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Abstract

Agonist binding to the extracellular part of G protein-coupled recep-
tors (GPCRs) leads to conformational changes in the transmembrane
region that activate cytosolic signalling pathways. Although high
resolution structures of the inactive and active receptor states are
available, the allosteric coupling that transmits the signal across
the membrane is not fully understood. We calculated free energy
landscapes of the β2 adrenergic receptor using atomistic molecular
dynamics simulations in an optimized string of swarms framework,
which sheds new light on the roles of microswitches involved in ac-
tivation. Contraction of the extracellular binding site in the presence
of agonist is obligatorily coupled to conformational changes in a con-
nector motif located in the core of the transmembrane region. In turn,
the connector is probabilistically coupled to the conformation of the
intracellular region: an active connector promotes desolvation of a
buried solvent-filled cavity and a twist of the conserved NPxxY mo-
tif, which leads to a larger population of active-like states at the G
protein binding site. This effect is further augmented by protona-
tion of the strongly conserved Asp79, which locks the NPxxY motif
and solvent cavity in active-like conformations. The agonist binding
site hence communicates with the intracellular region via a cascade
of locally connected switches and the free energy landscapes along
these contributes to understanding of how ligands can stabilize dis-
tinct receptor states. We demonstrate that the developed simulation
protocol is transferable to other class A GPCRs and anticipate that it
will become a useful tool in design of drugs with specific signaling
properties.

String method, Enhanced sampling, Activation mechanism, Collective
variable, Free energy calculations, Supervised learning

Introduction

G protein-coupled receptors (GPCRs) are membrane pro-
teins that activate cellular signaling pathways in response

to extracellular stimuli. There are >800 GPCRs in the human
genome (1) and these recognize a remarkably large repertoire
of ligands such as neurotransmitters, peptides, proteins, and
lipids. This large superfamily plays essential roles in numerous
physiological processes and has become the most important
class of drug targets (2). All GPCRs share a common archi-
tecture of seven transmembrane (TM) helices, which recognize
the cognate ligand in the extracellular region and triggers
intracellular signals via a more conserved cytosolic domain
(Fig. 1) (3). GPCRs are inherently flexible proteins that
exist in multiple conformational states; and drug binding al-
ters the relative populations of these. Agonists will shift the
equilibrium towards active-like receptor conformations, which
promote binding of G proteins and other cytosolic proteins
(e.g. arrestin), leading to initiation of signaling via multiple

pathways. In the apo state, GPCRs can still access active-like
conformations and thereby exhibit a small degree of signaling,
which is referred to as basal activity.

Breakthroughs in structure determination of GPCRs dur-
ing the last decade have provided insights into the process of
activation at atomic resolution (Fig. 1). In particular, crystal
structures of the β2 adrenergic receptor (β2AR) in both active
and inactive conformational states (4–6) have revealed hall-
marks of GPCR activation. The observations made for this
prototypical receptor have recently been reinforced by crystal
and cryogenic electron microscopy (cryo-EM) structures for
other family members (7). The most prominent feature of
GPCR activation is a large ∼ 1.1 nm outward movement of
TM6 on the intracellular side (Fig. 1), which creates a large
cavity for binding of cytosolic proteins. For many GPCRs,
this conformational change disrupts the “ionic lock”, a salt
bridge between the conserved Glu2686.30 (superscripts denote
Ballesteros-Weinstein numbering (8)) and Arg1313.50 (the R
in the conserved DRY motif) that contributes to stabilization
of the inactive state. Conserved changes in the extracellular
part are more difficult to discern due to the lower sequence
conservation in this region. In general, the structural changes
are relatively subtle and only involve a small contraction of the
orthosteric site (4–6). In the case of the β2AR, the catechol
group of adrenaline forms hydrogen bonds with Ser2075.46,
which leads to a ∼ 0.2 nm inward movement of TM5. These
structural changes then propagate through the receptor via sev-
eral conserved motifs. The rearrangement of TM5 influences a
connector region (PI3.40F6.44 motif), which is in contact with
the strongly conserved Asp792.50 and the NP7.50xxY7.53 motif
via a network of ordered water molecules. A water-filled cavity
surrounding Asp792.50 contributes to stabilizing a sodium ion
in several crystal structures of the inactive state, e.g. for the
β1AR (9, 10). Upon activation, the cavity collapses, leading
to dehydration and displacement of the sodium ion and po-
tentially protonation of Asp792.50 (11, 12). Activation also
involves a twist of the NPxxY motif, which reorients Tyr3267.53

to a position where it can form a water-mediated interaction
with Tyr2195.58 (13) and thereby enable formation of the G
protein binding site. Molecular understanding of the role of
these individual microswitches in activation could guide the
design of drugs with tailored signaling profiles.

The allosteric control of GPCR activation by extracellular
ligands cannot be fully understood from the static structures
captured by crystallography or cryo-EM. Mutagenesis and
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Fig. 1. The activation mechanism of GPCRs
involves a series of microswitches. Agonist
binding leads to a contraction of the bind-
ing site (quantified as the distance between
Ser2075.46 and Gly3157.41), which leads to
a conformational change in the connector re-
gion (Ile1213.40 and Phe2826.44). The trans-
membrane cavity containing Asp792.50 residue
dehydrates and the NPxxY motif twists upon ac-
tivation. Finally, TM6 moves outwards to create
the G protein binding site, potentially disrupt-
ing the salt bridge between Arg1313.50 and
Glu2686.30 ("ionic lock"). The inactive (PDB
ID 2RH1) and active (PDB ID 3P0G) structures
are represented in white and orange, respec-
tively. The conserved NPxxY motif is highlighted
in red. Important residues and the agonist are
represented as sticks. Water molecules in the
β2AR and the β1AR inactive structures (PDB
IDs 2RH1 and 4BVN) are represented as white
and green spheres, respectively.

spectroscopy studies (14–17) have suggested that the efficacy
of a ligand is determined by a complex interplay between
different microswitches and population of distinct states lead
to specific functional outcomes. Molecular dynamics (MD)
simulations are well suited to study the conformational land-
scape of GPCRs as this method can provide an atomistic
view of the flexible receptor in the presence of membrane,
aqueous solvent, and ligands. The seminal paper by Dror
et al (18) provided insights into the activation mechanism
of the β2AR by monitoring how a crystallized active state
conformation relaxed to an inactive state upon removal of the
intracellular binding partner, a G protein mimicking nanobody,
using MD simulations. Although key conformational changes
involved in the transition from inactive to active conforma-
tions were identified in these simulations, this approach has
inherent limitations. Indeed, understanding the roles of dif-
ferent microswitches in activation and the strength of the
coupling between these requires mapping of the relevant free
energy landscapes, which are still too costly to calculate using
brute-force MD simulations. Enhanced sampling methods
provide a means to explore the conformational landscapes of
proteins to a relatively low computational cost (19). In this
work, we aimed to identify the most probable path describing
the transition between inactive and active states of β2AR in
the presence or absence of a bound agonist and optimized
a version of the string method with swarms of trajectories
for this purpose. The free energy landscapes associated with
β2AR activation revealed that whereas agonist binding is only
loosely connected to outward movement of TM6, the coupling
between microswitch pairs in the transmembrane region range
from weak to strong and is influenced by the protonation of
Asp792.50. Finally, we demonstrate that our approach can
be transferred to study free energy landscapes of any class A
GPCR at a modest computational cost.

Results

Optimizing the enhanced sampling protocol for increased ef-
ficiency. We aimed to compute the most probable transition
pathway linking the inactive and active states of β2AR and the
relative free energy of the states lining this pathway. For this
purpose we chose the string of swarms method (20). In this
framework, the minimum free energy path in a N-dimensional
collective variable (CV) space is estimated iteratively from the
drift along the local gradient of the free energy landscape (Fig.
S1). From each point on the string, a number of short trajec-
tories are launched (a swarm), which enables us to calculate
the drift. The string is then updated considering this drift and
reparametrized to ensure full sampling of the configurational
space along the pathway. Convergence is reached when the
string diffuses around an equilibrium position. The method
allows to sample a high-dimensional space at a relatively in-
expensive computational cost since it only samples along the
path of interest.

We characterized the pathway linking equilibrated confor-
mations originating from active and inactive structures of the
the β2AR (PDB IDs 3P0G and 2RH1, respectively), adding
two short strings spanning the active and in the inactive re-
gions to increase sampling of the end state environments (see
Material and Methods and SI Methods). First, we character-
ized a five dimensional CV set that embeds receptor activation
by analyzing a MD simulation trajectory of spontaneous deac-
tivation of the β2AR (18). To do so, we identified metastable
states by clustering simulation configurations, and classified
those by training a fully connected neural network to identify
states. The most important input values for classification were
identified via deep Taylor decomposition and taken as CVs
(Fig. 2 and S2). The set of CVs we inferred was a network of
interatomic distances between all seven TM helices (Fig. 2).
This CV set incorporates many known degrees of freedom im-
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plicated in β2AR activation, including the TM3-TM6 distance
and a CV coupling the extra- and intracellular domains.

To speed up convergence of the string optimization, we initi-
ated our string simulation from a rough guess of the minimum
free-energy landscape. The latter was obtained by estimating
the density of points from the Dror et al. trajectory in this
CV space (Fig. S3). We also introduced algorithmic improve-
ments to the string of swarms method: we adaptively chose
the number of trajectories in a swarm, gradually increased the
number of points on the string and introduced a reparametriza-
tion algorithm that improves performance as well as promotes
exchanges of configurations between adjacent string points
(Supplementary Methods, Fig. S1, S4). We carried out 300
iterations of string optimization for each system, considering
a number of points on the string ranging from 20 to 43 and
swarms consisting of 16 to 32 10 ps trajectories. Derivation of
one free energy landscape requires a total of ∼2-3 µs simulation
time.

a
Input: 
interresiude 
distances

Key features: 
important 
interresidue 
distances

Output: 
cluster ID

Classification
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Backward 
pass

b

Fig. 2. The five-dimensional collective variable (CV) space used to optimize the
minimum free energy path was identified in a data-driven manner. (a) A fully connected
neural network was trained to classify configurations in active, intermediate, and
inactive metastable states (clusters). Deep Taylor decomposition was then used to
identify the most important input inter-residue distances for the classification decision
and the top ones were used as CVs. (b) The five CVs used in this work projected
onto an intracellular view of the active crystal structure (PDB ID 3P0G). The CVs
corresponding to distances TM2-TM7, TM6-TM4, TM7-TM4, TM3-TM6 and TM6-TM5
defined in Table S1, are shown as purple, blue, green, yellow and red dashed lines,
respectively. The change of these distance CVs from the inactive to the active state
structures is reported in nm.

Minimum free energy pathway of β2AR activation. We derived
the most probable transition path (Fig. S5) between active
and inactive states of β2AR in the presence and absence of an
agonist ligand. The swarm trajectories allowed us to compute
transitions between discrete states in the vicinity of the most
probable transition path and derive the associated free energy
landscape (Fig. S6).

For the apo receptor, one distinguishes three minima, one in
the active region, one in the inactive one, and an intermediate
one between them (Fig. 3a and S7). As anticipated, regions
close to the inactive endpoint are stabilized relative to the
other two states. Binding of an agonist changes the number
of minima to four and shifts the relative stability of states,
making regions close to the active endpoint of lower free energy
(Fig. 3b). Binding of the agonist ligand also modifies the order
in which the helices rearrange, as can be seen when projecting
the minimum free energy path along these various CVs (Fig.
3 and S5).

A number of characteristic variables (defined in Table S1)
were calculated for the last iteration of the swarm of tra-
jectories simulations. By localizing a sudden shift in these
parameters’ values, we could pinpoint the location of charac-
teristic events on the string (Table S2, Fig. 3). In the absence
of bound ligand, a sodium ion exits the cavity via the extracel-
lular side early during activation and the other microswitches
(Asp792.50 cavity dehydration, NPxxY twist) flip at the same
time as the ion leaves. In the presence of the agonist ligand
on the other hand, the ionic lock first breaks. This occurs
between the region occupied by the crystal structure (PDB
ID 2RH1) and the inactive state basin (Fig. 3b), in agreement
with the observation that the ionic lock is not always formed in
the inactive conformation (15, 21). Then the Asp792.50 cavity
dehydrates shortly before the NPxxY twists to an active-like
conformation.

Coupling between orthosteric and G-protein binding sites. As
the final configurations of the string are at equilibrium in all
dimensions, the trajectories from the last iterations can be
used to compute the free energy landscape as a function of any
variables (SI methods). This allowed a detailed analysis of how
conformational changes induced by agonist binding propagate
through the receptor to the G protein binding site. The roles
of conserved microswitches were assessed by comparing free
energy landscapes in the presence and absence of a bound ag-
onist. We first evaluated how the distance between Ser2075.46

and Gly3157.41, which reflects how the binding site contracts
upon activation, influences the intracellular distance between
TM6 and TM3 (Fig. 4a,b). In the absence of bound agonist,
the receptor accessed both active and inactive conformations of
the binding site, with the minimum of the free energy located
close to the inactive state distance between TM3 and TM6 .
The TM3-TM6 distance could be as large as 1.5 nm when the
ligand binding site was in the active conformation, an observa-
tion compatible with basal activity. Agonist binding led to the
stabilization of a contracted conformation of the binding site,
corresponding to an inward movement of Ser2075.46 (Fig. 4b).
Although both inactive and active conformations remained
accessible in the presence of the ligand, the minimum of the
TM3-TM6 distance was shifted towards a more active-like
state. A remarkable long-range allosteric coupling (>2 nm)
between the orthosteric and G protein binding sites was hence
captured by our calculations. The 0.5 nm outward movement
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a b

Fig. 3. The free energy landscapes are pro-
jected onto the first two CVs used to optimize
the minimum free energy path. The minimum
free energy pathways were optimized in the ab-
sence (a) and in the presence of a bound ago-
nist (b). Characteristic events occurring during
activation (see Table S1-S2 for their definition)
are located on the string.

of TM6 at the minimum of the landscape is smaller than that
observed in active crystal structures, in agreement with exper-
iments demonstrating that the fully active conformation can
only be stabilized in the presence of an intracellular partner
(15, 22).

Propagation of activation through microswitches. Structural
changes in the orthosteric site of the β2AR have been proposed
to propagate towards the intracellular part via a connector
region centered around Ile1213.40 and Phe2826.44 (6). Whereas
we found the contraction of the orthosteric site and the outward
movement of TM6 to be loosely coupled, the free energy
landscapes demonstrated that changes in the conformation
of Ser2075.46 has a strong influence on the connector region
(Fig. 4d,e). In the absence of agonist, both inactive and
active conformations of the connector were populated (Fig.
4d). In contrast, agonist binding resulted in a single free
energy minimum where both Ser2075.46 and the connector
were constrained to their active conformations (Fig. 4e).

From the connector region, activation is propagated via
several conserved motifs (Fig. 4g,h,j,k,m and n) (3). To
investigate the communication between microswitches in the
core of the TM region, we analyzed if the connector was coupled
to solvation of the water network surrounding Asp792.50 and
conformation of the NPxxY motif. In the apo state, an inactive
connector region was tightly coupled to a hydrated cavity with
∼ 10 − 17 waters (Fig. 4g). This result is consistent with a
high-resolution crystal structure of an inactive β1 adrenergic
receptor (PDB ID 4BVN), in which a solvent network in this
region was identified (9). The active connector was compatible
with both the fully hydrated cavity and a desolvated state with
up to ∼ 4−5 water molecules. The free energy landscapes also
suggested that the more dehydrated cavity, which resembled
that observed in the active β2AR conformation, was slightly
more favored in the presence of agonist (Fig. 4g). The active
connector resulted in two minima for the NPxxY motif and
the corresponding receptor structures resembled the active and
inactive structures in this region (Fig. 4j). Agonist binding
favored the dehydration of the cavity but only resulted in a
small perturbation of the free energy landscapes along the
NPxxY RMSD dimension (Fig. 4h,k). In contrast to the
connector, the Asp792.50 cavity and NPxxY motif were hence
loosely coupled to the orthosteric site. However, It should
be noted that the connector switch influenced the NPxxY

motif via the hydration state of the Asp792.50 cavity. An
inactive connector could be coupled to both a fully hydrated
(inactive) Asp792.50 cavity and inactive NPxxY motif in the
simulation of the apo receptor. The active connector, on the
other hand, allowed the receptor to access both the inactive
and active conformations of these two switches. The final
combination of microswitches connected the NPxxY region to
the motion of TM6 (Fig. 4m,n). A larger TM3-TM6 distance
was clearly favored for an active-like NPxxY motif and several
metastable states lined the minimum free energy pathway
between inactive and active conformations. The locations
of minima in the free energy landscape were only slightly
perturbed by ligand binding, but the barriers between the
states were reduced for the receptor-agonist complex (Fig.
4n).

Several structures of class A GPCRs solved in the inac-
tive state have revealed a sodium ion bound to the conserved
Asp792.50 (Fig. 5a) (10). Sodium binding to this residue
has also been studied for several class A GPCRs with simula-
tions (24–26). To investigate potential interactions between
Asp792.50 and sodium ions, which were randomly added at
physiological concentration to the simulation system, we cal-
culated the free energy landscape as a function of TM6 dis-
placement and the distance between Asp792.50 and the closest
sodium ion (Fig. 5b, c). In the apo form, five meta-stable
states were identified (Fig. 5b). In the active-like conformation
of TM6, the closest sodium interacted with a specific site in
the second extracellular loop. Notably, sodium ions have been
confirmed to bind in this pocket in crystal structures of adren-
ergic receptors (Fig. 5a) (23). In an intermediate conformation
of TM6, the closest sodium was either bound to the second ex-
tracellular loop or descended into the binding site and formed
a salt bridge to Asp1133.32. Finally, in the completely inactive
state of TM6, the closest sodium ion either remained bound
to Asp1133.32 or was located in the Asp792.50 cavity. Sodium
was hence only present in the Asp792.50 cavity when TM6 had
completely relaxed to an inactive conformation and even small
increases of the TM3-TM6 distance were incompatible with
ion binding to this site. In the agonist-bound receptor, sodium
remained strongly bound to the second extracellular loop ir-
respective of the TM3-TM6 distance (Fig. 5c). This likely
results from access to the binding site via the extracellular side
being blocked by the bound ligand (11, 24, 26). Spontaneous
Na+ binding to appropriate protein regions further confirms
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Fig. 4. Free energy landscapes projected along
variables of interest highlight changes in the pair-
wise coupling of microswitches following binding
of an agonist ligand (middle column) and proto-
nation of conserved residue Asp792.50 (right col-
umn). The free energy landscapes are projected
along (a-c) the distance between Ser2075.46

and Gly3157.41, representing the ligand bind-
ing site contraction and the distance between
Leu2726.34 and Arg1313.50, representing the
outward movement of TM6; (d-f) the distance
between Ser2075.46 and Gly3157.41 and dif-
ference between the RMSD of Ile1213.40 and
Phe2826.44 heavy atoms to the active and inac-
tive crystal structures, representing the connec-
tor region ∆RMSD; (g-i) the connector region
∆RMSD and the number of water molecules
within 0.8 nm from Asp792.50, representing the
hydration of the Asp792.50 cavity; (j-l) the con-
nector region ∆RMSD and the RMSD of the
NPxxY motif relative to the inactive state; (m-o)
the NPxxY motif RMSD and the displacement
of TM6. Active and inactive state regions are
labeled for each variable pair. Regions of low
free energy are shown in red and of high free en-
ergy in light yellow. Free energies are reported
in kcal/mol. See Table S1for microswitch defini-
tions.
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Fig. 5. A sodium ion can bind to three sites in a state-dependent manner. (a) The
inactive β1AR (PDB code: 4BVN (9)), β2AR(PDB code: 4LDE (23)) structures and
representative inactive state simulation snapshot are shown as green, white and blue
ribbons, respectively. Representative positions of sodium ions are shown as blue
spheres (the coordinates of the top ion bound to the extracellular loop was extracted
from the holo trajectory in an active-like conformation, while the two lower positions
were extracted from apo, inactive state simulations). In the insets, a comparison to the
position of the Na+ ions found in the active β2AR structure (white sphere) and in the
inactive β1AR structure (green sphere) is provided. (b, c) Free energy landscapes
along the TM6 displacement and the closest distance between Asp792.50 and a
sodium ion for the apo and holo simulations.

the relevance of the conformational sampling enabled by the
our computational protocol.

Impact of Asp792.50 protonation. Several previous studies have
suggested that Asp792.50, the most conserved residue among
class A GPCRs, has a pKa value close to physiological pH
and that the ionization state of this residue changes upon
activation (11, 12). To assess the role of Asp792.50 in receptor
activation, we repeated the calculations of the minimum free
energy pathway of activation with this residue in its protonated
(neutral) form.

The free energy landscapes describing changes in the or-
thosteric site were similar to those obtained in simulations
with Asp792.50 ionized (Fig. 4c,f and Fig. S8). There was
a weak coupling between the orthosteric site and the intra-
cellular region, with two major energy wells describing the
conformation of TM6. Compared to the agonist-bound recep-
tor with Asp792.50 ionized, the minima were shifted further
towards active-like conformations for the protonated state
(Fig. 4c). The inward movement of Ser2075.46 upon agonist

binding remained strongly coupled to conformational changes
observed in the connector region irrespective of the ionization
state of Asp792.50 (Fig. 4e,f). The largest effects of Asp792.50

protonation were observed for the hydrated cavity surround-
ing this residue (Fig. 4h,i) and the NPxxY motif (Fig. 4k,l):
whereas the free energy landscapes showed that both active-
and inactive-like conformations of the NPxxY motif and cav-
ity were populated in simulations with ionized Asp792.50, the
protonated state resulted in a single energy well close to the
active conformation for both these microswitches (Fig. 4j,l).
It was also evident that TM6 was stabilized in more active-like
conformations by the protonated Asp792.50 (Fig. 4n,o).

Comparison of representative structures from the simula-
tions of ionized and protonated Asp792.50 in active-like states
revealed that two distinct conformations of the NPxxY motif
were obtained (Fig. 6). The simulations carried out with
ionized Asp792.50 favored structures that were more similar
to the crystal structure of the active β2AR. An alternative
conformation of the NPxxY motif appeared for the proto-
nated Asp792.50, which was not favored energetically in the
simulations of the ionized form (Fig. S9k,l). Although this
conformation of the NPxxY motif did not match any β2AR
crystal structure, it was strikingly similar to conformations
observed in crystal structures of other class A GPCRs in either
agonist-bound (serotonin 5-HT2B and A2A adenosine recep-
tors) or active (angiotensin II type 1) conformations (Fig. 6)
(27, 28). Our protocol thus allowed us to sample metastable
states that were never captured by structural methods. This
indicates that the computational methodology we present here
can likely be applied to several members of the class A GPCR
superfamily.

Fig. 6. An alternative conformation of the NPxxY was identified along the most
probable pathway calculated with a protonated Asp792.50. Representative simulation
snapshots of active-like states of the β2AR with Asp792.50 ionized and neutral are
shown in orange and white, respectively. Structures of other GPCRs captured in
agonist-bound or active states are shown in green (PDB IDs: 6DRX (27) - Agonist-
bound 5-HT2B , 3QAK (29) - Agonist-bound A2AAR, and 6DO1 (30) - Angiotensin II
type 1 receptor in an active conformation). The structural comparison highlights the
resemblance between an alternative conformation of the NPxxY motif that is favored
by Asp792.50 protonation and crystal structures of other class A GPCRs. Arrows
indicate structural differences between the simulation snapshots with Asp792.50

neutral and ionized.
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Transferability of the methodology to other GPCRs. Efficient
characterization of free energy landscapes with the string
method relies on selection of appropriate CVs, a non-trivial
task. Here, CVs were derived from a conventional MD trajec-
tory of β2AR deactivation in a data-driven fashion. Consider-
ing that the conformational changes involved in class A GPCR
activation are largely conserved (3), we explored the possibility
of transferring the CVs to the conformational sampling of other
GPCRs. We mapped the CVs identified for β2AR to ten other
class A GPCRs with active and inactive structures available
(Fig. 7). Strikingly, the active and inactive structures clearly
separate in two distinct clusters. This indicates that these
CVs can describe the activation of the entire family of class A
GPCRs and the protocol presented herein can be applied to
these other receptors.

Fig. 7. Active and inactive class A GPCR structures cluster into two distinct groups in
the 5-dimensional CV space used in this work. β2AR and ten other class A GPCRs
active (stars) and inactive (triangles) structures are projected onto the five original
CVs. Details of the mapping can be found in Table S3. Their clustering into two
groups highlights that the activation mechanism of all class A GPCRs can likely by
described by the CVs determined herein.

Discussion

Crystallographic structures of the β2AR in inactive and active
conformations provides a basis for molecular understanding of
GPCR signaling. However, it has become increasingly clear
that these static structures do not capture all functionally rele-
vant states involved in activation of these molecular machines.
In a pioneering study, Dror et al. gained insights into the
activation pathway of the β2AR from a large number of long-
timescale MD simulations (18). Despite this computational
tour-de-force enabled by the development of hardware special-
ized for MD, these simulations did not allow to quantify the
accessibility of different conformational states. The approach
proposed in this work builds on the data generated by Dror et
al. and further allows to assess the impact of agonist binding
on microswitches involved in activation.

Despite some differences in simulation setups, our work
recapitulates several key findings of the work by Dror et al
(18). In agreement with the long time-scale simulations, we
find that the orthosteric and G protein-binding site are loosely

coupled. However, only through the analysis of the free en-
ergy landscapes could we determine that coupling between
spatially connected microswitches ranged from very strong to
relatively weak and was influenced by protonation of Asp792.50.
Our study also illustrates that the energy landscapes depend
on the variables chosen to project the conformational states.
This is not an artefact of the protocol but rather an inherent
limitation of dimensionality reduction, which has specific impli-
cations for experimental design: depending on the placement
of spectroscopic probes, one may only be able to resolve a
subset of available states. In particular, it is now clear that
considering only three states along the activation path (an
active, intermediate and inactive state) will not allow to cap-
ture the complexity of the conformational changes induced by
ligand binding.

One of the unresolved questions regarding GPCR activation
is how the orthosteric site communicates with microswitches
buried in the TM region. Whereas the β2AR crystallized in
complex with agonists in the absence of intracellular partner
(e.g. G protein or G protein-mimicking nanobody) are similar
to identical to those determined with antagonists (31), NMR
spectroscopy experiments have demonstrated that agonist
binding does stabilize other conformations in certain parts of
the TM region, e.g. close to Met2155.54 and Met822.53. For
example, the region surrounding Met822.53, located one helical
turn above Asp792.50, was shown to adopt two conformations
in the absence of orthosteric ligand. A bound agonist, on the
other hand, restricted this region to a single active-like state
(22). Similar to these experiments, our free energy landscapes
demonstrate that several conformations of the connector and
Asp792.50 cavity are available in the apo condition. In the
presence of agonist, the connector is locked in a single state and
a desolvated state of the Asp792.50 cavity is stabilized, which
creates a more active-like receptor conformation in the vicinity
of Met822.53. In agreement with the NMR data, we also find
that the agonist cannot stabilize the fully active conformation
of the receptor and that TM6 accesses several intermediate
conformations that are distinct from those observed in crystal
structures.

Several recent experimental studies have demonstrated that
Asp792.50 and residues forming the hydrated TM cavity play
an important role in signalling and can even steer activation
via G protein-dependent and G protein-independent pathways
(17, 32, 33). One mechanism by which Asp792.50 could control
the receptor conformation is via its protonation state. Agonist
binding destabilizes the water network in the solvated TM
cavity, which may lead to a larger population of protonated
Asp792.50 and disrupt binding of sodium to this pocket (11, 12).
In turn, the protonated Asp792.50 stabilizes a structure of the
NPxxY motif that has been observed for other class A GPCRs
crystallized in active and active-like states, suggesting that
this alternative conformation of TM7 may be relevant for
function. For example, NMR experiments have shown that
agonists that preferentially signal via arrestin mainly affect
the conformation of TM7 (34). Interestingly, the ionized and
protonated forms of Asp792.50 also stabilize different TM6
conformations, which could change the intracellular interface
that interacts with G proteins and arrestins. These results,
combined with the fact Asp792.50 is the most conserved residue
in the class A receptor family, support that this region is a
central hub for controlling class A receptor activation.
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With the protocol developed herein, we sampled enough
transitions along the activation path to obtain free energy pro-
files of GPCR activation by accumulating a few microseconds
of total simulation time. Compared to regular MD simula-
tions, the optimised string of swarms method can thus provide
reliable energetic insights using 1-2 orders magnitude less sim-
ulation time (18, 35). From a practical point of view, the short
trajectories in the swarms of trajectories method are easy to
run in parallel with minimal communication overhead even in
a heterogeneous computational environment. An important
consideration that has guided our choice of enhanced sam-
pling methodology is that the method has the advantage to
function well in high dimensional space, i.e. with many CVs.
This is because we only optimize the one-dimensional string,
instead of opting to sample the entire landscape spanned by
the CVs. This means we can utilize a high-dimensional CV
space, thus alleviating the need to reduce the dimensionality
of the conformational landscape to 2 or 3 dimensions, as is
done in most CV-based methods such as umbrella sampling
or metadynamics (36).

On the other hand, a well-known limitation with the swarms
of trajectories method is that it only guarantees to converge
to the most probable path closest to the initial path guess,
and not necessarily the globally most probable path. The
naive assumption of a straight initial path is not guaranteed
to converge to the latter. Here we have proposed to alleviate
this shortcoming by exploiting previous knowledge of the acti-
vation pathway and deriving an initial guess of the pathway
likely to be close to the globally most probable path. An
initial pathway can also be transferred from a similar system
(as revealed in Fig. 7) or inferred from available experimental
data. If multiple pathways are nevertheless expected, the pro-
tocol presented herein provides the tools necessary to compare
them: the swarms from separate string simulations can be
included in the same transition matrix and be used to compute
a single free energy landscape. It is also worth noting that the
relative free energies of the endpoint conformations (evaluated
by integration over the endpoints basins) do not depend on the
transition pathway and should anyways be estimated correctly.
The protocol is also applicable to complex transitions involv-
ing many intermediate states: in such case, one may launch
multiple strings to explore different parts of the activation
path, and let every substring converge separately, eventually
combining the transitions derived from them to yield a single
free energy landscape. Finally, we note that the string of
swarms method can also be used as a complementary method
to instantiate Markov State Models (MSM) simulations (37).

Despite the major progress in structural biology for GPCRs,
many aspects of receptor function are not well understood.
Insights from atomistic MD simulations will continue to be
valuable tools for interpreting experimental data. We expect
our methodology to allow further insights into how binding of
agonists influences the conformational landscape, potentially
making it possible to design ligands with biased signalling
properties (17). The method is equally well suited to study
the effect of allosteric modulators and the influence of different
lipidic environments. As the same approach can be transferred
to other class A GPCRs, future applications will shed light on
the common principles of activation as well as on the details
that give each receptor a unique signalling profile, paving the
way to the design of more effective drugs.

Materials and Methods

All swarm of trajectories simulations were instantiated with the
coordinates from the 3P0G structure (the first two simulation sys-
tems in Table S4). The Asn187Glu mutation in 3P0G was reverted
and Glu1223.41 was protonated due to its localization in a partic-
ularly hydrophobic pocket, as has been common practice in other
simulations of this receptor (31). Residues His1724.64 as well as
His1784.70 were protonated at the epsilon position, in order to face
negatively charged residues Glu1073.26 and Glu180 respectively.
The systems were parametrized using the CHARMM36m force field
(38) and the TIP3P water model (39). The protein was inserted in
a POPC (40) bilayer and solvated in explicit solvent. Na+ and Cl−
ions were added at 0.15M concentration. System preparation was
performed using CHARMM-GUI (41). MD simulations were run
with GROMACS 2016.5 (42) patched with plumed 2.4.1 (43) under
a 1 atm pressure and at 310.15 K.

To identify CVs, we performed clustering (44) on the frames
from unrestrained MD simulation trajectory of β2AR (condition A
in (18)). The CVs were selected by training a multilayer perceptron
classifier (45) using as input all the inter-residue distances and as
output the cluster ID, followed by using Deep Taylor decomposition
(46) to find key distances that could discriminate between clusters.

The endpoints of the main strings describing the transition be-
tween inactive and active states (subscript t) were fixed to the
output coordinates of equilibrated structures 2RH1 (4) and 3P0G
(6). The initial path for simulations Holot was guessed using data
from (18): a rough estimate of the free energy landscape was calcu-
lated from the probability density landscape estimated using the
Scikit-learn (45) kernel density estimator with automatic bandwidth
detection (Fig. S3). Two additional short strings were set up to
increase sampling in the active (subscript a) and inactive (subscript
i) regions. The average, partially converged path between itera-
tions 20-30 from Holot was used as input path for simulations Apot
and HoloAsh79,t. All active (Apoa, Holoa and HoloAsh79,a) and
inactive (Apoi, Holoi and HoloAsh79,i) substrings were initiated as
straight paths between the endpoints. The swarms of trajectories
simulations with optimizations (see SI and Fig. S4) were run for 300
iterations, at which point the strings had not changed on average
for many iterations (Fig. S5 and S8) and posterior distribution of
free energy profiles given the data was small (Fig. S7).

By discretizing the system into microstates, or bins, it is possible
to use the short trajectories from the swarms to create a transi-
tion matrix and derive the free energy distribution of the system
(47) along some variable (Fig. S6). In practice, The transition
probabilities Tij of the transition matrix T can be estimated from
the normalized number of transitions, Nij , from bin i to bin j:
Tij = Nij/

∑
k
Nik. The transition matrix of a physical system at

equilibrium is constrained by detailed balance, such that for the
stationary probability distribution, ρ: ρiTij = ρjTji. Metropolis
Markov chain Monte Carlo (MCMC) was used to sample over the
posterior distribution of transition matrices, given the unregularized
elements of Tij (48), and thereby obtain a distribution of free energy
profiles for ρ (Fig. S7, S9 and S10). All code to run the simulations
and reproduce the results in this paper has been published online
(49).
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