging to the Ras-related superfamily” as an 191

example, we will do maxing pooling on three parts: ”We report an interaction between 192

the human PS1PROTEIN”, ”or PS2 hydrophilic loop and Rab11PROTEIN”, and ”a 193

small GTPase belonging to the Ras-related superfamily”. In this way, we will obtain 194

three outputs for each sentence after max pooling and then we concatenate these three 195

outputs as the output of max pooling. 196

Meanwhile the LSTM model has: 1). a embedding layer to generate the input 197

sequence; 2). two recurrent layers (forward and backward) to model the sequence data 198

in bidirectional way; 3). fully connected layer(s) to classify each category; 4). a softmax 199

layer to output a normalized probability of each category. In Fig 3, we give the 200

structure of LSTM model. 201

Fig 3. Structure of LSTM model.

Input Representation 202

In this paper, we first represent each word by a word vector and then put all the word 203

vectors in the same order with the sentence as our model input. 204
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In this work, we found that both models perform better if we included more 205

information about the input than what was included in the original papers. Specifically, 206

we included in addition to the word embedding, POS tag, entity type, relative distance 207

to two entities (see below), and incoming dependency relation in the word 208

representation. The original PCNN model [2] only used word embedding and positional 209

embedding (relative distance to two entities) to represent each word, while the LSTM 210

model [11] only utilized word embedding of the sentence sequence as the input vector. 211

In this paper, we use the word embedding pre-trained on the PubMed using 212

skip-gram model [33]. The dimension of each word embedding vector is 200. For POS 213

tag and incoming dependency, we extract this information from the parse results of 214

Bllip parser [34] and covert them to unique 10-dimension vectors. The relative distance 215

to entities (to entity 1 (d1) and to entity 2 (d2)) is calculated by counting the words 216

between the target word and the entities and the distance will be marked as negative if 217

a word appears at the left side of the entity. After acquiring the distance numbers, we 218

will map each number to unique 5-dimension vector. From the perspective of entity 219

type, all the words in a sentence could be divided into four types: ENTITY1, 220

ENTITY2, ENTITY, O. ENTITY1 and ENTITY2 are the two interacting entities, 221

ENTITY is used for the other entities in the sentence, and O stands for other words. 222

We use one-hot vector to represent to this feature. 223

Parameter Choices 224

We implement the models with Tensorflow, the maximum length of sentence is set to 225

100, which mean the longer sentences are pruned and the shorter sentences are padded 226

with zeros. The learning rate is 0.001 for PCNN model. Also, we apply decayed learning 227

rate on PCNN with 0.95 decay rate and 1000 decay steps. For LSTM, we utilize 228

constant learning rate of 0.001. We also apply dropout in these two models with drop 229

rate of 0.5 on convolution/recurrent layer(s), and drop rate of 0.2 on dense layers. The 230

training epoch is 30 for the DS and mixed data (DS+MA) for both models, which is the 231

compromise of between the performance on mixed data and training time (more 232

training epochs achieve slightly better results but need longer training time). The 233

training epoch on MA data and transfer learning MA data is 200 for PCNN and 100 for 234

LSTM (LSTM is trained with less epochs since it needs more time to train). Plus, the 235

window size for PCNN is 3. 236

Distant Supervision 237

We now discuss the knowledge database and biomedical text source to generate the 238

distantly labeled data automatically. 239

For PPI task, we use IntAct database as the interacting protein pairs database, 240

which is a freely available, open source database system for molecular interaction 241

data [35]. We choose UniProt database [36] as our distantly supervised database for 242

protein subcellular localization relation, which is a freely accessible resource of protein 243

sequence and functional information. 244

Medline contains abstracts for biomedical literature from around the world and it is 245

our first choice of text source, we use it for protein subcellular localization task by 246

randomly sampling 30,000 abstracts that contains at least one pair of protein and 247

subcellular location within one sentence. As it is shown in [23], it gives us a skewed 248

dataset for the PPI task– positive/negative ratio is 1: 7.4. In order to acquire more 249

balanced positive and negative instances for PPI, we just use the literature found in the 250

IntAct database as our text source (Positive:Negative=1:1.5). 251
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Noise Reduction Heuristics 252

Distant supervision labeling process is noisy. It can generate false positive instances 253

since it will always label the sentences with two entities stored in the known relation 254

database as positive regardless of what the sentence says. For example, the sentence 255

”The interaction between bICP0 and IRF7 correlates with reduced trans-activation of 256

the IFN-beta promoter by IRF7.” will be wrongly labeled as positive by DS even 257

though there is no relation between these two highlighted entities. Also, distant 258

supervision can introduce false negative instances due to the incompleteness of the 259

relation database being used. For instance, DS will label the sentence ”RFX5 260

specifically interacts with histone deacetylase 2 (HDAC2) and the mammalian 261

transcriptional repressor (mSin3B), whereas RFX1 preferably interacts with HDAC1 262

and mSin3A.” as negative by mistake, but it is obviously positive. 263

We considered a number of heuristics that have been proposed for DS noise 264

reduction. We eventually decided to use the ones chosen in the work of [23], as it 265

obtained good results. These heuristics are Closest Pairs (CP) and Trigger Words (TW) 266

heuristics applied on the positive instances and High-confidence Patterns (HP) heuristic 267

applied on negative instances. 268

We find that the definition of trigger word in the original paper is the ’verb’ that 269

expresses the relation between two entities, but the related two entities do not have 270

verbal trigger word in many cases in PLOC task. So we only apply heuristic CP on 271

positive instances for the PLOC task. Since we only apply two heuristics on PLOC DS 272

dataset, we further filter out the noise by choosing the top 20 location names based on 273

their frequency. 274

Evaluation Sets 275

AIMed [30] is a widely used benchmark dataset for PPI task, we will use it as our 276

evaluation set for PPI. LocText corpus [32] will be our evaluation set for PLOC task, 277

which is a well annotated dataset with tagtog tool [37]. Please see the last row of 278

Table 1 for the statistics of these two corpora. 279

PPI PLOC
Dataset Positive# Negative# Dataset Positive# Negative#
RAW 54,170 82,517 RAW 19,654 32,254
CP 38,644 82,517 CP 15,519 32,254
HP 54,170 77,559 HP 19,654 30,206

CP+TW 25,294 82,517 CP+TW - -
CP+HP 38,644 77,559 CP+HP 15,519 30,206

CP+TW+HP 25,294 77,559 CP+TW+HP - -
AIMed 1,000 4,834 LocText 351 338

Table 1. DS data and test data statistics. Baseline: original DS-labeled data
without any heuristic; CP: Apply closest pair heuristic on DS data; HP: Apply
high-confidence pattern heuristic on DS data; CP+TW: Apply closest pair and trigger
word heuristics on DS data; CP+HP: Apply closest pair and high-confidence pattern
heuristics on DS data; CP+TW+HP: Apply closest pair, trigger word and
high-confidence pattern heuristics on DS data.

Corpus Creation 280

In this section, we will introduce the creation of different DS datasets for each task. 281

Given required knowledge base and text source for distant supervision, the last thing we 282
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have to consider is to label all the entity names (protein and subcellular location names) 283

in the biomedical literature. 284

For protein names, we utilize the output of GNormPlus [38], which is an end-to-end 285

system that detect gene/protein names. For the subcellular location names, we use 286

location names from UniProt as a dictionary to match the mentions in the Medline text. 287

The first row in Table 1 shows the number of positive and negative instances we 288

used for DS data for the two tasks. The next 5 rows show the size after applying 289

different heuristics and their combinations. 290

Results and Discussion 291

Throughout this section, we use precision, recall, F1 score as measurement to evaluate 292

the performance of deep learning models. 293

Models Trained on DSO, DSNR and MA Corpora 294

Although we differ from [23] in the choice of models which used Logistic Regression and 295

Naive Bayes, we observe the same type of patterns when using the noise-reduction 296

heuristics to filter the raw DS set (DSO). Other than some minor differences (e.g. 297

precision of CP+TW+HP), the performance of the deep learning models are noticeably 298

higher here. 299

The model built on noise-reduced DS data should achieve better performance as the 300

heuristics on positive and negative will improve the precision and recall respectively. 301

The noise in positive instances will make the model predict the negative ones as positive, 302

so removing noise in positive instances will bring false positive rate down – precision 303

improves. The noise in negative instances will lead the model to predict the positive 304

ones as negative, so reducing noise in negative instances will make false negative rate 305

decrease – recall increases. 306

Fig 4 shows the results of learning of the two types of neural network architectures 307

on the two tasks. As is to be expected, precision improves with the use of CP, with the 308

increase most noticeable in the PPI task case. Despite the drop in recall in LSTM-PPI 309

combination, the F1 score improves in all four cases. 310

Fig 4. Performance of models built on DS data.

Next, the application of TW is considered and the expected increase in precision is 311

noticed in both PPI graphs. As we discussed before, it is not proper to apply TW 312

heuristic on PLOC dataset. In the PLOC case, we only see the improvement of 313

precision on the use of CP heuristic. 314

As expected, the addition of HP boosts the recall in all four cases. Thus, we see that 315

the addition of these noise-reduction heuristics helps boost the performance with F1 316

score showing an increase of 4% to 18%. In fact, in the case of PCNN on the PPI data, 317

the performance on AIMed with no supervised learning is comparable to leading results 318

obtained previously prior to the use of neural network models [10]. While the PCNN 319

model obtains better results on the PPI task, the LSTM-based model performs better 320

on the PLOC task, when trained on DS (with noise reduction) data. 321

Finally, we report the results for the same four combinations but this time using 322

manually annotated data for training. As noted earlier, these results are based on 323

10-fold cross validation on the manually annotated sets for the two tasks. Row 324

ModelMA of Table 2 and Table 3 shows the performance of the regular supervised 325

learned models. Notice that the PCNN model achieves better F1 scores due to better 326

recall results for both tasks, although the LSTM model has higher precision. Supervised 327
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learning on MA data improves the F1 score between 13% to 24% over noise-reduced DS 328

trained model. 329

PCNN LSTM
Model Precision Recall F score Model Precision Recall F score

ModelDSNR 49.7 66.3 56.8 ModelDSNR 50.7 50.1 50.4
ModelMA 75.6 76.1 75.8 ModelMA 78.1 69.7 73.7
ModelMix 65.0 68.2 66.5 ModelMix 64.2 54.9 59.2

ModelTL CON 76.7 79.3 78.0 ModelTL REC 78.3 74.5 76.4
ModelTL ALL 77.1 81.2 79.1 ModelTL ALL 78.9 74.7 76.8

Table 2. Results of deel learning models on PPI. ModelDSNR : model built on noise-reduced DS data; ModelMA:
model built on manually annotated data (AIMed for PPI and LocText for PLOC); ModelTL CON : transfer learning using
only the convolutional features; ModelTL REC : transfer learning using only the recurrent cell features; ModelTL ALL :
transfer learning using all the pretrained parameters. 10-fold cross validation is performed in these experiments.

PCNN LSTM
Model Precision Recall F score Model Precision Recall F score

ModelDSNR 65.9 46.5 54.5 ModelDSNR 63.5 57.6 60.4
ModelMA 74.1 83.8 78.6 ModelMA 76.0 70.5 73.2
ModelMix 71.4 69.9 70.6 ModelMix 72.7 63.7 67.9

ModelTL CON 75.3 82.1 78.6 ModelTL REC 79.2 78.3 78.8
ModelTL ALL 76.1 84.9 80.3 ModelTL ALL 80.3 78.4 79.4

Table 3. Results of deep learning models on PLOC.

Combining DS and MA Data 330

This subsection is concerned with the core question of this work: how much 331

improvement can we obtain by augmenting manually annotated data with (noise 332

reduced) DS data. Table 2 and 3 show the results of various models. The first two rows 333

in both tables are not based on the use of the combined data but instead repeat the 334

results from previous subsection and provide the context for the new results using 335

combined training data. The first row corresponds to the model ModelDSNR obtained 336

by training on noise-reduced DS data, whereas the second row corresponds to the model 337

ModelMA obtained by training on purely manually annotated data. As mentioned 338

earlier, the pure data combination is the simplest way to utilize these two datasets, and 339

hence we first consider the union of human-labeled data and (noise reduced) DS data. 340

The third row of Table 2 and 3 shows the performance of the resulting trained models, 341

designated ModelMix. The drop in the performance observed by comparing the second 342

row suggests that simply taking the union of the instances on the two data sets may not 343

be an appropriate way of augmenting the manually annotated data. Both precision and 344

recall drop in all four cases. We hypothesize that the drop in performance might be due 345

to some remaining noise in the DS data and/or that there might be some additional 346

constraints in the manual annotation guidelines that might not be captured in the DS 347

data. 348

Another way to combine the DS and human-labeled data is to use those pre-trained 349

models as initial points, then further train the neural network models on manually 350

annotated dataset, i.e. transfer learning. We have explored two options for transfer 351

learning: 1). TLCON/REC : transfer learning with only convolution filter weights or 352

recurrent cell weights; 2). TLALL: transfer learning with all the weights of pre-trained 353
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model. The performance of these models trained in these manners is also shown in 354

Table 2 and Table 3. 355

These two tables shows that both transfer learning models perform better than the 356

models built on DS-labeled data as well as human-labeled dataset (AIMed and 357

LocText). In fact, as hoped, the performance exceeds that of all other models, and 358

obtains the best results ever. This implies that the deep learning models learn the 359

knowledge in both DS and human-labeled data, and even though there may still be 360

noise in DS data, the transfer learning process utilizes the human-labeled data to 361

remedy the mistakes before and lead the learning in right direction in the second phase 362

of model training. Thus, transfer learning is an effective way to make the best of DS 363

labeled data and limited human-annotated data. 364

For the two options of transfer learning, we notice that the way of transferring all 365

weights of pre-trained model obtains slightly better results overall. Thus, transferring 366

all weights is our default way of transfer learning in our following experiments. 367

Effect of Human-labeled Dataset Size 368

Any potential gains of the data augmentation method are more meaningful when the 369

amount of available human-labeled dataset is not large. However, this is also a situation 370

where any noise in DS derived data discrepancy between it and human-labeled data 371

might hamper the effectiveness of data augmentation with DS data. This motivated the 372

third set of experiments where we use noise-reduced DS data (and transfer learning) in 373

conjunction with 25%, 50%, 75% of the human-labeled data in the model training 374

process. 375

Fig 5 shows the F1 score corresponding to different sizes of human-annotated data, 376

where 90% case corresponds to the results from previous subsection. The performance 377

of the model obtained using transfer learning is shown and compared with those 378

obtained with just the human-annotated (of the same size) data and with DS data. For 379

example, training on 25% of AIMed data on the PPI task, the transfer learning method 380

enables us to improve the performance by 10.6% and 22.2% using PCNN and LSTM 381

respectively over the models of training on corresponding size of human-labeled data 382

alone. We believe this shows reasonably good performance can be achieved with just 383

25% of manually labeled data using transfer learning, especially compared to using 384

manually labeled data alone. Notice that with 25% of the data, the performance of the 385

model trained on manually labeled data is worse than the model trained using DS data 386

alone. The improvement using transfer learning narrows as the size of the 387

human-labeled data increases. Improvement is also seen on the PLOC data, although 388

the improvement is less than what was obtained for the PPI task. These results show 389

that transfer learning and data augmentation approach always improves over the 390

training on manual data alone, with the larger improvement shown when the size of 391

human-labeled data is smaller, i.e., when there is limited human-labeled data, a 392

situation which motivates this work. 393

Fig 5. Trend of F score with different size MA data in transfer learning.
MA F score means the F score acquired from models built on MA data only; TL F score
means the F score acquired from models built on transfer learning; DS F score means
the F score acquired from models built on DS data.

Fig 6 additionally presents the precision and recall numbers for more detailed 394

analysis. For the PPI task with smaller amount of human-labeled data, most of the 395

gains of transfer learning over just human-labeled data training are due to improvement 396

in recall, although for LSTM-based model, the gains in precision are also substantially 397
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resulting in higher F1 score gain. With PLOC case, the gains in precision and recall are 398

noticed.

Fig 6. Size effect of human-labeled dataset. The number on each bar stands for
the difference between None Transfer Learning and Transfer Learning model. Positive
number means Transfer Learning improves the metric, while negative number means
Transfer Learning deteriorates the metric.

399

Conclusion 400

In order to improve the performance of deep learning models on small datasets, we have 401

considered augmenting them with automatically obtained datasets using distant 402

supervision. We show that some heuristics can be used to alleviate the well-known noisy 403

annotation issue with distant supervision. Improvement of performance of both PCNN 404

and LSTM models on both tasks is obtained. 405

Two methods of utilizing both DS data and manual data are discussed. Mixing DS 406

data and human-labeled data to obtain the training data for deep learning model is the 407

simplest way to combine data, but the performance does not show improvement over 408

using human-labeled data alone. However, we show that the mechanism of transfer 409

learning provides much better results than either of these two types of data individually. 410

We also explore the feasibility of reducing the size of manual data with the 411

availability of large DS dataset. It can be seen that impact of transfer learning is much 412

more beneficial when the manual data size is small (F score increased 10.6% when using 413

25% of AIMed). So when developing large human-labeled dataset is not feasible, 414

applying transfer learning on DS data becomes more important. 415

These results are obtained for both types of deep learning models as well as both 416

tasks, we plan to apply this technique on other relation extraction tasks. We will 417

continue to pursue other heuristics to further reduce the noise in the automatic corpus 418

creation with DS. Given the imbalance in the distribution of positive/negative instances 419

in these datasets, we plan to conduct additional research to address this issue. 420
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