1 Mating strategy is determinant of Adenovirus prevalence in European bats

- 2 Federica Rossetto^{1*}, Maria Iglesias-Caballero², H. Christoph Liedtke¹, Ivan Gomez-Mestre¹, Jose
- 3 M. Berciano², Gonzalo Pérez-Suárez³, Oscar de Paz³, Juan E. Echevarría^{2,4}, Inmaculada Casas²,
- 4 Javier Juste^{1,4}.

¹ Evolutionary Biology Unit, Estación Biológica Doñana (CSIC), Sevilla, Spain.

² National Center of Microbiology, (ISCIII), Madrid, Spain

- ³ Department of Life Sciences, University of Alcalá, Alcalá de Henares, Madrid, Spain.
- ⁴ CIBER Epidemiology and Public Health (CIBERESP), Spain.

*Corresponding author

E-mail: federica.rossetto1991@gmail.com (FR)

6 Abstract

7 Adenoviruses are double-strained DNA viruses found in a great number of vertebrates, including humans. In order to understand their transmission dynamics, it is crucial, even from a 8 human health perspective, to investigate how host traits influence their prevalence. Bats are 9 10 important reservoirs for Adenoviruses, and here we use the results of recent screenings in Western Europe to evaluate the association between characteristic traits of bat species and their 11 probability of hosting Adenoviruses, taking into account their phylogenetic relationships. Across 12 species, we found an important phylogenetic component in the presence of Adenoviruses and 13 mating strategy as the most determinant factor conditioning the prevalence of Adenoviruses 14 15 across bat species. Contrary to other more stable mating strategies (e.g. harems), swarming could hinder transmission of Adenoviruses since this strategy implies that contacts between individuals 16 are too short. Alternatively, bat species with more promiscuous behavior may develop a stronger 17 immune system. Outstandingly high prevalence of Adenoviruses was reported for the Iberian 18 species Pipistrellus pygmaeus, P. kuhlii and Nyctalus lasiopterus and we found that in the latter, 19 males were more likely to be infected by Adenoviruses than females, due to the 20 21 immunosuppressing consequence of testosterone during the mating season. As a general trend across species, we found that the number of Adenoviruses positive individuals was different 22 23 across localities and that the difference in prevalence between populations was correlated with their geographic distances (P. pygmaeus). These results increase our knowledge about the 24 transmission mechanisms of Adenoviruses. 25

26

27

29 Author Summary

30	Adenoviruses are DNA viruses with a wide range of vertebrate hosts, including humans,
31	causing ocular, respiratory and gastrointestinal diseases. Here, we focus on the prevalence of
32	Adenoviruses in bats, which are known to be natural reservoir of many viruses, using the results
33	of recent screenings for prevalence of these viruses in 33 European bat species. Our aim is to
34	find association between Adenoviruses prevalence and biological and behavioral host traits,
35	considering the heterogeneity both between and within species in order to have a deeper
36	understanding of mechanisms of viral transmission.
37	Our results highlight the importance of mating strategy: bats species using swarming as mating
38	strategy are less likely to be infected by Adenoviruses. Moreover, we found that locality of
39	capture can explain a higher prevalence of Adenovirus within species. However, no general
40	pattern has been found in the analysis at individual level, suggesting a strong species specificity
41	and complex viral transmission dynamics.

42

43 Introduction

Some viruses have the potential for cross-species transmission, with spillover episodes from humans to wildlife and vice versa, a phenomenon referred to as zoonosis [1]. Current research on the dynamics behind host/virus interactions and inter- and intra-specific transmissions is of scientific interest and important implications for emerging zoonoses and consequently for public health.

The heterogeneity (understood as the inter- and intra-specific variation) in the ability of hosts to transmit pathogens is among the most fundamental concepts in disease dynamics and crucial in the design of disease control strategies [2]. The potentiality of cross-species or crosspopulations transmission depends on the characteristics of host and virus traits and is affected

directly or indirectly by a variety of ecological, social, or socioeconomic changes [3] that can
lead to new conditions boosting the expansion of the viruses to new host species or populations.
Recent studies have revealed that traits such as host phylogenetic relatedness, conservation
status, and geographical overlap are critical in the potential for cross-species transmission of
viruses [4,5].

The highest proportion of zoonotic viruses in mammals is found in bats, primates and 58 rodents [6]. Specific bat characteristics like their ability to fly, unique among mammals, or their 59 migratory capacity [7], increase their potential role as vectors of diseases. Bats are natural 60 reservoirs for many viruses, such as Coronavirus, Nipah virus and Ebola related to new emerging 61 diseases that have received attention in the last years due to the potential risk they pose for 62 human pandemic events [8-10] or with important health and economic consequences world-63 wide, such as rabies outbreaks [11,12]. The capacity to coexist with viruses (in the absence of 64 disease) is probably linked to the bats' immune-system which seems be different to that of other 65 mammals, [7,13] and related to the development of altered mitochondrial genomes [14]. This 66 pathogen control in bat hosts has favored ancient events of coevolution or parallel evolution 67 [15,16] between bats and viruses. 68

Additionally, bats are systematically very diverse and form the second largest order of
mammals [17]. In fact, bats occupy all kinds of habitats throughout all continents except
Antarctica, showing a surprising ecological breadth that implies large variation in trait
characteristics either in their morphology: e.g. size variation across species [18]; social behavior:
e.g. differences in mating system [19]; or habitat requirements: e.g. roosts preferences from trees
to caves [18]. For all these reasons, bats provide a good model to inspect the correlation of host
trait characteristics with the prevalence of viruses.

Adenoviruses (AdVs) are non-enveloped dsDNA viruses with a broad range of vertebrate
hosts, including humans. These viruses have been grouped into five genera [20]: *Mastadenovirus*

(mammals), Atadenovirus (mammals, birds and reptiles), Aviadenovirus (birds), Siadenovirus 78 79 (poultry and amphibians) and *Ichtadenovirus* (fish). Symptoms in humans include respiratory, eye infections and intestinal or digestive illness and seldom lead to mortality [21,22]. Since the 80 first detection of an AdV in a fruit bat from Japan [23], a high diversity of AdVs has been 81 82 isolated from bats from America, Africa and Asia, all grouped within the genus *Mastadenovirus* [24]. The first AdV in a European bat was isolated from a common pipistrelle (*Pipistrellus* 83 pipistrellus) in Germany [25]. Later, Vidovszky et al. [26] obtained partial sequences from as 84 many as 28 presumably new AdVs hosted by 12 different bat species in Germany and Hungary. 85 Iglesias-Caballero et al. [16] conducted a country-wide survey in Spain constituting the largest 86 87 screening for AdVs in bats to date, checking >1,000 individuals belonging to 28 species and focusing not only on the analysis of fecal samples and internal tissues -as in previous studies-88 but also on the analysis of the oropharyngeal swabs. AdVs are detected in almost half of the 89 90 Iberian bat species studied, in both feces and in the upper respiratory tract (for the first time in bats), establishing a possible fecal-oral transmission route in two *Pipistrellus pygmaeus*. 91 92 Moreover, they found a surprisingly high prevalence in this species together with the co-generic P. kuhlii and the closely related giant noctule, Nyctalus lasiopterus, which accounted for the vast 93 majority of viruses detected in the study. These results have presented us with the opportunity to 94 95 analyze the abiotic factors or biotic traits determining prevalence of AdVs in European bats at two levels: across-species and among individuals within a species. 96

97 The analysis of morphological and behavioral traits and presence of AdVs in bats is also 98 useful for the understanding of viral transmission dynamics. In fact, little is known about the 99 transmission mechanisms of AdVs and no study has focused on transmission in bats. A handful 100 of studies in humans suggest that transmission may need direct contact or at least a droplet 101 spraying (such as those produced by coughing or sneezing) or aerosol [27–29]. The strong host 102 specificity and the parallelism between host and AdVs phylogenies found for bats [16,30] and

103	for primates [31] strongly suggest that cross-species switching of mastadenovirus are not
104	frequent events although they have been detected in AdVs evolution [30].

No study has focused so far on the analyses of the determinant factors influencing 105 106 prevalence of viruses on bats at both species and individual levels. Across species, Webber et al. [32] found that viral richness was positively correlated with group size as predicted by the 107 contact-rate hypothesis. In turn, at the intra-specific level Dietrich et al. [33] found an important 108 seasonal shift in prevalence with a significant increase in AdVs shedding during reproduction 109 while studying AdVs prevalence in two bats (*Miniopterus natalensis* and *Rousettus aegyptiacus*). 110 The aim of this study is to advance our understanding of heterogeneity in the prevalence of 111 AdVs in bats, testing the association between traits and presence of AdVs at both the among-112 species and within-species levels. Among species, and according to the contact-rate hypothesis, 113 higher prevalence of AdVs is expected in species roosting in large groups, sharing refuge with 114 other species and/or mating in swarming aggregations. In addition, we hypothesize a strong 115 phylogenetic signal given the strong species-specificity found in the presence of AdVs. Within 116 117 species, we predict a higher prevalence in females because of their concentration in large numbers in nursery colonies [34], with high contact rate and a high concomitant risk of infection. 118 In summary, our aims were to: 1) Test for significant phylogenetic component to the 119 presence of AdVs in European bats; 2) test the importance of ecological characteristics at a 120

species-level for the presence of AdVs taking into account phylogenetic relationships; 3)
investigate whether some individual characteristics are determinant to explain the differences in
the prevalence of AdVs within species.

124

125 **Results**

The final working database consisted of 1,985 bats sampled and checked for AdVs,
belonging to 10 genera (*Barbastella, Eptesicus, Hypsugo, Miniopterus, Myotis, Nyctalus,*

128 *Pipistrellus, Plecotus, Rhinolophus, Vespertilio*) and representing 33 of the 45 European bat

- species. This database included a total of 1,612 bats belonging to 27 Iberian species surveyed for
- the study (Fig 1). The inclusion in the analyses of the published results from Vidovszky *et al.*
- 131 [26] and Sonntag *et al.* [25] for Germany and Hungary, allowed the addition of seven European
- 132 species (Eptesicus nilssonii, Myotis brandtii, M. dasycneme, M. nattereri, Pipistrellus nathusii
- 133 and *Vespertilio murinus*), not included in the Iberian database.
- 134

135 Table 1: Number of individuals screened as positive or negative for Adenoviruses and

136 percentage of positives for each species taken into account in this study.

Species	N° Positives	N° Negatives	Percentage (%)	Lower limit (%)	Upper limit (%)
Barbastella barbastellus	0	46	0.00		
Eptesicus nilssonii	1	5	16.67	0.85	58.18
Eptesicus isabellinus	4	18	18.18	6.46	36.91
Eptesicus serotinus	2	20	9.09	1.64	25.95
Hypsugo savii	3	50	5.66	1.56	13.98
Miniopterus schreibersii	0	163	0.00		
Myotis alcathoe	0	4	0.00		
Myotis bechsteinii	1	38	2.56	0.13	11.60
Myotis blythii	1	35	2.78	0.14	12.51
Myotis brandtii	0	7	0.00		
Myotis capaccinii	0	15	0.00		
Myotis crypticus	0	3	0.00		
Myotis dasycneme	2	3	40.00	7.64	81.07
Myotis daubentonii	0	102	0.00		
Myotis emarginatus	4	59	6.35	2.20	13.94
Myotis escalerai	0	23	0.00		
Myotis myotis	5	88	5.38	2.14	10.97
Myotis mystacinus	1	29	3.33	0.17	14.86
Myotis nattereri	0	13	0.00		
Nyctalus lasiopterus	24	210	10.26	7.17	14.12
Nyctalus leisleri	5	40	11.11	4.48	21.95
Nyctalus noctula	24	60	28.57	20.55	37.77
Pipistrellus kuhlii	22	208	9.57	6.56	13.38
Pipistrellus nathusii	2	13	13.33	2.42	36.34
Pipistrellus pipistrellus	10	85	10.53	5.82	17.20
Pipistrellus pygmaeus	30	268	10.07	7.34	13.41
Plecotus auritus	1	26	3.70	0.19	16.40
Plecotus austriacus	0	15	0.00		

Rhinolophus euryale	7	40	14.89	7.20	26.16
Rhinolophus ferrumequinum	9	95	8.65	4.59	14.62
Rhinolophus hipposideros	1	10	9.09	0.47	36.44
Rhinolophus mehelyi	0	1	0.00		
Vespertilio murinus	1	14	6.67	0.34	27.94

137

Data from Vidovszky *et al.* [26] and Sonntag *et al.* [25] included. Lower and upper limits of
95% confidence intervals of the percentage have been included.

140

141	The number of individuals sampled within species varied considerably and 5 species
142	(Myotis daubentonii, Miniopterus schreibersii, Nyctalus lasiopterus, Pipistrellus kuhlii, P.
143	pygmaeus), accounted for 50% of the total number of individuals sampled for this study. On the
144	other hand, the species Eptesicus nilssonii, Myotis alcathoe, M. brandtii, M. crypticus,
145	Rhinolophus mehelyii were represented by fewer than 10 individuals and were consequently
146	discarded from the proportion-based analyses of prevalence. Values of proportion of positive
147	samples varied considerably across species, averaging 7.02% (Table 1). The species targeted for
148	the individual-level analyses were: Nyctalus lasiopterus (10.26% prevalence), Pipistrellus
149	pygmaeus (10.07% prevalence) and Pipistrellus kuhlii (9.57% prevalence).

150

151 **Phylogenetic Signal**

152 The fully resolved phylogeny for all the studied species with proportional branch lengths 153 was used to estimate the different phylogenetic component in AdVs presence (S1 Fig). Fritz's *D* 154 parameter was 0.482, and we detected a marginally significant departure from Brownian motion 155 structure (p = 0.058), whereas the probability of *D* resulting from Brownian motion structure was 156 p = 0.165. The value of Pagel's λ when analyzing the distribution of proportion of AdVs across 157 the phylogeny was $\lambda = 0.99$ and highly significant (p = 0.0003) and Blomberg' *K* was K = 0.74 (p =0.002). Thus, the distribution of the AdVs infection across the studied European bats showed a
strong phylogenetic component following Brownian motion.

160 Trait association with AdVs prevalence

- 161 The phylogenetic linear regression analysis showed that regardless of the phylogenetic 162 model used (although Brownian motion had the lowest AIC score, all three models tested were 163 within $\Delta AIC \le 3$), the variable MATING STRATEGY showed a significant (and negative) effect 164 , as shown in Fig 2 (model=Brownian motion, t = -2.8920, p = 0.0093; all model results 165 presented in S1 Table). Moreover, the same result was recovered when using AdVs presence as a 166 binomial dependent variable (S2 Table), indicating a significantly higher AdVs presence in bat 167 species not engaging in swarming for mating.
- 168At individual level and for the three species considered, the complete models were used169since no model was selected by AIC (Δ AIC < 3). The GLMM analysis revealed a significantly</td>170higher AdVs presence for males (z= 2.067, p=0.039) in *N. lasiopterus* (Fig 3A), and a trend171towards higher AdVs prevalence for individuals with smaller forearm (Fig 3B) for *P. kuhlii* (z= -1721.656, p= 0.098). The variance of the model explained by only the random variable was 4% for173*N. lasiopterus*, 62% for *P. pygmaeus* and 16% for *P. kuhlii*. Results for all the variables selected174are available in supplementary material S3 Table.

175 Mantel test

The Mantel tests showed no significant correlation for all pairwise comparisons between geographic distances and differences in the proportion of AdVs presence across localities for *N*. *lasiopterus* (r = -0.3186; p= 0.941) and *P. kuhlii* (r = 0.1132; p= 0.113) (S2 Fig), but this correlation was significant for *P. pygmaeus* (r = 0.3364; p= 0.036) indicating that with greater distance, there will be a greater difference in the proportion of individuals affected by AdVs (S2 Fig).

183 **Discussion**

For the first time to our knowledge, Adenovirus prevalence and its correlation with host 184 traits is studied across a wide range of bats both at the species and individual level. The 185 understanding of which and how host traits affect the presence of viruses in bats is a key step to 186 the understanding of the transmission mechanisms and evolutionary strategies of viruses. Such 187 mechanisms are key in the process of host switching that cause the appearance of emerging 188 diseases and therefore its understanding is important to improve disease managements [35]. Our 189 results show that Adenoviruses seem to be quite common in European bats since they were 190 191 found across all the studied tribes and in most genera (except for *Barbastella* and *Miniopterus*) but their prevalence varied considerably among species [16]. The three most abundant species 192 showing the highest frequency of adenovirus infection (Nyctalus lasiopterus, Pipistrellus 193 pygmaeus and P. kuhlii) experienced an average of 9.97% prevalence. In contrast, other species 194 showed very low Adenovirus presence and was completely absent in others despite their large 195 sample sizes (e.g.: Miniopterus schreibersii) but in other species, the absence of positive results 196 197 could be due to the low number of sampled individuals (generally the rarest bats in Europe). Fritz's D, Pagel's λ and Blomberg's K parameters all pointed to a strong phylogenetic 198

signal in the presence of AdVs across European bats and consequently, the need for accounting for phylogenetic relationships in all subsequent models. This phylogenetic component of the distribution pattern of AdVs in bats was also recently suggested by Iglesias-Caballero *et al.* [16] as the sequences of new mastadenoviruses were clustering generally in agreement with the host bat families or even with the bat species.

Contrary to a previous study on the factors influencing viruses on bats [32], we have not found significant effect of the bats' group size on the presence of Adenoviruses for European species. In their study, Webber *et al.* [32] had a wider perspective and focused on overall viral richness in bats, whereas this study is centered exclusively on AdVs and so our differing results

may indicate that Adenoviruses use different transmission pathways than other viruses.
Transmission of respiratory AdVs in humans requires close contact although it can possibly
occur through droplet spray (such as those produced by coughing or sneezing) and/or aerosols,
but data are still limited [27–29]. In general, little is known about transmission mechanisms of
Adenoviruses and to our knowledge, no study has focused on this particular aspect across bats,
although the host species specificity found for most of the Adenoviruses in bats [16] points to
cross-species contacts as rare events.

Counterintuitively, species engaging in swarming behavior were found to have 215 significantly lower prevalence of Adenoviruses than other bats despite having theoretically 216 217 greater chances of contact. Swarming related to mating is shown mainly by forest species and is described as the gathering of bats, commonly in caves and underground sites, during a few hours 218 after dusk and for a few days [36]. Two hypotheses could explain this finding. Firstly, bat 219 species engaging in swarming seem to be in contact for only a short time, which would imply a 220 lower chance of transmission compared to bats with polygynous mating systems, like harems, 221 222 which stay in contact for longer periods of time, sometimes all year around [37]. A second 223 plausible hypothesis is based on the fact that mammals with high infection risk, especially those with promiscuous behavior, develop a stronger immune system compared to species with low 224 225 infection risk [38,39]. Thus, it seems reasonable that bats with swarming behavior may show stronger immune response protecting them from infections, despite being very costly and even 226 represent a trade-off with other life-history traits [39]. 227

When analyzing the effect on the AdVs presence of within-species variance in traits, we found that the site of capture explains an important part of the variance of all models suggesting an underlying general pattern across species and supporting the contact-rate hypothesis. This trend is particularly clear for *Pipistrellus pygmaeus*, whose sampling localities are more widespread along the Iberian Peninsula than those for *Nyctalus lasiopterus* and *P. kuhlii* (Fig 4).

Following the contact-rate hypothesis, bats from a specific locality interact with other individuals of the same area, favoring the virus transmission locally [7]. A similar pattern was already found for the viruses responsible for avian influence, Marburg or Ebola [40–42]. In this direction, the Mantel's test supported a significant geographic component in the incidence of the Adenoviruses for *Pipistrellus pygmaeus* which is typically sedentary species [34].

A higher prevalence of Adenoviruses was found in males for *Nyctalus lasiopterus*, the species in which the different sexes were best represented. This result is particularly interesting since it could affect the general dynamics of the virus given the generally predominant role played by males in dispersal [43]. The possibility of a sex byes infection as a general pattern should be explored further in other bat species and could be related to the trade-off between immune function and reproduction, making males more susceptible to virus infections during reproductive season due to the immune-suppressant effect of testosterone production [44].

Our results show that, individuals with smaller forearm are more likely to be infected by Adenoviruses for *Pipistrellus kuhlii*. Subadult bats usually have slightly longer forearms [34] and the lower prevalence in bats with larger measures could be explained by the influence of the antibody loads transferred to them through their mother's milk in still developing bats, making them less suitable to Adenoviruses prevalence [45]. This is just a possibility and further studies should help understand the relationships between Adenoviruses presence and age.

In sum, our findings highlight a common occurrence of Adenoviruses in European bats and provide evidence of the importance of mating behavior in the prevalence of Adenoviruses, contrary to what has been suggested generally for viruses. Besides, the three European bats species that had higher Adenovirus prevalence do not show any common pattern, pointing to Adenoviruses transmission as a complex process. Our study highlights the importance of combining behavioral with ecological traits in explaining viral richness and transmission.

257

258 Materials and Methods

259 Ethics Statement

260	Non-lethal sampling was based on permits 201710730002961/IRM/MDCG/mes issued
261	by Dirección General de Gestión del Medio Natural y Espacios Protegidos (Consejería de Medio
262	Ambiente, Junta de Andalucía, Spain), 10/085545.9/17.9/17 issued by Consejería de Medio
263	Ambiente, Administración Local y Ordenación del Territorio, Comunidad de Madrid, and
264	PNSNG_SG_2018_0093 issued by Servicio Territorial de Medio Ambiente de Segovia, Junta de
265	Castilla y León. The techniques used meet the guidelines published by the American Society of
266	Mammalogists on the use of wild mammals in research [46]
267	
268	Data collection
268 269	Data collection Most of the information used in this study was obtained during a surveillance program for
269	Most of the information used in this study was obtained during a surveillance program for
269 270	Most of the information used in this study was obtained during a surveillance program for bat rhabdovirus and lyssavirus carried out between 2004 and 2008, 2016 and 2018. Bats were
269 270 271	Most of the information used in this study was obtained during a surveillance program for bat rhabdovirus and lyssavirus carried out between 2004 and 2008, 2016 and 2018. Bats were mist-netted near roosts or over water and released in the same collecting point after sampling.
269 270 271 272	Most of the information used in this study was obtained during a surveillance program for bat rhabdovirus and lyssavirus carried out between 2004 and 2008, 2016 and 2018. Bats were mist-netted near roosts or over water and released in the same collecting point after sampling. Each animal was identified, sexed, measured and weighed. Sampling consisted of obtaining a
269 270 271 272 273	Most of the information used in this study was obtained during a surveillance program for bat rhabdovirus and lyssavirus carried out between 2004 and 2008, 2016 and 2018. Bats were mist-netted near roosts or over water and released in the same collecting point after sampling. Each animal was identified, sexed, measured and weighed. Sampling consisted of obtaining a membrane wing-punch, saliva with oropharyngeal swabs and stool samples (when this was

presence in bats from Germany and Hungary [25,26]. The identification of bats belonging to

species complexes was confirmed through PCR amplification of a diagnostic mtDNA fragment

following Ibañez *et al.*, [49] and Kaňuch *et al.* [50].

280 Phylogeny and phylogenetic signal

A fully resolved phylogeny containing all the study species was not available from the 281 282 literature and is notoriously difficult to reconstruct for this group, [51] and so a hybrid approach was taken whereby, published trees were grafted to obtain a full-solved topology whereas branch 283 lengths were estimated using molecular sequence data. The published phylogenetic studies for 284 the four families existing in Europe, used to manually construct a topology of all species in this 285 study were Guillén-Servent *et al.*, [52] for relationship in the family Rhinolophidae; Ruedi *et al.*, 286 [53] and Stadelmann et al. [54] for the subfamily Myotinae within Vespertilionidae; and Hoofer 287 and Bussche [55] for the rest of this last family and for the family Miniopteridae. Complete 288 sequences of the mitochondrial genes cytochrome b (CYTB) and NADH dehydrogenase 1 (ND1) 289 290 were obtained from GenBank for all available European species and were used to estimate branch length in the constructed topology. This dataset needed to generate sequences de novo for 291 the species *Miniopterus schreibersii* for which these markers were not available. The new 292 293 sequences are deposited in GenBank under the accession numbers MK737740 and MK737741. For each locus sequences were aligned with the software 'ALTER' from 294 http://darwin.uvigo.es/software/ [56] and MEGA [57], and partitionfinder v2.1.1 [58] was run on 295 the concatenated alignment (1805 base pairs in length) to obtain the optimal partitioning scheme 296 and substitution models. Partitionfinder was set to use unlinked branch lengths, search only 297 298 BEAST models with the 'greedy' algorithm and AICc as the model selection criterion. A maximum of six possible partitions were allowed; the three codon positions of the two loci. 299 BEAST v2.4.7 [59] was then fed the alignment and the fixed topology, and using a relaxed clock 300 301 log normal model with exponential priors on the mean (mean=10) and standard deviation (mean=0.33), was allowed to estimate the branch lengths over 20 million MCMC iterations, 302 storing every 1000th. Chain diagnostics was performed using Tracer v1.7 [60] to ensure 303 sufficient mixing and parameter convergence and a maximum clade credibility tree was 304 generated using TreeAnnotator v.2.4.7 (part of BEAST package) using a 10% burn-in and 305 306 median node heights.

Fritz's D, Pagel's λ and Blomberg's K parameters were used to estimate the strength of 307 308 the phylogenetic signal affecting the pattern of AdVs presence across European bats. Fritz's D 309 was used for binary data (presence/absence) so that values close to one indicate that the distribution of the binary trait is random with respect to the given phylogeny and values close to 310 zero indicate the trait is distributed as expected under a Brownian motion model of evolution 311 [61]. When the variable estimated was the proportion of infected bats in each species, Pagel's λ 312 and Blomberg's K parameters were used. Values of λ range from zero to one where $\lambda = 0$ 313 indicates that related species do not share similar values for the trait (percentage of infection) and 314 $\lambda = 1$ indicates a pattern fully explained by the phylogenetic relationships under Brownian 315 316 motion, with related species showing similar values for the given trait. Finally, K is scaled so that zero indicates no phylogenetic signal, K=1 is the expected value for trait evolution under 317 Brownian motion and values higher than one suggest stronger phylogenetic signal than predicted 318 by Brownian motion [62,63]. 319

320

321 Variables Selection and modelling

Ecological and behavioural traits were selected considering their 'a priori' importance for 322 323 the virus transmission and their availability for the European bat species from the bat literature and general revisions [64], identification guides [34] (S4 Table). For the comparative analysis 324 across all European bats, the following variables were recorded for each species: (1) GROUP 325 SIZE, defined as the upper bound of individuals found usually in summer roosts; (2) 326 FOREARM: defined as the average range of forearm length (in mm) reported for each species; 327 328 (3) SOCIABILITY defined as the chance of sharing summer roost with other species and considering just two categories: species that have never been found sharing their roost with other 329 species and species that sometimes or always share roost with other species; (4) MATING 330 STRATEGY: considered as whether mating takes place in seasonal swarming or not; (5) 331

MIGRATION: defined as whether the bat species is known to perform long-distance movements (longer than 100 km), regional (between 10 and 100 km) or no movements; (6) ROOST TYPE: considered in three categories: roosts in caves, trees or crevices. At the individual level, the analyses focused on the three species that showed the highest AdVs presence combined with a large enough sample size (> 200 individuals). The recorded variables were: (1) LOCALITY: site of capture; (2) SEX: male or female; (3) FOREARM: Measured in mm.

338 For among-species comparisons, AdVs prevalence was analyzed as the arcsintransformed proportion of positive samples over the total number of samples for each species. 339 Species with fewer than 10 samples were eliminated from the matrix and from the phylogeny. 340 341 The analyses were also run considering presence/absence of AdVs as a dependent variable and including in this case all sampled species. The analyses were performed with R statistical 342 computing packages [65] and scripts are available upon request. Fritz's D, Pagel's λ and 343 Blomberg's K parameters were estimated with the packages '*Caper*' [66] and '*Phytools*'[67]. 344 Phylogenetic linear regressions were carried out with the package 'Phylolm' [68] that respects 345 346 the shared evolutionary histories of species [69]. Models of trait evolution were compared 347 assuming correlation structures under either Brownian motion, Ornstein-Uhlenbeck or Pagel models [70] and the best model was selected based on the Akaike Information Criterion (AIC) 348 349 [71]. As a threshold value for model selection, a model showing $\Delta AIC > 3$ was taken as having greater support [72]. Complementary, a binary phylogenetic generalized linear model was run 350 for each species, with presence of AdVs as the dependent variable and using the 'Ape' package 351 [73]. 352

Within species, we used general linear mixed models implemented in the '*Lme4*' package [74] to test for associations between traits and presence of AdVs, and considering AdVs presence as a binary dependent variable. In order to account for uncontrolled spatial variation,

356 LOCALITY was included in the models as a random variable. The best linear mixed model was

357	again selected based on AIC and same threshold criterion. As a confirmatory analysis for the
358	models, the variance explained by only the fixed variables was compared to the variance
359	obtained including the random variables using the package 'Mumin' [75]
360	At both among-species and within-species levels, inter-correlation was were checked
361	using a Pearson's correlation test for continuous variables and an ANOVA for categorical
362	variables. The spatial distribution of the AdVs positive bats was inspected by performing a
363	Mantel test between the matrix of geographic distances and the matrix of differences in
364	proportion of infection between sites with the package 'Ade4' [76,77].
365	
366	Acknowledgments
367	
368	We are grateful to the bats team of the Estación Biológica de Doñana (CSIC) and to Francisco
369	Pozo and collaborators of the Instituto de Salud Pública Carlos III for their collaboration. We
370	thank Jens Rydell, David Serrano, Josué Martinez de la Puente, Josean Donazar and Carlos
371	Herrera for their useful suggestions and comments.
372	
373	

References

575		
376	1.	Taylor LH, Latham SM, woolhouse MEJ. Risk factors for human disease emergence.
377		Woolhouse MEJ, Dye C, editors. Philosophical Transactions of the Royal Society of
378		London Series B: Biological Sciences. 2001;356: 983–989. doi:10.1098/rstb.2001.0888
379	2.	VanderWaal KL, Ezenwa VO. Heterogeneity in pathogen transmission: mechanisms and
380		methodology. Functional Ecology. 2016;30: 1606–1622. doi:10.1111/1365-2435.12645
381	3.	Morse SS, Mazet JA, Woolhouse M, Parrish CR, Carroll D, Karesh WB, et al. Prediction
382		and prevention of the next pandemic zoonosis. The Lancet. 2012;380: 1956–1965.
383		doi:10.1016/S0140-6736(12)61684-5
384	4.	Streicker DG, Turmelle AS, Vonhof MJ, Kuzmin IV, McCracken GF, Rupprecht CE. Host
385		Phylogeny Constrains Cross-Species Emergence and Establishment of Rabies Virus in
386		Bats. Science. 2010;329: 676-679. doi:10.1126/science.1188836
387	5.	Luis Angela D., Hayman David T. S., O'Shea Thomas J., Cryan Paul M., Gilbert Amy T.,
388		Pulliam Juliet R. C., et al. A comparison of bats and rodents as reservoirs of zoonotic
389		viruses: are bats special? Proceedings of the Royal Society B: Biological Sciences.
390		2013;280: 20122753. doi:10.1098/rspb.2012.2753
391	6.	Olival KJ, Hosseini PR, Zambrana-Torrelio C, Ross N, Bogich TL, Daszak P. Host and
392		viral traits predict zoonotic spillover from mammals. Nature. 2017;546: 646.
393		doi:10.1038/nature22975
394	7.	Calisher CH, Childs JE, Field HE, Holmes KV, Schountz T. Bats: Important Reservoir
395		Hosts of Emerging Viruses. Clinical Microbiology Reviews. 2006;19: 531-545.
396		doi:10.1128/CMR.00017-06

397	8.	Leroy EM, Kumulungui B, Pourrut X, Rouquet P, Hassanin A, Yaba P, et al. Fruit bats as
398		reservoirs of Ebola virus. Nature. 2005;438: 575. doi:10.1038/438575a
399	9.	Li W, Shi Z, Yu M, Ren W, Smith C, Epstein JH, et al. Bats Are Natural Reservoirs of
400		SARS-Like Coronaviruses. Science. 2005;310: 676–679. doi:10.1126/science.1118391
401	10.	Yob JM, Field H, Rashdi AM, Morrissy C, Heide B van der, Rota P, et al. Nipah virus
402		infection in bats (order Chiroptera) in peninsular Malaysia. Emerging Infectious Diseases.
403		2001;7: 439. doi:10.3201/eid0703.010312
404	11.	Dobson AP. What Links Bats to Emerging Infectious Diseases? Science. 2005;310: 628-
405		629. doi:10.1126/science.1120872
406	12.	Mayen F. Haematophagous Bats in Brazil, Their Role in Rabies Transmission, Impact on
407		Public Health, Livestock Industry and Alternatives to an Indiscriminate Reduction of Bat
408		Population. Journal of Veterinary Medicine, Series B. 2003;50: 469-472.
409		doi:10.1046/j.1439-0450.2003.00713.x
410	13.	Baker ML, Schountz T, Wang L-F. Antiviral Immune Responses of Bats: A Review.
411		Zoonoses and Public Health. 2013;60: 104–116. doi:10.1111/j.1863-2378.2012.01528.x
412	14.	Brook CE, Dobson AP. Bats as 'special' reservoirs for emerging zoonotic pathogens.
413		Trends in Microbiology. 2015;23: 172–180. doi:10.1016/j.tim.2014.12.004
414	15.	Pozo F, Juste J, Vázquez-Morón S, Aznar-López C, Ibáñez C, Garin I, et al. Identification
415		of Novel Betaherpesviruses in Iberian Bats Reveals Parallel Evolution. PLOS ONE.
416		2016;11: e0169153. doi:10.1371/journal.pone.0169153

- 417 16. Iglesias-Caballero M, Juste J, Vázquez-Morón S, Falcon A, Aznar-Lopez C, Ibáñez C, et al.
- 418 New Adenovirus Groups in Western Palaearctic Bats. Viruses. 2018;10: 443.
- 419 doi:10.3390/v10080443
- 420 17. Simmons NB. Order Chiroptera. Mammal Species of the World : A Taxonomic and
- 421 Geographic Reference. 2005; 312–529.
- 422 18. Kunz TH. Roosting Ecology of Bats. In: Kunz TH, editor. Ecology of Bats. Boston, MA:
- 423 Springer US; 1982. pp. 1–55. doi:10.1007/978-1-4613-3421-7_1
- 424 19. Altringham JD. Bats: From Evolution to Conservation. OUP Oxford; 2011.
- 425 20. Davison AJ, Benkő M, Harrach B. Genetic content and evolution of adenoviruses. Journal
 426 of General Virology. 2003;84: 2895–2908. doi:10.1099/vir.0.19497-0
- 427 21. Brandt CD, Kim HW, Vargosko AJ, Jeffries BC, Arrobio JO, Rindge B, et al.
- 428 INFECTIONS IN 18, 000 INFANTS AND CHILDREN IN A CONTROLLED STUDY
- 429 OF RESPIRATORY TRACT DISEASE. I. ADENOVIRUS PATHOGENICITY IN
- 430 RELATION TO SEROLOGIC TYPE AND ILLNESS SYNDROME. Am J Epidemiol.
- 431 1969;90: 484–500. doi:10.1093/oxfordjournals.aje.a121094
- 432 22. Khanal S, Ghimire P, Dhamoon AS. The Repertoire of Adenovirus in Human Disease: The
 433 Innocuous to the Deadly. Biomedicines. 2018;6: 30. doi:10.3390/biomedicines6010030
- 434 23. Maeda K, Hondo E, Terakawa J, Kiso Y, Nakaichi N, Endoh D, et al. Isolation of Novel
- Adenovirus from Fruit Bat (Pteropus dasymallus yayeyamae). Emerg Infect Dis. 2008;14:
- 436 347–349. doi:10.3201/eid1402.070932

437	24.	Li Y, Ge X, Zhang H, Zhou P, Zhu Y, Zhang Y, et al. Host Range, Prevalence, and Genetic
438		Diversity of Adenoviruses in Bats. Journal of Virology. 2010;84: 3889-3897.
439		doi:10.1128/JVI.02497-09
440	25.	Sonntag M, Mühldorfer K, Speck S, Wibbelt G, Kurth A. New Adenovirus in Bats,
441		Germany. Emerging Infectious Diseases. 2009;15: 2052. doi:10.3201/eid1512.090646
442	26.	Vidovszky MZ, Kohl C, Boldogh S, Görföl T, Wibbelt G, Kurth A, et al. Random sampling
443		of the Central European bat fauna reveals the existence of numerous hitherto unknown
444		adenoviruses+. Acta Veterinaria Hungarica. 2015; doi:10.1556/004.2015.047
445	27.	Musher DM. How Contagious Are Common Respiratory Tract Infections? New England
446		Journal of Medicine. 2003;348: 1256–1266. doi:10.1056/NEJMra021771
447	28.	Sandrock C, Stollenwerk N. Acute Febrile Respiratory Illness in the ICU. Chest. 2008;133:
448		1221-1231. doi:10.1378/chest.07-0778
449	29.	Pica N, Bouvier NM. Environmental factors affecting the transmission of respiratory
450		viruses. Current Opinion in Virology. 2012;2: 90–95. doi:10.1016/j.coviro.2011.12.003
451	30.	Kohl C, Vidovszky MZ, Mühldorfer K, Dabrowski PW, Radonić A, Nitsche A, et al.
452		Genome Analysis of Bat Adenovirus 2: Indications of Interspecies Transmission. Journal of
453		Virology. 2012;86: 1888–1892. doi:10.1128/JVI.05974-11
454	31.	Podgorski II, Pantó L, Földes K, de Winter I, Jánoska M, Sós E, et al. Adenoviruses of the
455		most ancient primate lineages support the theory on virus-host co-evolution. Acta
456		Veterinaria Hungarica. 2018;66: 474–487. doi:10.1556/004.2018.042

457	32.	Webber QMR, Fletcher QE, Willis CKR. Viral Richness is Positively Related to Group
458		Size, but Not Mating System, in Bats. EcoHealth. 2017;14: 652–661. doi:10.1007/s10393-
459		017-1276-3
460	33.	Dietrich Muriel, Kearney Teresa, Seamark Ernest C. J., Paweska Janusz T., Markotter
461		Wanda. Synchronized shift of oral, faecal and urinary microbiotas in bats and natural
462		infection dynamics during seasonal reproduction. Royal Society Open Science. 5: 180041.
463		doi:10.1098/rsos.180041
464	34	Dietz C, Nill D, von Helversen O. Bats of Britain, Europe and Northwest Africa. A & C
465		Black; 2009.
466	35.	Gervasi SS, Civitello DJ, Kilvitis HJ, Martin LB. The context of host competence: a role
467		for plasticity in host-parasite dynamics. Trends in Parasitology. 2015;31: 419-425.
468		doi:10.1016/j.pt.2015.05.002
469	36.	Parsons KN, Jones G, Davidson-Watts I, Greenaway F. Swarming of bats at underground
470		sites in Britain—implications for conservation. Biological Conservation. 2003;111: 63–70.
471		doi:10.1016/S0006-3207(02)00250-1
472	37.	McCracken GF, Wilkinson GS. Bat Mating Systems. In: Crichton EG, Krutzsch PH,
470		
473		editors. Reproductive Biology of Bats. London: Academic Press; 2000. pp. 321-362.
474		doi:10.1016/B978-012195670-7/50009-6
475	38.	Nunn CL, Gittleman JL, Antonovics J. Promiscuity and the Primate Immune System.
476		Science. 2000;290: 1168-1170. doi:10.1126/science.290.5494.1168
477	39.	Schneeberger K, Czirják GÁ, Voigt CC. Measures of the Constitutive Immune System Are
478		Linked to Diet and Roosting Habits of Neotropical Bats. PLOS ONE. 2013;8: e54023.
479		doi:10.1371/journal.pone.0054023
		23

480	40.	Munster VJ, Baas C, Lexmond P, Waldenström J, Wallensten A, Fransson T, et al. Spatial,
481		Temporal, and Species Variation in Prevalence of Influenza A Viruses in Wild Migratory
482		Birds. PLOS Pathogens. 2007;3: e61. doi:10.1371/journal.ppat.0030061
402	41	Town on IS, Downeyt V, Albanião CC, Nikogua CN, Dird DH, Crond C, et al. Markung Virus
483	41.	Towner JS, Pourrut X, Albariño CG, Nkogue CN, Bird BH, Grard G, et al. Marburg Virus
484		Infection Detected in a Common African Bat. PLOS ONE. 2007;2: e764.
485		doi:10.1371/journal.pone.0000764
486	42.	Hanson BA, Luttrell MP, Goekjian VH, Niles L, Swayne DE, Senne DA, Stallknecht DE.
487		Is the occurrence of avian influenza virus in Charadriiformes species and location
488		dependent?. Journal of Wildlife Diseases. 2008 Apr;44(2):351-61.
400		dependent?. Journal of whame Diseases. 2008 Apr,44(2).551-01.
489	43.	Greenwood PJ. Mating systems, philopatry and dispersal in birds and mammals. Animal
490		Behaviour. 1980;28: 1140-1162. doi:10.1016/S0003-3472(80)80103-5
491	44.	Klein SL. The effects of hormones on sex differences in infection: from genes to behavior.
492		Neuroscience & Biobehavioral Reviews. 2000;24: 627-638. doi:10.1016/S0149-
493		7634(00)00027-0
494	45.	Baker KS, Suu-Ire R, Barr J, Hayman DTS, Broder CC, Horton DL, et al. Viral antibody
495		dynamics in a chiropteran host. Journal of Animal Ecology. 2014; 415–428.
496		doi:10.1111/1365-2656.12153@10.1111/(ISSN)1365-2656.OAWEEK2014
450		doi.10.1111/1505-2050.12155@10.1111/(15510)1505-2050.0/1w LEN2014
497	46.	Gannon WL, Sikes RS. Guidelines of the American Society of Mammalogists for the Use
498		of Wild Mammals in Research. J Mammal. 2007;88: 809-823. doi:10.1644/06-MAMM-F-
499		185R1.1
500	47.	Casas I, Avellon A, Mosquera M, Jabado O, Echevarria JE, Campos RH, et al. Molecular
501		Identification of Adenoviruses in Clinical Samples by Analyzing a Partial Hexon Genomic

502	Region.	Journal of	f Clinical	Microbiology	. 2005;43:	6176–6182.
-----	---------	------------	------------	--------------	------------	------------

- 503 doi:10.1128/JCM.43.12.6176-6182.2005
- 48. Calvo C, García-García ML, Sanchez-Dehesa R, Román C, Tabares A, Pozo F, et al. Eight
- 505 Year Prospective Study of Adenoviruses Infections in Hospitalized Children. Comparison
- with Other Respiratory Viruses. PLOS ONE. 2015;10: e0132162.
- 507 doi:10.1371/journal.pone.0132162
- 49. Ibáñez C, García-Mudarra JL, Ruedi M, Stadelmann B, Juste J. The Iberian contribution to
 cryptic diversity in European bats. Acta Chiropterologica. 2006 Dec 19;8(2):277-97.
- 50. Kaňuch P, Hájková P, Řehák Z, Bryja J. A rapid PCR-based test for species identification
- of two cryptic bats Pipistrellus pipistrellus and P. pygmaeus and its application on museum
 and dropping samples. Acta Chiropterologica. 2007 Jun 1;9(1):277-82.
- 513 51. Tsagkogeorga G, Parker J, Stupka E, Cotton JA, Rossiter SJ. Phylogenomic Analyses
 514 Elucidate the Evolutionary Relationships of Bats. Current Biology. 2013;23: 2262–2267.
 515 doi:10.1016/j.cub.2013.09.014
- 516 52. Guillén-Servent A, Francis CM, Ricklefs RE. Phylogeny and biogeography of the
 517 horseshoe bats. Horseshoe bats of the world Exeter: Pelagic Publishing Ltd. 2003;
- 518 53. Ruedi M, Stadelmann B, Gager Y, Douzery EJP, Francis CM, Lin L-K, et al. Molecular
- 519 phylogenetic reconstructions identify East Asia as the cradle for the evolution of the
- 520 cosmopolitan genus Myotis (Mammalia, Chiroptera). Molecular Phylogenetics and
- 521 Evolution. 2013;69: 437–449. doi:10.1016/j.ympev.2013.08.011
- 522 54. Stadelmann B, Jacobs DS, Schoeman C, Ruedi M. Phylogeny of African Myotis bats
- 523 (Chiroptera, Vespertilionidae) inferred from cytochrome b sequences. Acta
- 524 Chiropterologica. 2004 Sep 1;6(2):177-92.

525	55.	Hoofer SR, Bussche RAVD. Molecular Phylogenetics of the Chiropteran Family
526		Vespertilionidae. acta. 2003;5: 1-63. doi:10.3161/001.005.s101
527	56.	Glez-Peña D, Gómez-Blanco D, Reboiro-Jato M, Fdez-Riverola F, Posada D. ALTER:
528		program-oriented conversion of DNA and protein alignments. Nucleic Acids Res. 2010;38:
529		W14-W18. doi:10.1093/nar/gkq321
530	57.	Tamura K, Dudley J, Nei M, Kumar S. MEGA4: Molecular Evolutionary Genetics
531		Analysis (MEGA) Software Version 4.0. Mol Biol Evol. 2007;24: 1596–1599.
532		doi:10.1093/molbev/msm092
533	58.	Lanfear R, Calcott B, Ho SYW, Guindon S. PartitionFinder: Combined Selection of
534		Partitioning Schemes and Substitution Models for Phylogenetic Analyses. Mol Biol Evol.
535		2012;29: 1695-1701. doi:10.1093/molbev/mss020
536	59.	Drummond AJ, Rambaut A. BEAST: Bayesian evolutionary analysis by sampling trees.
537		BMC Evolutionary Biology. 2007;7: 214. doi:10.1186/1471-2148-7-214
538	60.	Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. Posterior Summarization in
539		Bayesian Phylogenetics Using Tracer 1.7. Syst Biol. 2018;67: 901–904.
540		doi:10.1093/sysbio/syy032
541	61.	Fritz SA, Purvis A. Selectivity in Mammalian Extinction Risk and Threat Types: a New
542		Measure of Phylogenetic Signal Strength in Binary Traits. Conservation Biology. 2010;24:
543		1042–1051. doi:10.1111/j.1523-1739.2010.01455.x
544	62.	Pagel M. Inferring the historical patterns of biological evolution. Nature. 1999;401: 877.
545		doi:10.1038/44766

546	63.	Blomberg SP, Garland T, Ives AR. Testing for Phylogenetic Signal in Comparative Data:
547		Behavioral Traits Are More Labile. Evolution. 2003;57: 717-745. doi:10.1111/j.0014-
548		3820.2003.tb00285.x
549	64.	MARCHAIS G, THAURONT M. Action Plan for the Conservation of All Bat Species in
550		the European Union 2018 - 2024. 2018.
551	65.	R Development Core Team R. R: A language and environment for statistical computing. R
552		foundation for statistical computing Vienna, Austria; 2011.
553	66.	Orme D, Freckleton R, Thomas G, Petzoldt T. The caper package: comparative analysis of
554		phylogenetics and evolution in R. R package version. 2013;5: 1–36.
555	67.	Revell LJ. phytools: an R package for phylogenetic comparative biology (and other things).
556		Methods in Ecology and Evolution. 2012;3: 217-223. doi:10.1111/j.2041-
557		210X.2011.00169.x@10.1111/(ISSN)2041-210X.TOPMETHODS
558	68.	Tung Ho L si, Ané C. A Linear-Time Algorithm for Gaussian and Non-Gaussian Trait
559		Evolution Models. Syst Biol. 2014;63: 397–408. doi:10.1093/sysbio/syu005

- 560 69. Symonds MRE, Blomberg SP. A Primer on Phylogenetic Generalised Least Squares.
- 561 Modern Phylogenetic Comparative Methods and Their Application in Evolutionary

562 Biology. 2014; 105–130. doi:10.1007/978-3-662-43550-2_5

- 563 70. Butler MA, King AA. Phylogenetic Comparative Analysis: A Modeling Approach for
- Adaptive Evolution. The American Naturalist. 2004;164: 683–695. doi:10.1086/426002
- 565 71. Akaike H. A New Look at the Statistical Model Identification. Selected Papers of Hirotugu
 566 Akaike. 1974; 215–222. doi:10.1007/978-1-4612-1694-0_16

- 567 72. Burnham KP, Anderson DR. Multimodel Inference: Understanding AIC and BIC in Model
- 568 Selection. Sociological Methods & Research. 2004;33: 261–304.
- doi:10.1177/0049124104268644
- 570 73. Paradis E, Claude J, Strimmer K. APE: Analyses of Phylogenetics and Evolution in R
- language. Bioinformatics. 2004;20: 289–290. doi:10.1093/bioinformatics/btg412
- 572 74. Bates D, Sarkar D, Bates MD, Matrix L. The lme4 package. R package version. 2007;2: 74.
- 573 75. Barton K. MuMIn : multi-model inference. http://r-forge.r-project.org/projects/mumin/.
- 574 2009; Available: https://ci.nii.ac.jp/naid/20001420752
- 575 76. Mantel N. The Detection of Disease Clustering and a Generalized Regression Approach.
 576 Cancer Res. 1967;27: 209–220.
- 577 77. Dray S, Dufour A-B. The ade4 package: implementing the duality diagram for ecologists.
 578 Journal of statistical software. 2007;22: 1–20.

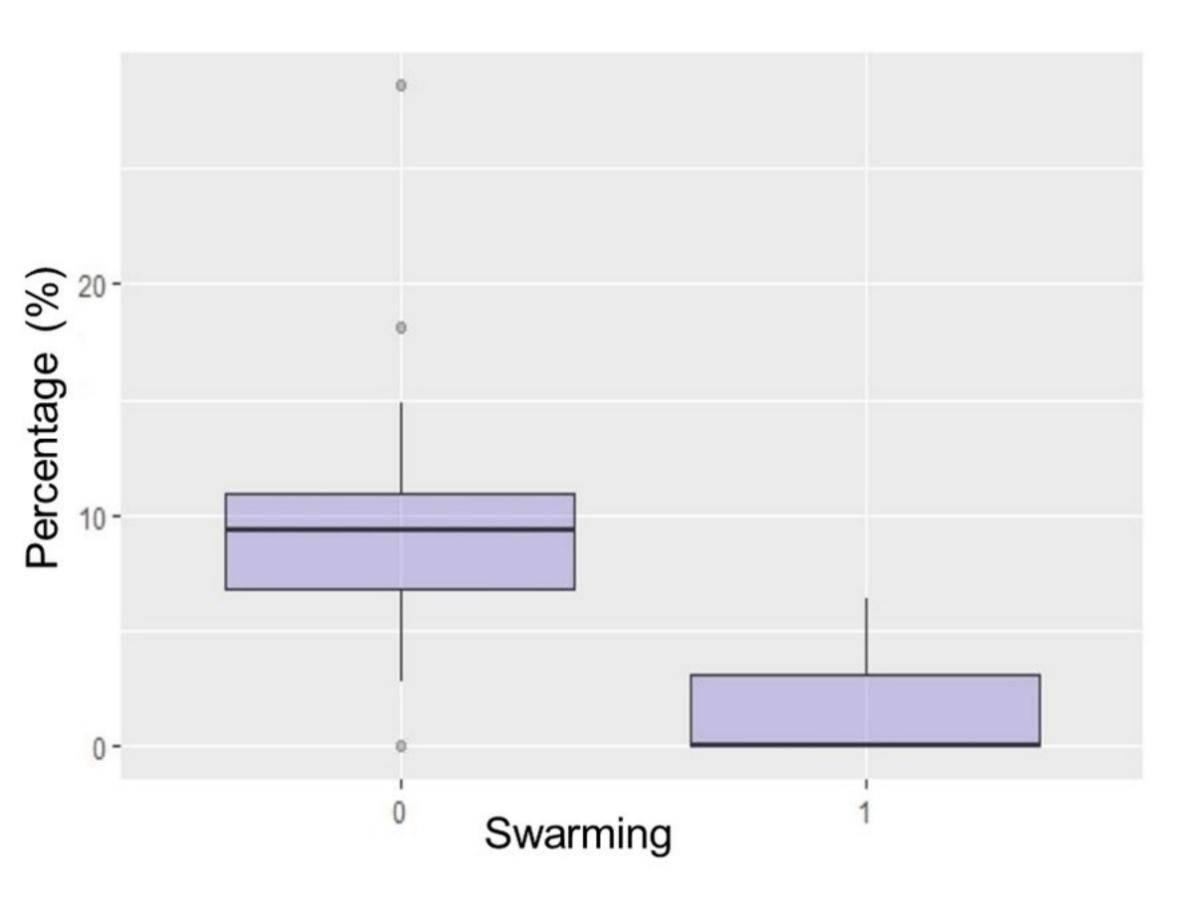
579

581 Figure captions

582

- 583 Fig 1. Study sites in Spain where bats were screened for AdVs. Blue dots indicate localities
- with at least one AdVs positive samples, orange dots indicate localities with negative samples for
- 585 AdVs. (Modified from HansenBCN Miguillen Own work, Public Domain,
- 586 https://commons.wikimedia.org/w/index.php?curid=10577766)
- 587 Fig 2. Boxplot of the percentage of positive individuals for species engaging in swarming
- **and species not engaging in swarming.** 0 indicates species not using swarming as mating
- strategy, 1 indicates species using swarming as mating strategy. (N=160).
- 590 Fig 3. Results of within-species analysis. (A) Barplot by sex of number of individuals positive
- (blue) and negative (red) to Adenovirus, for *Nyctalus lasiopterus*. (B) Boxplot for individuals
- screening negative for AdVs (0) and positive for AdVs (1) in relation to forearm length for
- 593 Pipistrellus kuhlii.

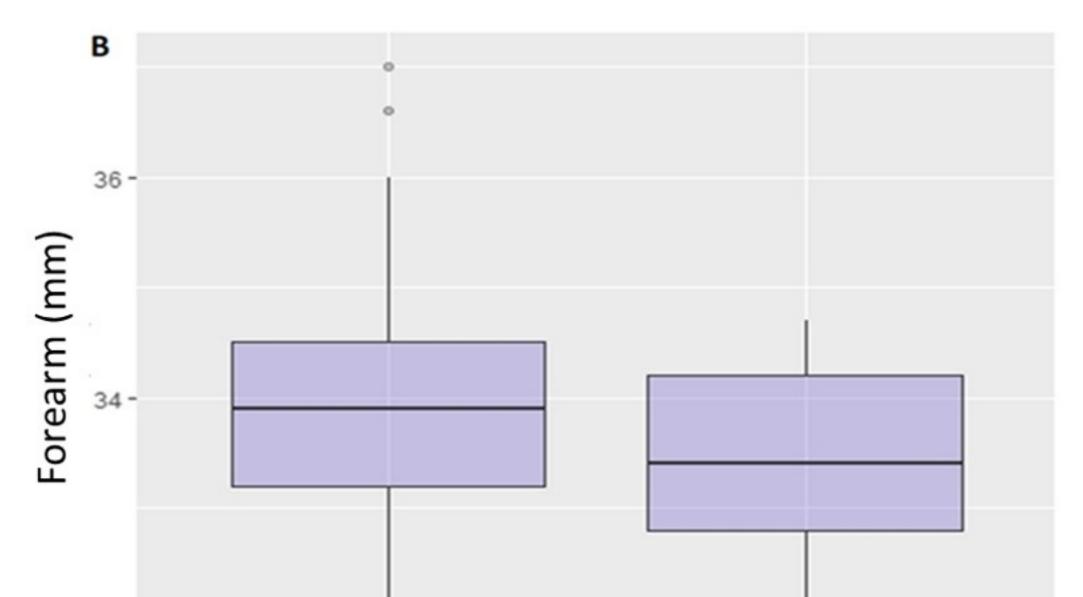
594 Fig 4. Sampling localities with percentage of AdVs positive samples. Portion of AdVs


- 595 positive sample is indicated in blue, AdVs negative samples in orange for (A) Nyctalus
- 596 *lasiopterus*, (**B**) *Pipistrellus pygmaeus* (**C**) *Pipistrellus kuhlii*. Only localities with at least 5
- 597 recorded individuals are shown. (Modified from HansenBCN Miguillen Own work, Public
- 598 Domain, https://commons.wikimedia.org/w/index.php?curid=10577766)

600 Supporting information

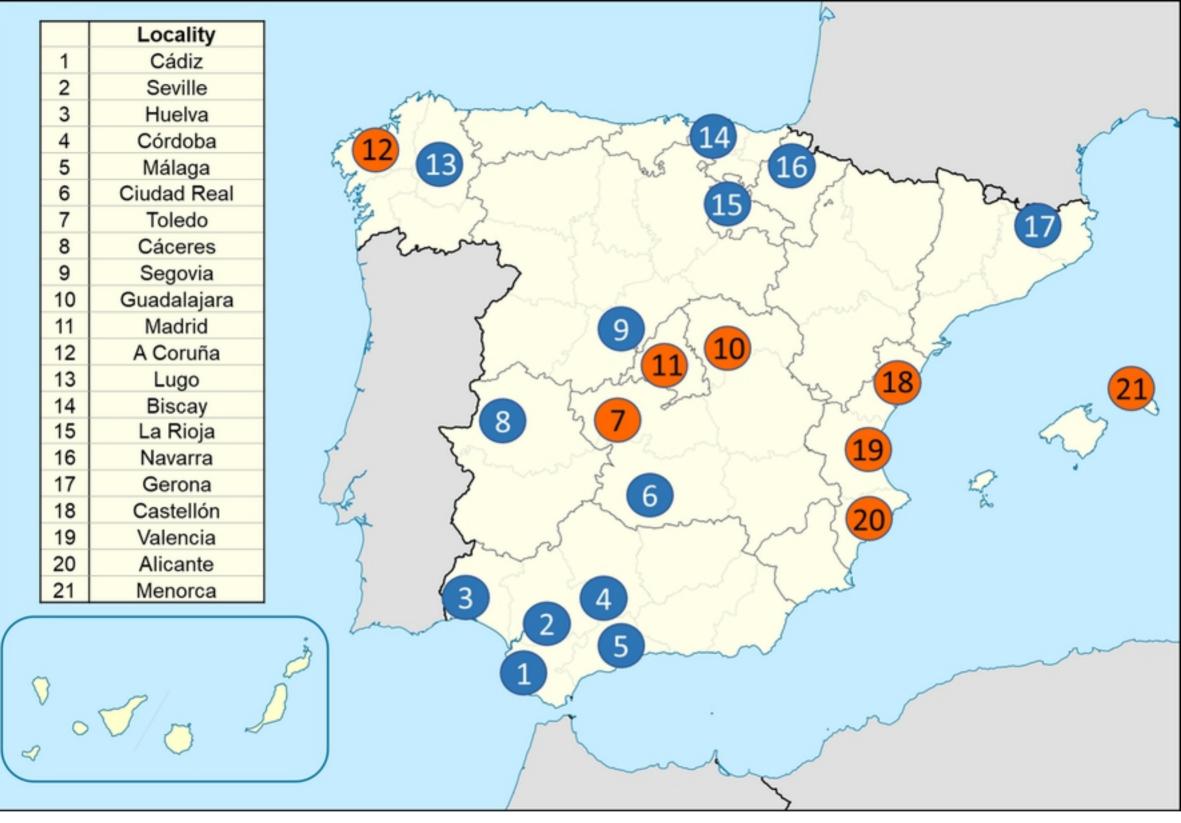
- 601 S1 Table. Result of the percentage models. Models under Brownian motion, Pagel and
- 602 Ornstein-Uhlenbeck structures.
- 603 S2 Table. Results of absence/presence model. Estimate value, standard error, Z-score and p-

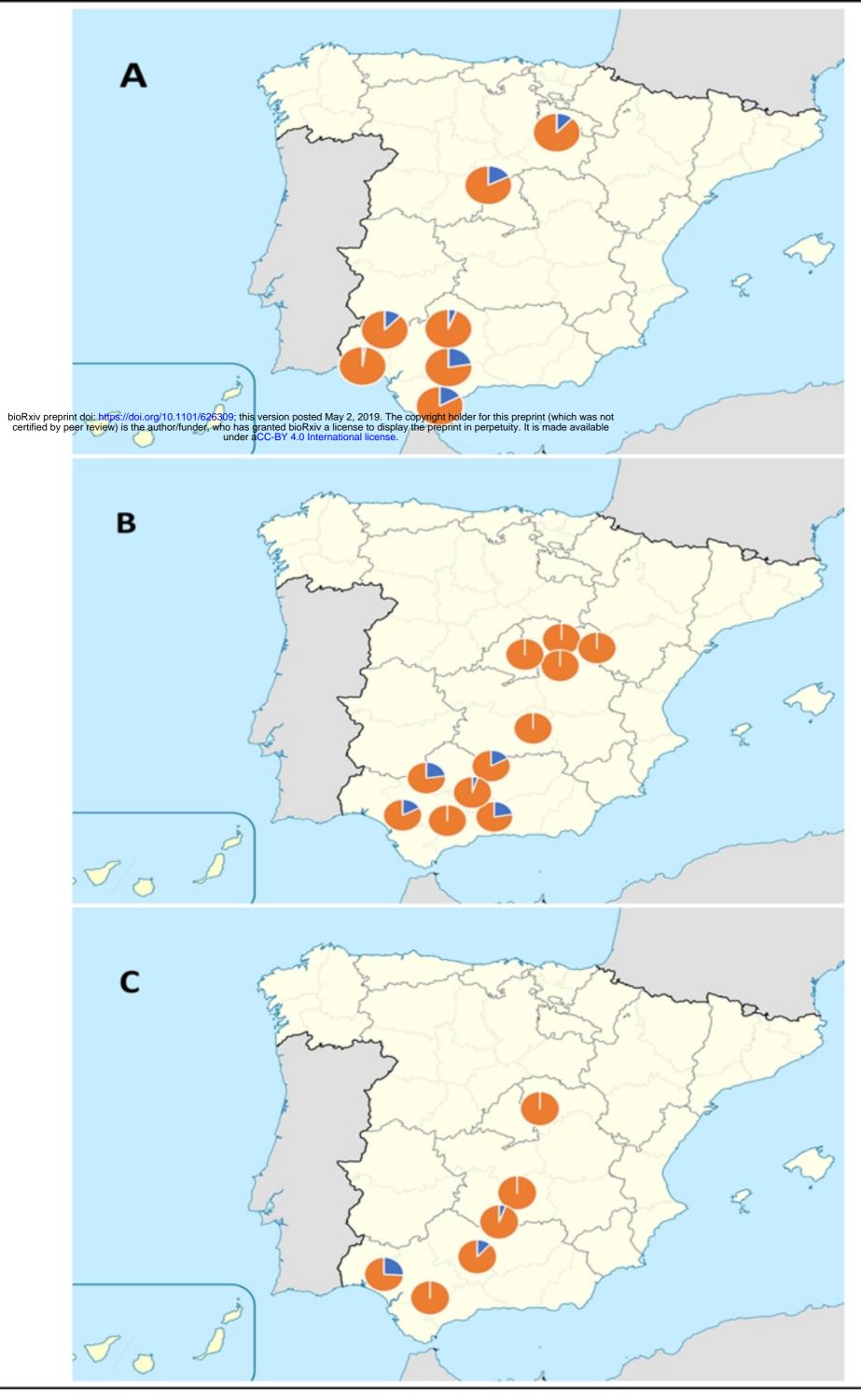
604 value included.


- S3 Table. Result of GLMM model (individual level) for each species taken into account. A: *Nyctalus lasiopterus*. B: *Pipistrellus pygmaeus*. C: *Pipistrellus kuhlii*.
- 607 S4 Table. Traits used in the model for each species. Information taken from: 1: Dietz et
- *al.*[34], 2: Action Plan for the Conservation of All Bat Species in the European Union [64].
- Values indicated with asterisk have been obtained by personal communication of Jens Rydell
- 610 and Jesús Nogueras Montiel.
- 611 S1 Fig. Evolutionary relationships of bat species considered in this study. Based on the
- 612 phylogenetic hypotheses of: Guillén-Servent *et al* [52].; Hoofer and Bussche [55]; Ruedi *et al.* [53]
- and Stadelmann *et al.* [54]. Branch lengths reflect mitochondrial sequence divergences. Tip
- 614 labels indicate species screening positive (black) or negative (white) for AdVs.
- 615 S2 Figure. Scatterplot showing the results of the Mantel test. Mantel test between the matrix
- of differences in percentages of AdVs presence and the matrix of geographic distances for (A)
- 617 Nyctalus lasiopterus (B) Pipistrellus pygmaeus and (C) P. kuhlii.

Figure

Nyctalus lasiopterus





Figure

Α

Figure

Figure