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Abstract (153) 

 

Despite the success of therapies targeting oncogenes in cancer, clinical outcomes are 

limited by a residual disease that results in relapse. This residual disease is 

characterized by drug-induced adaptation, that in melanoma includes altered 

metabolism. Here, we examined how targeted therapy reprograms metabolism in 

BRAF-mutant melanoma cells using a genome-wide RNAi screen and global gene 

expression profiling. This systematic approach revealed post-transcriptional regulation 

of metabolism following BRAF inhibition, involving selective mRNA transport and 

translation. As proof of concept we demonstrate the RNA binding kinase UHMK1 

interacts with mRNAs that encode metabolic proteins and selectively controls their 

transport and translation during adaptation to BRAF targeted therapy. Inactivation of 

UHMK1 improves metabolic response to BRAF targeted therapy and delays resistance 

to BRAF and MEK combination therapy in vivo. Our data support a model wherein 

post-transcriptional gene expression pathways regulate metabolic adaptation 

underpinning targeted therapy response and suggest inactivation of these pathways 

may delay disease relapse. 
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Introduction 
 
Clinical outcomes for cancer patients treated with oncogene targeted therapy are 

limited by residual disease that ultimately results in relapse. This residual disease is 

characterized by drug-induced cellular adaptation that precedes development of 

resistance. Maximum inhibition of oncogenic signalling has been the prevailing 

paradigm for improving antitumor responses to targeted therapies. For example, 

maximal suppression of BRAF-MEK signalling using combination therapy is current 

standard of care for BRAF mutant melanoma patients. Although this approach 

extended median survival to over 24 months from a historical base of less than 12 

months (Larkin et al., 2014; Robert et al., 2015), the majority of patients still develop 

resistance and succumb to the disease. Targeting genetic features of drug resistant, 

relapsed disease has emerged as another paradigm to achieve more durable 

responses, however over 20 mechanisms of resistance have been identified in 

melanoma patients progressing on targeted therapy (Lim et al., 2017), revealing 

limitations in this approach. Prior to relapse, BRAF targeted therapy induces cellular 

adaptation that underlies residual disease (Menon et al., 2015; Rambow et al., 2018; 

Sharma et al., 2010; Su et al., 2017), and it has been proposed that non-mutational 

mechanisms underpinning this adaptability may provide new targets to improve clinical 

outcomes for patients. 

 

Altered metabolism is a hallmark of cancer that has been intensely investigated over 

the last decade. How therapy reprograms metabolism and the role this plays during 

the adaptive response and development of resistance has received much less 

attention. In the setting of melanoma, we have previously shown that BRAFV600 

inhibitor sensitivity correlates with glycolytic response in pre-clinical (Parmenter et al., 

2014) and clinical studies (McArthur et al., 2012). BRAF inhibition (BRAFi) also 

renders BRAFV600 melanoma cells addicted to oxidative phosphorylation (OXPHOS) 

by releasing BRAF mediated inhibition of a MITF-PGC1A-OXPHOS pathway (Haq et 

al., 2013). This unleashes adaptive mitochondrial reprogramming, ultimately facilitating 

drug tolerance likely by compensating for suppressed glycolysis. Consistent with these 

observations, a “nutrient-starved” cell state emerges during the early drug adaptation 

phase following combined BRAF and MEK inhibition in vivo, and critically, cells appear 

to transition through this adaptive state as they acquire resistance (Rambow et al., 
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2018). Clinically, PGC1α (a biomarker for elevated OXPHOS) is induced in BRAFV600 

melanoma patients treated with BRAFi, either alone (Haq et al., 2013) or in 

combination with MEK inhibitors (Gopal et al., 2014), whilst tumors that relapse 

following MAPK inhibitor treatment display an elevated mitochondrial biogenesis 

signature (Zhang et al., 2016). Together, these data suggest that maximal suppression 

of glycolysis and concurrent inhibition of adaptive mitochondrial metabolism may lead 

to improved outcomes to MAPK pathway targeted therapy by interfering with metabolic 

reprogramming underpinning drug-induced cellular adaptation. Notably, however, early 

results emerging from clinical trials of mitochondrial inhibitors such as biguanides have 

been largely disappointing (Kordes et al., 2015), and recent preclinical analyses 

support the concept that mechanisms underlying metabolic plasticity and adaptation 

may represent a more attractive therapeutic target (Hulea et al., 2018).  

 

Here, we examined metabolic reprogramming in the therapeutic adaptation phase 

prior to acquired resistance using a genome-wide RNAi screen and global 

transcriptomic profiling. This systematic approach uncovered mRNA transport and 

translation pathways as regulators of metabolic response to BRAFi in BRAFV600 

melanoma cells. Mechanistically, we demonstrate that metabolic response and 

adaptation is associated with  selective mRNA transport and translation of metabolic 

proteins critical to BRAF inhibitor sensitivity and resistance, including glucose 

transporters and OXPHOS enzymes. This translational reprograming is mediated by 

the RNA binding kinase UHMK1 that is required for mitochondrial flexibility in response 

to BRAFi and controls the abundance of metabolic proteins through the export and 

translation of the mRNA that encode them. Importantly, genetic inactivation of UHMK1 

increases sensitivity to BRAF and MEK combination therapy and delays resistance in 

vivo. Together, our data support a model wherein selective mRNA transport and 

translation contributes to metabolic adaptation underpinning therapy induced cancer 

cell plasticity, and suggests inhibition of this pathway may delay resistance to MAPK 

pathway targeted therapies.  

 

Results 

 

RNA binding, transport and translation pathways regulate metabolic response to 

inhibition of oncogenic BRAF signaling. 
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To identify regulators of metabolic response following treatment with oncogene 

targeted therapy, we performed a genome wide RNAi glycolysis screen using 

BRAFV600 melanoma cells treated with the BRAF inhibitor (BRAFi) vemurafenib (Vem) 

as a paradigm (Figure 1A). Lactate is routinely used to measure glycolysis and can be 

readily detected in growth medium using a lactate dehydrogenase (LDH) enzyme 

based reaction. Cell number and viability were determined from nuclear DAPI staining 

using automated image analysis. For the screen, cells were first transfected with the 

human siGENOME SMARTPool library and subsequently treated with DMSO or a sub 

maximal dose of Vem (~IC25)(Figure 1A). We chose a 48hr treatment which is within 

the window of metabolic adaptation following BRAFi, whereby maximal suppression of 

glycolysis (Parmenter et al., 2014) and adaptive mitochondrial reprogramming ((Haq et 

al., 2013; Zhang et al., 2016); Figure S1A) is observed. Notably, increased expression 

of SLC7A8 (LAT2), a biomarker of a drug tolerant “starved” melanoma state following 

BRAFi+MEKi in vivo (Rambow et al., 2018), was also observed (Figure S1B). 

Transfection of WM266.4 BRAFV600 cells with siRNA targeting polo-like kinase 1 

(PLK1; death control) and pyruvate dehydrogenase kinase 1 (PDK1; glycolysis control) 

were used to define the dynamic range of the screening assays (Figure 1B),  and 

notably, glycolysis was significantly more attenuated in Vem+siPDK1 cells compared 

to either Vem or siPDK1 alone, providing proof of principle for the major aim of the 

screen. 

 

In the absence of drug, viability was impaired by depletion of 622 genes (Table S1) 

that formed a robust network (Figure S2A) enriched for regulators of cell cycle, 

translation and the ribosome (Figure S2B), processes previously shown to be critical 

for melanoma survival (Boussemart et al., 2014; Feng et al., 2015; Kardos et al., 

2014). Glycolysis was reduced by depletion of 164 genes (Table S2), and as expected 

these genes were enriched with annotations associated with metabolism (Figure S2C 

and Table S2). To identify genes that regulate viability and glycolytic response to 

BRAFi, genes were grouped based on fold change data for each parameter in DMSO 

versus Vem treatment conditions (see supplementary information). This analysis 

identified 717 genes (Table S3) that were enriched for MAPK and GPCR signaling, 

and histone methylation, consistent with previous studies investigating BRAFi 

resistance (Figure 1C & Figure S2D)(Johannessen et al., 2013). However, 

surprisingly, the most striking feature of the gene set was RNA binding and transport, 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 21, 2019. ; https://doi.org/10.1101/626952doi: bioRxiv preprint 

https://doi.org/10.1101/626952


 6

which was associated with 4 of the top 20 annotations ranked by P-value (Figure 1C & 

Table S3), with a total of 12 annotations associated with these pathways enriched in 

the dataset (Table S3). The identification of RNA binding and transport genes in our 

screen was particularly intriguing given these proteins are emerging as key 

determinants of gene expression programs activated in response to 

microenvironmental stress, including nutrient deprivation (El-Naggar and Sorensen, 

2018). This group also included components of the EIF3 and EIF4F translation 

initiation complexes, and genes that regulate selective mRNA translation, thus also 

implicating mRNA translation in metabolic response to BRAFi. Notably, EIF4F has 

previously been reported as a nexus of resistance to MAPK pathway inhibitors in 

melanoma (Boussemart et al., 2014) thus further supporting performance of the 

screen. Comparative network analysis revealed 3 major hubs connect the viability and 

glycolysis networks; 1. GPCR signaling, 2. MAPK signaling, and 3. RNA transport and 

translation (Figure 1D), suggesting these pathways may coordinately regulate 

metabolic and viability responses to BRAFi. Consistently, 7 of the RNA transport and 

translation genes also enhanced the effects of Vem on viability (Figure 1E). The major 

findings of the screen were confirmed using a secondary de-convolution screen, 

whereby four individual siRNA duplexes were assessed to determine reproducibility of 

gene knockdown phenotypes. Notably, multiple RNA transport and translation genes 

were validated by 2 or more duplexes (33%; Figure S2E). We next assessed changes 

in expression of the RNA binding, transport and translation gene set using a published 

transcriptomic analysis of melanoma patients progressing after treatment with 

BRAF+/-MEK inhibitor treatment (Hugo et al., 2015). Strikingly, this analysis revealed 

that 18 out of 23 (78%) RNA transport and translation genes were upregulated in 10-

36% of patients progressing on BRAF+/-MEK inhibitor treatment (Figure 1F & Table 

S4). By way of comparison, PGC1A was upregulated in 43% of patients in this 

dataset, whilst other previously documented biomarkers of acquired resistance to 

MAPK pathway inhibition in patients, c-MET and AXL, were upregulated in 33% of 

patients (Figure 1F). Viewed together, these large scale and unbiased analyses 

support a role for RNA binding, transport and translation pathways in regulation of 

metabolic response and viability following BRAFi. 

 

BRAFi induces transcriptional and translational reprogramming of metabolism 

in BRAFV600 melanoma cells.  
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Given our functional screen suggested a role for post-transcriptional gene regulation 

pathways in metabolic reprogramming following BRAFi, we next assessed changes in 

mRNA abundance and translation efficiency by isolating total mRNA and mRNA bound 

to ribosomes using poly-ribosome (polysome) profiling (Figure 2A). Cell lysates were 

fractionated on a sucrose density gradient to isolate mRNA in sub-polysome (RNA-

protein (mRNP) complexes and 40S, 60S, and 80S monomer peaks) or actively 

translating polysome (4 or more ribosomes) fractions (Gandin et al., 2014), and were 

analysed using RNA sequencing (RNA-seq). Of note, the number of ribosomes bound 

to mRNA is proportional to translation efficiency under most conditions. Global 

polysome profiles generated from DMSO treated A375 cells revealed a high basal rate 

of translation, and strikingly, this was potently suppressed by BRAFi at both 24 and 

40hr (Figure 2B). Notably, this global inhibition of mRNA translation coincides with 

overt cellular adaptation (Figure S1) that presumably requires synthesis of new 

proteins, thus supporting the idea that selective mRNA processing and translation 

pathways play a role during the adaptive response to BRAFi. 

 

In order to identify transcriptome-wide changes in mRNA abundance and translation 

we used anota2seq (Figure 2A & Table S5)(Oertlin et al., 2019). Consistent with our 

previous studies (Parmenter et al., 2014), GSEA of changes in total mRNA levels 

revealed downregulation of multiple gene sets associated with the cell cycle and MYC 

transcription following 24hr of BRAFi, and these gene sets were further downregulated 

following 40hr treatment (Figure S3A and Table S6). In contrast, amongst the most 

significantly upregulated transcripts following 40hr BRAFi were biomarkers of the 

adaptive starved melanoma cell state identified in vivo (SLC7A8, CD36 and DLX5; 

Figure S3B)(Rambow et al., 2018). We next explored the global relationship between 

mRNA levels and mRNA translation efficiency during the drug treatment time course. 

Notably, although changes in total mRNA levels correlated strongly with changes in 

polysome association after 24hr and 40hr BRAFi compared to DMSO (R2=0.94, and 

0.91 respectively), this relationship was less apparent when the 24hr and 40hr 

timepoints were compared (R2=0.57)(Figure 2C), indicating that changes in polysome 

associated mRNA cannot be solely explained by corresponding changes in mRNA 

abundance. These data indicate that mRNA transcription and processing is tightly 

coupled with mRNA translation efficiency within the early BRAFi response, however 

interestingly, this relationship appears to be uncoupled later during drug-induced 
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adaptation (from 24-40hrs) indicating post-transcriptional modes of gene expression 

regulation. Analysis at the pathway level using GSEA also revealed differences 

between mRNA levels and mRNA translation 24hr and 40hrs post treatment, whereby 

the cell cycle and MYC pathways were the only significantly downregulated pathways 

in both datasets, and notably, decreases in translation efficiency of these pathways 

occurred later in the drug treatment at the 40hr time point (Figure S3A). Comparative 

analysis of total mRNA and polysome-associated mRNA levels identified genes with 

changes in total mRNA that were not reflected by a similar change in polysome-

associated mRNA. These genes are termed “translationally buffered” (Figure 

2A)(Oertlin et al., 2019), and indicate post-transcriptional mechanisms of gene 

regulation. GSEA of the translationally buffered gene set identified enrichment of 

multiple metabolic pathways, including pyrimidine metabolism and multiple OXPHOS 

gene sets (Figure 2D & S3C-D). Furthermore, functional annotation enrichment 

analysis of significant buffered genes (FDR < 0.1; Table S5) also revealed enrichment 

of OXPHOS and aerobic respiration (p < 0.05; Figure 2E & Table S7), further 

supporting post-transcriptional regulation of aerobic mitochondrial metabolism 

following BRAFi. Of note, these OXPHOS pathways were identified as “buffered 

(mRNA down)”, which corresponds to decreases in total mRNA levels and no change 

in polysome associated mRNA levels, as observed in single-sample GSEA pathway 

activity plots (Figure 2F & S3D). Importantly, discordance between translation 

efficiencies and total mRNA levels were validated for representative OXPHOS genes 

using qRT-PCR analysis of independently generated samples (Figure 2G-H), and 

consistent with the polysome profile analysis, OXPHOS protein levels corresponding 

to complexes I-IV were maintained or increased following BRAFi (Figure 2I). Indicating 

multiple modes of regulation for the OXPHOS pathway, no significant change in 

translation efficiency, total mRNA levels or protein levels, were observed for ATP5A 

(complex V). We also noted that MYC targets were enriched in the translational 

buffering dataset, potentially indicating that transcriptional downregulation of MYC 

targets may be uncoupled from mRNA translation. Because MYC-dependent 

regulation of glycolysis is a critical factor determining BRAFi sensitivity (Parmenter et 

al., 2014), we next explored adaptive translational buffering of MYC targets (Figure 

S3E) that relate to glycolysis, glucose transporter 1 (GLUT1) and hexokinase 2 (HK2). 

qRT-PCR analysis of GLUT1 and HK2 revealed total mRNA and polysome profiles 

consistent with translational buffering (Figure S3F-G), suggesting that any mRNA 
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remaining in the cell following BRAFi will be translated at high efficiency. Interestingly, 

this data suggests that concordant inactivation of transcription and selective mRNA 

translation pathways may achieve more rapid and complete inactivation of glycolysis 

following BRAF targeted therapy, consistent with reduced lactate production in the 

orginal RNAi screen when expression of genes encoding regulators of mRNA 

processing were reduced. 

 

Viewed collectively, these findings are consistent with our genome wide functional 

screen and support a role for selective post-transcriptional mRNA processing 

pathways in regulation of the proteome during early adaptive responses to BRAF. This 

includes key pathways implicated in metabolic reprogramming by BRAF and BRAFi 

sensitivity, MYC-driven glycolysis and oxidative mitochondrial metabolism. 

 

Depletion of the RNA binding kinase UHMK1 sensitizes BRAFV600 melanoma 

cells to BRAFi.  

Our systematic functional and transcriptomic approaches supported a role for selective 

RNA processing and translation pathways in metabolic response to BRAFi. Among the 

RNA processing proteins identified in our screen, U2AF homology motif (UHM) kinase 

1 (UHMK1) was of most interest given it is the only known kinase to contain a classical 

RNA binding domain (the UHM domain), raising the hypothesis that it may function as 

a hub linking cell signaling and RNA processing. Moreover,  UHMK1 regulates 

neuronal plasticity and adaptation via selective RNA transport and translation 

(Cambray et al., 2009; Pedraza et al., 2014) thus we hypothesized it may facilitate 

adaptive cellular reprogramming via RNA processing in the context of adaptation 

following BRAFi. We next investigated the role of UHMK1 in regulation of proliferative 

and metabolic responses to BRAFi in a panel of BRAF mutant melanoma cell lines 

(Figure 3 & S4). First, UHMK1 knockdown was confirmed using qRT-PCR and western 

blotting (Figure S4A). Because UHMK1 lacks a specific antibody for the endogenous 

human protein, we also confirmed increased levels of its key target p27, which is 

degraded following phosphorylation by UHMK1 (Boehm et al., 2002). siUHMK1+Vem 

treated cells showed more attenuated lactate production (Figure 3A), glucose 

utilization (Figure 3B), and extracellular acidification rates (ECAR; Figure 3C), when 

compared to BRAFi alone, indicating a reduction in glycolysis. A more marked 

reduction in cell number (Figure S4B) and cell proliferation (Figure 3D-E) was also 
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observed in siUHMK1+Vem cells compared to Vem alone, and conversely, an 

increase in cell death was observed in 3 out of 4 cell lines (Figure 3F). Together these 

data confirm a role for UHMK1 in glycolytic, proliferative, and viability responses to 

BRAFi in BRAFV600 melanoma cells. Because UHMK1 kinase activity is required for 

regulation of mRNA processing in some contexts (Cambray et al., 2009; Manceau et 

al., 2008), we were next interested in exploring the role of UHMK1 kinase activity in 

BRAFi response. The kinase domain of UHMK1 shows limited homology to known 

kinases, however a K54A mutation in the putative active site extinguishes kinase 

activity (Maucuer et al., 1997). In order to assess UHMK1 kinase activity in BRAFi 

response, we first genetically inactivated UHMK1 using CRISPR-Cas9 and confirmed 

increased sensitivity of A375 cells to BRAFi (Figure 3G). Importantly this effect was 

rescued by expression of UHMK1-V5, but not the kinase dead K54A-V5 mutant 

(Figure 3G). UHMK1 expression and activity was confirmed using qRT-PCR and 

western blot analysis (Figure S4C). Viewed together, this data confirms a role for 

UHMK1 kinase activity in therapeutic responses to BRAF inhibition in melanoma cells.  

 

UHMK1 reprograms mitochondrial metabolism in response to BRAFi 

in BRAFV600 melanoma Cells. 

We next investigated whether UHMK1 can also promote adaptive reprogramming of 

mitochondrial metabolism in response to BRAFi in melanoma cells. Due to cell death 

after 72hr treatment with Vem+siUHMK1 (Figure 3F), we assessed cells after 48hr 

which immediately precedes overt mitochondrial reprogramming (Figure S1A). 

Analysis of oxygen consumption rates (OCR) using Seahorse extracellular flux 

analysis (Figure 4A) revealed only modest effects on basal and maximal OCR (Figure 

4B & C) in Vem+siUHMK1 treated cells. However, significant reductions in spare 

respiratory capacity (Figure 4D) and ATP production (Figure 4E) were observed, 

indicating a reduced ability to respond to changes in energy demand and suggesting 

that UHMK1 can promote mitochondrial flexibility in response to BRAFi. Impaired 

mitochondrial metabolism in Vem+siUHMK1 treated cells was not associated with 

reduced mitochondrial number (Figure 4F), moreover only modest effects on PGC1A 

mRNA expression was observed (Figure 4G). We also assessed expression of 

mitochondrial transcription factor A (TFAM), another key regulator of mitochondrial 

biogenesis, and again saw no evidence of a role for UHMK1 in its expression. Instead, 

analysis of OXPHOS protein levels following Vem treatment revealed that increased 
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expression of several OXPHOS proteins (NDUFB8, SDHB, UQCRC2, MTCO1) was 

UHMK1 dependent (Figure 4H). Together this data suggests that UHMK1 is required 

for regulation of oxidative metabolism following BRAFi by modulating OXPHOS protein 

expression independent of changes in the PGC1A- or TFAM- mitochondrial biogenesis 

transcription factor networks. 

 

UHMK1 binds to mRNA encoding metabolic proteins and regulates their nuclear-

cytoplasmic transport in BRAFV600 melanoma cells adapting to BRAFi. 

In order to establish how UHMK1 regulates metabolic response to BRAFi, we next 

assessed  its role in the mRNA expression pathway from transport to translation. The 

effect of Vem and UHMK1 knockdown on nuclear-cytoplasmic mRNA transport was 

first assessed using RNA fluorescence in situ hybridization (FISH) with an oligo(dT) 

probe which specifically binds to poly(A)+ pools of RNA (Figure 5A). In control 

conditions, the poly(A)+ signal was predominantly equal between the nucleus and 

cytoplasm (Figure 5A), however in contrast, depletion of the principal mRNA export 

factor NXF1 caused accumulation of the poly(A)+ signal in the nucleus (Figure 5A-B). 

Notably, nuclear accumulation of poly(A)+ mRNA was also observed in UHMK1 

depleted cells, confirming a role for UHMK1 in mRNA transport in the context of 

melanoma cells. BRAFi also gave rise to a significant increase in the poly(A)+ nuclear 

to cytoplasm ratio (Figure 5B), however no further change was observed in the 

siUHMK1+Vem and siNXF1+Vem treated cells.  

 

The more modest phenotype of UHMK1 compared to NXF1 depletion indicated a 

selective role for UHMK1 in mRNA transport. To extend these observations, we next 

assessed nuclear-cytoplasmic transport of specific mRNA transcripts using qRT-PCR 

analysis of nuclear and cytoplasmic mRNA pools generated from subcellular 

fractionation. The fractionation was verified by monitoring levels of mRNA known to be 

enriched within the nucleus (metastasis associated lung adenocarcinoma transcript 1; 

MALAT1) and cytoplasm (ribosomal protein S14; RPS14)(Figure S5A). We focused on 

GLUT1, HK2, and UQCRC2 that showed evidence of post-transcriptional regulation 

from our polysome profiling analysis. Notably, reduced cytoplasmic mRNA (UQCRC2) 

and increased nuclear mRNA (GLUT1 & HK2; Figure 5C-D & S5B) was observed 

specifically in the Vem+siUHMK1 treated cells, indicating UHMK1 depletion results in 

defects in GLUT1, HK2, and UQCRC2 mRNA transport following BRAFi. In contrast, 
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analysis of PGC1A and ATP5A transcripts revealed no significant change in mRNA 

distribution (Figure 5E & S5B), consistent with no evidence of a role for post-

transcriptional mechanisms or UHMK1 in their regulation from previous analyses 

(Figure 2&4). Together, these observations suggest that UHMK1 can selectively 

regulate nuclear-cytoplasmic mRNA transport in the context of therapeutic adaptation 

in BRAFV600 melanoma cells following BRAFi. 

 

UHMK1 directly regulates localization and translation of specific mRNA transcripts by 

binding to mRNA (Cambray et al., 2009; Pedraza et al., 2014). To determine whether 

UHMK1 directly regulates mRNA encoding metabolic proteins following BRAF 

inhibition, we performed RNA immunoprecipitation (RNA-IP) assays using UHMK1-V5 

expressing melanoma cells following DMSO or Vem treatment (Figure S5C). 

Strikingly, GLUT1, UQCRC2 and HK2 mRNA were not found in association with 

UHMK1-V5 in treatment naïve cells, however a significant increase in their association 

was observed following Vem treatment (Figure 5F & S5D). Further indicating 

specificity of the analysis and the pathway, no PGC1A mRNA could be detected in 

association with UHMK1 in any condition (Figure 5F). These data provide evidence 

that UHMK1 can directly regulate GLUT1, HK2, and UQCRC2 mRNA transport by 

physically associating with their mRNA, and strikingly, this association is induced by 

BRAFi. 

 

UHMK1 associates with polysomes and regulates selective translation of mRNA 

encoding metabolic proteins following BRAFi. 

To test the hypothesis that regulation of mRNA transport by UHMK1 selectively 

promotes translation of metabolic proteins following BRAFi, we next characterized the 

translational response of UHMK1 target genes following BRAFi. To achieve this we 

analyzed de novo synthesis of GLUT1 and OXPHOS proteins by giving a pulse with 

the methionine analogue L-azidohomoalanine (AHA), which is incorporated into all 

newly synthesized proteins (Figure 6Ai). This is followed by biotin labeling, streptavidin 

pull-down, and western blot analysis. Consistent with our polysome profile analysis, 

we observed a striking decrease in total AHA-labelled protein indicating a global 

inhibition of protein synthesis following 72hr Vem treatment (Figure 6Aii). In contrast, 

analysis of OXPHOS proteins following Vem treatment revealed a significant increase 

in de novo synthesis of UQCRC2 (Figure 6B-C), and significantly, increased synthesis 
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of this OXPHOS protein was UHMK1 dependent. Again, supporting specificity of this 

pathway, no significant change in synthesis of ATP5A protein was observed (Figure 

6B), consistent with polysome profiling of ATP5A mRNA (Figure 2D). Strikingly, we 

also observed that although GLUT1 protein synthesis was decreased following Vem 

treatment, this reduction was significantly more pronounced following UHMK1 

knockdown (Figure 6B-C). This data suggests that UHMK1 depletion may cooperate 

with BRAFi to elicit a double-hit on the glycolysis pathway, whereby both GLUT1 

mRNA transcription and translation is concurrently switched off. Linking these 

observations to UHMK1’s role in cellular responses to BRAFi, depletion of UQCRC2 

and GLUT1 phenocopy UHMK1 knockdown whereby enhanced sensitivity to BRAFi 

was observed in cell proliferation assays (Figure S6A-C and (Parmenter et al., 2014)). 

However in contrast, no effect on Vem sensitivity was observed in the context of 

Vem+siATP5A treated cells (Figure S6C). Together, this data supports a model 

whereby UHMK1 regulates glycolysis and mitochondrial metabolism following BRAFi 

via mRNA transport and translation.  

 

The mechanistic target of rapamycin (mTOR) pathway regulates translation and 

anabolic metabolism in response to nutrient supply (Ben-Sahra and Manning, 2017) 

and has been linked with a high OXPHOS phenotype in BRAF and MEK inhibitor 

resistance in melanoma cells (Gopal et al., 2014). Notably, although mTOR signaling 

was suppressed following BRAFi (Figure S7), no further changes to this pathway were 

observed following UHMK1 depletion, suggesting UHMK1 functions in an alternative 

pathway to modify mRNA translation during the early adaptation phase in cells treated 

with BRAFi. Differential association of mRNA processing and transport proteins with 

polysomes, and selective delivery of the transcripts they associate with, is another 

attractive hypothesis to explain translation of selective transcripts. To further explore 

the role of UHMK1 in adaptive programs following BRAF therapy, we precipitated 

proteins associated with polysomes using UHMK1-V5 expressing cells treated with 

DMSO or Vem (Figure 6D). As expected, small ribosomal protein RPS6 (a 40S 

ribosome component) was distributed in all fractions in control conditions, whilst large 

ribosomal protein RPL11 (an 80S ribosome component) was absent from early mRNP 

and 40S fractions. A significant reduction in the polysome to sub-polysome ratio was 

observed after Vem treatment (Figure 6E), consistent with global inhibition of 

translation (Figure 6D). Moreover, tubulin was restricted to sub-polysome fractions in 
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both DMSO and Vem treated samples, further confirming specificity of the analysis 

(Figure 6D). In contrast, UHMK1-V5 protein was predominantly associated with sub 

polysome fractions in control conditions, however a redistribution of the protein to 

actively translating polysome fractions was observed following Vem treatment (Figure 

6D-E). This data suggests that not only is UHMK1 recruited to polysomes in 

melanoma cells, but this association increases in response to BRAF therapy. 

Consistent with these observations, immunofluorescence analysis revealed a dramatic 

re-localization of UHMK1 from the nucleus to cytoplasm in cells treated with Vem 

(Figure 6F), and this was not associated with any change in UHMK1 protein levels 

(Figure S5Cii). Together this data supports a model whereby UHMK1 binds to mRNA 

and is translocated from the nucleus to the cytoplasm in response to BRAFi, where a 

proportion of the protein (~13%) associates with polysomes and participates in 

selective regulation of mRNA translation. 

 

Genetic inactivation of UHMK1 sensitizes BRAFV600 melanoma cells to BRAF and 

MEK combination therapy in vitro and in vivo. 

We were next interested in testing the hypothesis that UHMK1 depletion would 

improve response and delay resistance following treatment with the current standard 

of care for BRAFV600 melanoma patients, a BRAF+MEK inhibitor combination. First, we 

performed cell proliferation assays and observed more attenuated proliferation in cells 

treated with the siUHMK1+BRAFi+MEKi triple combination compared to the 

BRAFi+MEKi combination alone (Figure 7A-B). To assess the role of UHMK1 in 

therapeutic response to BRAFi+MEKi in vivo, we implanted A375 cells expressing 

CAS9 or two independent UHMK1 gRNA into NOD scid interleukin 2 gamma chain null 

(NSG) mice (Figure 7C-D). Importantly, increased sensitivity to BRAFi+MEKi 

combination therapy was observed in mice implanted with both UHMK1 knock out cell 

lines compared with mice implanted with the control cell line (Figure 7E), culminating 

in a highly significant increase in overall survival (Figure 7F). Viewed together, this 

data confirms a role for the UHMK1 RNA processing pathway in MAPK pathway 

inhibitor responses in BRAFV600 melanoma cells both in vitro and in vivo. 

 

Altogether, our findings support a model wherein post-transcriptional gene expression 

pathways regulate metabolic adaptation underpinning targeted therapy response. As 

proof of concept, we demonstrate a role for UHMK1 in regulation of metabolic 
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response and adaptation following BRAFi by controlling the abundance of metabolic 

proteins through the selective transport and translation of the mRNA that encode 

them. Importantly, inactivation of this pathway significantly improved survival following 

combined BRAF and MEK inhibition in vivo, suggesting inactivation of these pathways 

may delay disease relapse in melanoma patients. 

 

Discussion 

Despite the success of therapies targeting oncogenes in cancer, clinical outcomes are 

limited by drug-induced adaptation and acquired resistance (Hugo et al., 2015). An 

emerging phenomenon observed following inhibition of oncogenic signaling in a range 

of cancers is suppression of glycolysis and adaptive mitochondrial reprogramming and 

enhanced reliance on oxidative metabolism (Baenke et al., 2015; Biancur et al., 2017; 

Caino et al., 2015; Ghosh et al., 2015; Haq et al., 2013; Hernandez-Davies et al., 

2015; Kluza et al., 2012; Parmenter et al., 2014). In pancreatic cancer models, cells 

that survive genetic inactivation of KRASG12D display elevated mitochondrial 

metabolism, and treatment with an ATP synthase inhibitor delays relapse (Viale et al., 

2014). Treatment of glioblastoma with PI3K inhibitors drives adaptive mitochondrial 

reprogramming that is associated with tumor cell invasion (Caino et al., 2015). 

Mitochondrial metabolism can also influence drug sensitivity, wherein analysis of 

melanoma patient samples linked mitochondrial gene expression signatures with 

intrinsic and adaptive resistance to BRAF and MEK inhibitors (Zhang et al., 2016). 

Inhibitors of oxidative metabolism, or the processes controlling adaptive mitochondrial 

reprogramming, are therefore attractive targets for combination therapy to circumvent 

acquired resistance before it can develop in a broad range of cancers. Here, we define 

a new mechanism of non-genetic drug adaptation whereby adaptive mitochondrial 

metabolism is regulated at the level of mRNA transport and translation and we identify 

the RNA binding kinase UHMK1 as central to this process. We propose inactivation of 

this pathway may represent a new strategy to interfere with adaptive metabolic 

reprogramming following oncogene targeted therapy, and delay resistance in 

melanoma patients. 

 

mRNA translation has been implicated in responses to MAPK pathway inhibition and 

development of resistance in melanoma (Boussemart et al., 2014; Rapino et al., 

2018). Here, we demonstrate that despite global suppression of translation during the 
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early drug response phase, transcript selective translation reprograms mitochondrial 

metabolism through upregulation of OXPHOS proteins, and significantly, we show this 

is UHMK1 dependent. Importantly, upregulation of these mitochondrial proteins also 

occurs in melanoma patients progressing on BRAF and MEK targeted therapy (Zhang 

et al., 2016), linking these observations to resistance mechanisms in patients. 

Translational “buffering” (McManus et al., 2014) of glycolysis genes, whereby the rate 

of mRNA translation efficiency is maintained despite a decrease in total mRNA levels, 

also emerged from our analysis, and de novo protein synthesis assays revealed 

GLUT1 translation was maximally suppressed following UHMK1 depletion in 

combination with BRAFi. Viewed in the context of previous studies describing 

transcriptional repression of GLUT1 following BRAFi, this data supports a model 

whereby UHMK1 depletion cooperates with BRAFi to elicit a double-hit on the 

glycolysis pathway, whereby both GLUT1 mRNA transcription and translation is 

concurrently switched off. Consistent with these observations, Rapino et al (Rapino et 

al., 2018) have recently described codon-specific translational reprogramming of 

glycolytic metabolism in melanoma, in this case mediated by translational regulation of 

HIF1A by uridine 34 (U34) tRNA enzymes. Viewed together, these data suggest 

multiple mechanisms underpin transcript selective translational reprogramming of 

metabolism in cancer cells responding to oncogene targeted therapy. Interestingly, a 

recent report has also described translational reprogramming as a driver of phenotypic 

plasticity in the setting of melanoma cell invasion following glutamine deprivation 

(Falletta et al., 2017), indicating these pathways may also be part of a more general 

stress response activated by suppressed glycolytic metabolism when the BRAF 

oncogene is switched off. 

 

However, in order for mRNA to be translated into protein it must first be exported from 

the nucleus and transported into the cytoplasm. This process is not always 

constitutive, as transcript selective RNA export pathways can regulate a range of 

adaptive biological processes including DNA repair, proliferation and cell survival 

(Wickramasinghe and Laskey, 2015). Interestingly, RNA binding proteins have 

recently been shown to regulate pro-oncogenic networks to control melanoma 

development (Cifdaloz et al., 2017), however their role in therapeutic response and 

oncogenic BRAF function has not been reported. Our work now implicates mRNA 

binding and transport as a driver of transcript selective translation following therapy, 
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and we show that UHMK1 binds to mRNA encoding proteins relevant to metabolic 

response to MAPK pathway inhibitors and regulates their selective transport and 

translation. We suggest this mechanism allows cells to rapidly respond to cellular 

stimuli and stress such as nutrient deprivation. Interestingly, differential association of 

mRNA binding proteins with polysomes is one mechanism cells employ to rapidly 

regulate transcript selective translation (Aviner et al., 2017), and association of 

UHMK1 protein with polysome fractions following BRAFi is consistent with this 

concept. Moreover, a recent proteomic analysis of polysomes revealed 45% of all 

proteins identified were annotated as RNA binding, and a significant proportion of 

these were regulators of RNA transport and processing (Aviner et al., 2017). Notably, 

78% of the RNA transport and translation gene set identified by the screen were 

upregulated in 10 - 36% of patients progressing on BRAF +/- MEK inhibitor treatment. 

Importantly, this is comparable to documented biomarkers of acquired resistance to 

MAPK pathway inhibition in melanoma patients, including PGC1A (43%), AXL (33%) 

and c-MET (33%)(Hugo et al., 2015), indicating relevance of these findings to human 

disease. Further analyses are now required to identify gene expression signatures 

associated with dysregulation of UHMK1 and other selective RNA binding and 

transport pathways in order to comprehensively assess their role in early adaptive 

reprogramming of metabolism and how this influences response to oncogene targeted 

therapies in cancer patients. 

 

Our data suggests that UHMK1 inactivation does not influence selective RNA transport 

and translation through mTOR signaling, however UHMK1 activity is regulated by both 

AKT and ERK signaling in the context of growth factor stimulation (Lee and Kay, 

2011). Further work is required to determine if UHMK1 may itself be a downstream 

target of the mTOR signaling network and function coordinately to control transcript 

selective translation in conditions of nutrient deprivation experienced by cancer cells 

following treatment with oncogene targeted therapy. Indeed, the eIF4E translation 

initiation factor, a component of the eIF4F translation complex subject to regulation by 

mTOR, has been implicated in mRNA processing, including nuclear-cytoplasmic 

mRNA export and transport (Bollmann et al., 2013; Culjkovic et al., 2005; Culjkovic-

Kraljacic et al., 2012). Intriguingly, PGC1A expression and mitochondrial number 

remain unchanged by the BRAFi+siUHMK1 combination suggesting the UHMK1-RNA 

transport and translation pathway functions independently from the MITF-PGC1A-
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mitochondrial biogenesis pathway. Instead, a reduction in OXPHOS protein synthesis 

likely reduces the capacity of BRAFi+siUHMK1 treated cells to cope with glucose 

deprivation elicited by inhibition of BRAF signaling, a model supported by a reduction 

in spare metabolic capacity, and the ability of UQCRC2 knockdown to phenocopy 

UHMK1 depletion in combination with Vem.  

 

Viewed collectively, our work supports a model wherein selective mRNA transport and 

translation is activated in response to therapeutic stress and contributes to metabolic 

reprogramming underpinning the adaptive therapeutic response. Our data 

demonstrate that the RNA binding kinase UHMK1 binds to mRNA encoding metabolic 

proteins critical to BRAFi response, and is required for their transport and translation 

following BRAFi. Inactivation of UHMK1 interferes with adaptive mitochondrial 

reprogramming following BRAFi, and critically, delays resistance and improves 

survival following combined BRAF and MEK inhibition in vivo. We propose that 

selective RNA transport and translation serves as a non-genetic mechanism of cancer 

cell adaptation and may provide a new target to interfere with drug adaptation and 

improve the efficacy of targeted therapies. We speculate this mechanism may also be 

relevant in broader oncogene driven cancer settings where responses to targeted 

therapies are blunted by phenotypic adaptation involving reprogrammed glycolysis and 

mitochondrial networks.  

 

Figure Legends 

Figure 1. RNA binding, transport and translation pathways regulate metabolic 

response to BRAF inhibition. 

A. Schematic summarizing screen workflow (see methods). B. WM266.4 cells were 

transfected with the indicated siRNA and treated with DMSO or 300nM Vem for 48hr. 

Cell number was calculated using high content image analysis of DAPI stained cells 

(top panel) and growth media was collected for determination of lactate levels. Lactate 

absorbance values were normalized to cell number to determine lactate production per 

cell (bottom panel). Data is normalized to siOTP non-targeting (siOTP) transfected 

DMSO controls. Statistical significance was determined using a one-way ANOVA *** p 

> 0.001 (error bars = SEM, N=3). C. Functional annotation enrichment analysis was 

performed on 717 genes that enhanced the effects of Vem on lactate production 

(DMSO lactate per cell ratio < 0.5-fold change and Vem lactate per cell ratio > 0.5-fold 
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change; see Table S1) using DAVID. Data is displayed as Log2 fold change versus -

Log10 p-value. D. Network analysis was performed on 622 viability screen hits and 

717 hits that enhanced the effects of Vem on lactate production using String (see 

Figure S1). Comparative network analysis was performed using Cytoscape, and hubs 

connecting the two networks are highlighted. E. Heat map displaying viability and 

lactate screening data for the indicated genes. F. Heatmap displaying percentage of 

melanoma patients with up-regulation of the indicated mRNA transport and translation 

genes on progression following treatment with MAPK pathway inhibitors (data sourced 

from (Hugo et al., 2015); see Table S4). See also Figure S1-2. 

Figure 2. BRAFi induces transcriptional and translational reprogramming of 

metabolism in BRAFV600 melanoma cells 

A. Schematic depicting the polysome profiling assay used to isolate total mRNA and 

polysome-bound mRNA (poly-mRNA) for RNA-seq analysis. Transcriptome-wide 

changes in different modes of gene expression were identified using anota2seq 

(mRNA abundance = changes in total and poly-mRNA; mRNA translation = changes in 

poly-mRNA only; translational buffering = changes in total mRNA and no change in 

poly-mRNA; see text for details). B. Polysome profiles of A375 cells treated with either 

DMSO or 1μM Vem for the indicated time on a 10-50% sucrose gradient 

(representative of N=3). C. Scatterplots of Log2 fold change (Log2FC) total mRNA vs 

polysome-bound (translated) mRNA in cells treated with DMSO or 1μM Vem for the 

indicated time. Different modes of gene expression identified by anota2seq are shown. 

D. Significantly enriched pathways for the different modes of gene expression were 

identified using GSEA (FDR < 0.1; see also Figure S3). GSEA plot demonstrating 

enrichment of the KEGG oxidative phosphorylation (OXPHOS) pathway is shown. E. 

Functional annotation enrichment analysis was performed on 579 significantly 

“buffered” genes (FDR < 0.1; Table S5) using DAVID (GO Biological Process and 

KEGG; P-value < 0.05; Table S7). F. Single sample GSEA (ssGSEA) pathway activity 

plot demonstrating translational buffering of the OXPHOS pathway. G. Distribution of 

mRNA encoding the indicated genes on a 10-50% sucrose gradient was determined 

using qRT-PCR following 1μM Vem treatment for the indicated time (representative of 

N=2). H. mRNA levels of the indicated genes was determined using qRT-PCR analysis 

of total mRNA samples (error bars = SEM, N=2). I. Whole cell lysates were analyzed 
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by western blot for the indicated proteins following treatment with 1μM Vem for the 

indicated time (representative of N=3). See also Figure S3. 

Figure 3. Depletion of RNA binding kinase UHMK1 sensitizes BRAFV600 

melanoma cells to BRAFi 

WM266.4 and A375 cells were transfected with the indicated siRNA and treated with 

DMSO or 300nM Vem for 48hr. Media was collected and lactate production (A) and 

glucose utilization (B) was determined. C. Extracellular acidification rate (ECAR) was 

determined using Seahorse Extracellular Flux Analysis and normalized to cell 

confluency (left panels).  Basal ECAR was calculated from the third ECAR reading, 

and maximum (max) ECAR was calculated after treatment with the mitochondrial 

inhibitor oligomycin (fourth ECAR reading), and expressed as fold change relative to 

siOTP DMSO controls (error bars = SEM, N=3)(right panels). D. Cell proliferation was 

assessed in melanoma cells transfected with the indicated siRNA and treated with 

DMSO or 300nM Vem by monitoring confluency over time using an Incucyte 

automated microscope. Representative proliferation curves are shown. E. Average % 

confluency (normalized to T0) was calculated from proliferation data following 96hr 

treatment (error bars = SEM, N=3). F. Cell death was assessed in melanoma cells 

treated as in (E) using a Cell tox green cell death assay. Data is normalized to % 

confluency and expressed as fold change relative to siOTP DMSO controls (error bars 

= SEM, N=3). G. UHMK1 was genetically inactivated in A375 cells using CRISPR-

Cas9, and a luciferase control, wild type UHMK1 or a K54A kinase dead mutant were 

ectopically expressed and sensitivity to Vem was assessed. Data is expressed as 

mean GI50 fold change relative to Cas9-Luciferase controls (error bars = SEM, N=4). 

Statistical significance was determined using a one-way ANOVA * p > 0.05, ** p > 

0.01, *** p > 0.001, **** p > 0.0001. See also Figure S4. 

Figure 4. UHMK1 reprograms mitochondrial metabolism in response to BRAFi. 

WM266.4 and A375 cells were transfected with the indicated siRNA and treated with 

DMSO or 300nM Vem for 48hr. A. Oxygen consumption rate (OCR) was determined 

using Seahorse Extracellular Flux Analysis and representative profiles for WM266.4 

cells are shown (Oligo = oligomycin; FCCP = Carbonyl cyanide-4-(trifluoromethoxy) 

phenylhydrazone; Rot/Ant-A = rotenone + antimycin-A; representative of N=4). Effect 

of gene knockdown and Vem treatment on basal OCR (B), max OCR (C), spare 

respiratory capacity (SRC) (D), and ATP production (E) was determined following 
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treatment with mitochondrial inhibitors as indicated in (A). Data is normalized to cell 

number and expressed as fold change relative to siOTP DMSO controls (error bars = 

SEM, N=4). F. Mitochondrial number was determined using high content image 

analysis of Mitotracker stained melanoma cells treated as indicated (error bars = SEM, 

N=3). G. Effect of gene knockdown and Vem treatment on expression of the indicated 

genes was determined using q-RT-PCR. Data is expressed as Log2 fold change 

relative to siOTP DMSO controls. H. Whole cell lysates were analyzed by western blot 

analysis for the indicated proteins. Data is representative of N=3 (SE=short exposure; 

LE=long exposure). Statistical significance was determined using a one-way ANOVA * 

p > 0.05, ** p > 0.01, *** p > 0.001, **** p > 0.0001. 

Figure 5. UHMK1 binds to mRNA encoding metabolic proteins and promotes 

selective mRNA transport in BRAFV600 melanoma cells adapting to BRAFi. 

A375 cells were transfected with the indicated siRNA and treated with DMSO or 1μM 

Vem for 48hr. A. RNA fluorescence in situ hybridization (FISH) using a poly(A)+ RNA 

specific probe in A375 cells treated as indicated (representative of N=3). B. The 

nuclear to cytoplasm ratio of poly(A)+ RNA was calculated using high content image 

analysis.  Data is expressed as fold change relative to siOTP DMSO controls (error 

bars = SEM, N=3). C-E. Cell lysates were fractionated into nuclear and cytoplasmic 

pools of RNA and analyzed for the indicated genes using qRT-PCR. Whole cell lysates 

were used to assess total mRNA levels. F. RNA immunoprecipitation (RNA-IP) assays 

were performed in UHMK1-V5 expressing melanoma cells following treatment with 

DMSO or 1μM Vem for 48hr. The indicated mRNA transcripts were then analyzed 

using qRT-PCR. Statistical significance was determined using a one-way ANOVA * p > 

0.05, ** p > 0.01, *** p > 0.001, **** p > 0.0001. See also Figure S5. 

Figure 6. UHMK1 associates with polysomes and regulates selective translation 

of mRNA encoding metabolic proteins following BRAFi 

A. Schematic depicting the AHA-based de novo protein synthesis assay (i) and dot 

blot (ii) showing total AHA labelled protein obtained from siOTP or siUHMK1 

transfected cells following treatment with DMSO or 1μM Vem for 72hr. Data is 

representative of N=3. B. Protein lysates from input samples (left panel) and following 

streptavidin IP (right panel) were assessed using western blot analysis of the indicated 

proteins. C. Quantitation of AHA labelled protein shown in (B) (error bars = SEM, 

N=3). D. UHMK1-V5 expressing A375 cells were treated with DMSO or Vem for the 
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indicated time, prior to polysome profiling. Representative profiles of 2 independent 

experiments are shown (top panel). Proteins were precipitated from the sucrose 

fractions and the indicated proteins were analysed using western blotting (bottom 

panel). E. Protein levels in sub polysome (fractions 3-8) vs polysome (fractions 9-14) 

fractions were calculated using densitometry, and sub polysome to polysome ratios 

were calculated (error bars = SEM, N=2). F. UHMK1 localization was assessed using 

high content image analysis of UHMK1-V5 expressing A375 cells treated with DMSO 

or 1μM Vem for the indicated time (representative of N=3).  Statistical significance was 

determined using a one-way ANOVA * p > 0.05, ** p > 0.01, *** p > 0.001, **** p > 

0.0001.  

Figure 7. Genetic inactivation of UHMK1 sensitizes BRAFV600 melanoma cells to 

BRAF and MEK combination therapy in vitro and in vivo. 

Cell proliferation was assessed by monitoring confluency over time using an Incucyte 

automated microscope in melanoma cells transfected with the indicated siRNA and 

treated with DMSO, 300nM Vem, 10nM Cobi or Vem+Cobi. A representative 

proliferation curve (A) and average % confluency (normalized to T0) following 96hr 

treatment (B) is shown (error bars = SEM, N=3; top panel). C. Schematic of the in vivo 

drug sensitivity study. D. UHMK1 was genetically inactivated in A375 cells using 

CRISPR-Cas9 and UHMK1 KO was confirmed using qRT-PCR (i) and western blot 

analysis of UHMK1 target p27 (ii). E. Growth of A375-CAS9, A375-UHMK1-gRNA2 

and A375-UHMK1-gRNA4 tumors treated with vehicle or dabrafenib and trametinib 

(Dab/Tram)(n=9 per group). F. Kaplan–Meier curve of data in (E) shows survival 

advantage where survival is defined as time to a tumor exceeding a volume of 

1200mm3. ****P < 0.0001 by Log-rank (Mantel-Cox) test. 
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Figure 1. RNA binding, transport and translation pathways regulate metabolic response to BRAF inhibition.
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Figure 3. Depletion of UHMK1 sensitizes BRAFV600 melanoma cells to BRAF inhibition.
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A. B.

Figure 5. UHMK1 binds to mRNA encoding metabolic proteins and promotes selective mRNA transport in 
BRAFV600 melanoma cells adapting to BRAFi.
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Figure 6. UHMK1 associates with polysomes and regulates selective translation of mRNA encoding metabolic 
proteins following BRAFi.
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Figure 7. UHMK1 depletion sensitizes BRAFV600 melanoma cells to BRAF and MEK  
combination therapy in vitro and in vivo.
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injection in
NSG mice

- 3.5x 106 cells
Cell line 
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Tumors
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Day 1 Day 50Daily gavage 6d per week
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