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Abstract

The limited capacity of recent memory inevitably leads to partial memory of past
stimuli. There is also evidence that behavioral and neural responses to novel or rare
stimuli are dependent on one’s memory of past stimuli. Thus, these responses may serve
as a probe of different individuals’ remembering and forgetting characteristics. Here, we
utilize two lossy compression models of stimulus sequences that inherently involve
forgetting, which in addition to being a necessity under many conditions, also has
theoretical and behavioral advantages. One model is based on a simple stimulus counter
and the other on the Information Bottleneck (IB) framework. These models are applied
to analyze a novelty-detection event-related potential commonly known as the P300.
The trial-by-trial variations of the P300 response, recorded in an auditory oddball
paradigm, were subjected to each model to extract two stimulus-compression
parameters for each subject: memory length and representation accuracy. These
parameters were then utilized to estimate the subjects’ recent memory capacity limit
under the task conditions. The results, along with recently published findings on single
neurons on the IB model, underscore how a lossy compression framework can be utilized
to account for trial-by-trial variability of neural responses at different spatial scales and
in different individuals, while at the same time providing estimates of individual
memory characteristics at different levels of representation using a theoretically-based
parsimonious model.

Author summary

Surprise responses reflect expectations based on preceding stimuli representations, and
hence can be used to infer the characteristics of memory utilized for a task. We suggest
a quantitative method for extracting an individual estimate of effective memory
capacity dedicated for a task based on the correspondence between a theoretical
surprise model and electrophysiological single-trial surprise responses. We demonstrate
this method on EEG responses recorded while participants were performing a simple
auditory task; we show the correspondence between the theoretical and physiological
surprise, and calculate an estimate of the utilized memory. The generality of this
framework allows it to be applied to different EEG features that reflect different modes
and levels of the processing hierarchy, as well as other physiological measures of surprise
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responses. Future studies may use this framework to construct a handy diagnostic tool
for a quantitative, individualized characterization of memory-related disorders.

Introduction

There is abundant experimental evidence from behavioral studies on the finite capacity
of recent memory [1, 2]. Limitations on memory size, the rate of writing and reading
from memory, and the amount of information that can be transferred in a unit of time
(i.e., channel capacity [3]) can all impose boundaries on the history length and accuracy
of memory representations. Depending on task requirements, these constraints may lead
to compressed representations of the observed past. Compressed representations are
also associated behaviorally [4–7] and theoretically [8–10] with more efficient learning
and generalization. Compressed representations currently cannot be measured directly
in the human brain, but nevertheless can still impact the electrophysiological responses
to each stimulus in a sequence as a function of the representation of preceding stimuli
(for a similar methodology see [11]).

Surprise (alternatively called surprisal [12,13] in the predictive coding literature) is
one possible way to study compressed memory states. Intuitively, the lower the
accuracy of past stimulus representations, the more future variations in the stimuli will
go unnoticed, causing lower surprise responses. Conversely, the more accurately past
stimuli are represented, the more surprising small variations will be in future stimuli.
This intuition is consistent with behavioral and neural data [14–16] showing larger error
(surprise) responses to deviants in music in trained musicians as compared to
non-musicians.

The P300 (or more specifically, the P3b [17]) is a well-known event-related potential
(ERP) component in electroencephalography (EEG) measurements [18] evoked by rare,
task-relevant events , and is typically observed in oddball paradigm experiments in
which the oddball is the target stimulus. The average P300 response to an oddball
stimulus is known to have a higher amplitude the lower the probability of the
oddball [19]. In addition, more complex models have indicated a relationship between
the P300 amplitude and certain definitions of trial-by-trial surprise (see supplementary
S1 Text). Furthermore, working memory studies [20–22] have shown that working
memory load causes a decrease in the amplitude of the P300, which is consistent with
the notion that lesser memory capacity leads to a lower surprise response. For all these
reasons the P300 seems a good candidate to serve as a physiological surprise probe for
compressed memory states.

Under an auditory oddball paradigm, we tested two models of
compression-dependent surprise, both involving lossy compression. This lossy
compression should be contrasted with a compression that enables remembering each
stimulus in a sequence, i.e., with lossless compression that allows perfect reconstruction
of the past stimuli. While this kind of precise memory could be necessary in behavioral
memory tests such as recall tests, it is less relevant for prediction in many cases [23, 24].
The hypothesis was that the surprise responses would correspond to a representation in
which the forgotten details are those that are less relevant for predicting the next
stimulus in the sequence. The first model we consider is a naive oddball count (NOC)
model. It estimates the surprise associated with a given stimulus in a sequence based on
the number of oddball stimuli in a given time window into the past. It is lossy in the
sense that the order of the elements is not preserved in the representation, but is also
optimal in the sense that it preserves the exact statistics of the past oddball sequence
required for predicting the next stimulus.

Although optimal prediction in the oddball sequence requires that the exact number
of preceding oddball tones be remembered, it is more plausible that this number is only
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roughly estimated and remembered. This hypothesis is formalized mathematically in the
second model [25] that draws on the Information Bottleneck (IB) framework [26] (see
Fig. 1 and Methods). Importantly, the IB shows that even with an approximation of
the oddball count, good prediction accuracies of the next stimulus can be achieved [25].

Fig 1. The naive oddball count (NOC) and the IB lossy compression
models of the oddball sequence. An illustration of the two compression models for
the case of a past length of size N = 4 is shown. To be able to code any of the 16
possible sequences of 4 tones in memory that the subject heard, 4 bits of memory would
be needed. (Left) The NOC model only keeps the number of oddball occurrences in the
previous window in memory; i.e., the minimal sufficient statistic (see Methods). The
upper plot shows the number of oddball tone occurrences n (filled red circles) and the
number of standard tone occurrences N − n (empty blue circles) in the previous window
for each trial, starting from trial N + 1. All plots are aligned to the stimulus sequence.
The occurrence predictor (bottom plot) on each trial is n if a standard tone was played
and N − n if an oddball tone was played. To be able to code the 5 alternatives of the
past in memory, 2.32 bits of memory are required. (Right) The IB model keeps a fuzzy
representation of the oddball counter in memory, which requires less memory usage than
the NOC model. The upper plot illustrates a fuzzy representation m of the oddball
occurrences n in the previous window, as given by IB for a high compression case. The
darker red represents higher p(m|n) probability. The two lower plots show two IB
predictors of different compression levels (0.1 bits for the bottom plot, 2.31 bits for the
middle plot). The surprise level on each trial is defined as
-
∑
m p(m|n) log p(next tone|m) where the probabilities are defined by the IB solution

for a specific compression level.

In a trial-by-trial analysis, we show that both the NOC and the IB models achieve
significant goodness-of-fit to the P300 response, providing support for the lossy
compression hypothesis. While the models’ performance was comparable, there was a
notable difference in the estimated memory usage (here termed effective capacity) which
was significantly lower for the IB model. Hence, while both lossy compression models
are consistent with the EEG results, the IB model emerged as a more parsimonious
model in terms of memory utilized for the task. Overall, these results demonstrate how
lossy compression can provide a framework for analyzing trial-by-trial responses (see
Rubin et al. for single cells [25]), and show how these responses can be used to obtain
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an estimation of recent memory usage.

Results

We presented 17 subjects (age 31±10; 10 females) with a two-tone auditory oddball
sequence (see Fig. 2a), containing blocks with high-tone probabilities of 0.1 to 0.5. To
encourage the subjects to attend to the tones and anticipate the next tone, they were
asked to press a button as quickly as possible each time they heard the high tone.
Throughout the experiment their EEG response was recorded (see Methods).

Fig 2. The model for the oddball experiment and the EEG surprise
measure. (a) A two-tone oddball sequence is presented to the subject. The previous
stimuli are processed and the subject holds an internal representation m of the past in
memory. Based on m the subject holds a prediction of the next tone (high vs. low).
The subject’s response to the tone at time t is dependent on the tone type and the
incomplete memory m of the past. A fixed window size N of the past is considered on
each trial (in this illustration N = 4). (b) The definition of the P300
area-under-the-curve (AUC): event-related potentials averaged over all oddball (red)
and standard (blue) trials in electrode Cz are shown for a representative subject. The
difference between the oddball and standard curves (solid black) was used to determine
the zero-crossing points around the P300 peak (dashed vertical lines). The P300 AUC
per trial was defined as the area between these two time points on each trial. (c), The
average trace of all standard trials in each block is shown color-coded (for the same
subject as in (b)). The oddball probability (OP) of each block is shown in the legend.
(d), The average trace of all oddball trials in each block is shown color-coded (as in (c)).
(e), The mean normalized AUC of all oddball trials in each block averaged over all
subjects are plotted as a function of the corresponding oddball probability of that block.
The error bars indicate the standard error of the mean (SEM). (f) The same as (e) for
standard trials.

The P300 area-under-the-curve as a measure of physiological
surprise

The P300 amplitude is known to be inversely dependent on the oddball probability
(OP) [27], a necessary condition for it to be used as an EEG surprise feature (as done in
several studies; see supplementary S1 Text). The area-under-the-curve (AUC) is a sum
of amplitudes; therefore, it is less prone to noise than the P300 amplitude and may
serve as a better feature for trial-by-trial analysis.
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We used an automatic procedure to define the P300 AUC time range for each
subject by first finding the maximal peak in the range of 300 to 500 ms (after the
stimulus onset) in the mean oddball-to-standard difference curve at electrodes Cz and
Pz (Fig. 2b). Since electrode Cz showed higher maximal peaks on average across
subjects (5.37 µV for Cz vs. 4.48 µV for Pz), the remainder of the analysis was
performed on the Cz channel. The time points between which the AUC was calculated
were defined as the zero-crossing points of the oddball-to-standard difference trace
(Fig.2b). The P300 AUC for each trial was calculated using these time points.

In Fig. 2c and 2d we show the average response signal for oddball and standard
trials for each of the oddball probabilities for a representative subject. As reported
previously [27], when the OP is decreased, the magnitude of the response increases for
the oddball trials (Fig. 2c). In Fig. 2d we show that there was also a decrease in the
magnitude of the P300 in response to standard trials with decreasing OP.

For the multi-subject analysis below, we normalized the AUC values of each subject
by dividing them with the AUC of the mean oddball-to-standard difference trace of that
subject (black curve in Fig. 2b). In Fig. 2e we show the mean normalized AUC
averaged over all subjects as a function of the oddball probability. The AUC for oddball
and standard trials exhibited a similar trend as the known dependency of the P300
amplitude on the oddball probability.

Single-subject analysis of single-trial P300 data using the NOC
and IB models

Fig. 3a depicts the dependency of the single-trial P300 AUC on the number of oddball
occurrences n (as defined by the NOC model, Fig. 1) in the preceding N = 11 trials in
the sequence, for a representative subject. The optimal N was determined by the N
value with the maximal goodness-of-fit, calculated using weighted linear regression (see
Methods). High tone trials are marked by solid red circles and low tone trials are
indicated by empty blue circles.

The average over all the trials with the same number of occurrences n (light blue,
black edged circles) showed an increase with n; i.e., the higher the number of
occurrences of the opposite tone in the previous window, the larger the P300 response
to the current tone. Note that this plot combines two experimental phenomena:
response increase with the rarity of a stimulus (novelty detection) and response decrease
the more a stimulus was repeated (adaptation), both of which were characterized by the
variable n.

Fig. 3b depicts the dependency of the single-trial P300 AUC on the IB surprise
generated by the IB model with N = 11 and β = 48.33, for the same subject as in Fig.
3a. The optimal N and β are determined by the pair of (N, β) values with the maximal
goodness-of-fit, calculated using weighted linear regression (see the weighted-R2 map in
Fig. 3c and Methods SI). The mean AUC values per surprise showed a gradual increase
with the theoretical surprise value; i.e., the higher the surprise, the larger the P300
response. For examples of more subjects see supplementary S3 Fig For a qualitative and
quantitative comparison to other surprise models, see supp. S1 Text and supp. S5 Fig

Another way to assess the dependency of the P300 on surprise is by averaging the
traces of all the trials with the same theoretical surprise value, here termed
surprise-related analysis (SRA) (Fig. 3d). The average trace of each surprise value is
plotted in a different color, where the color code bar indicates the surprise value. As
reflected in the mean AUC values, the P300 response gradually increases as the
theoretical surprise increases (for an analysis of the oddball trials alone see
supplementary S5 Fig).

Note that the SRA is essentially a generalization of the more standard ERP analysis
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Fig 3. Subject-specific compression parameters extracted by single-trial
analysis.
(a) Single-trial P300 AUC responses of a representative subject to standard tones (blue
empty circles) and to oddball tones (red, filled circles) as a function of the number of
occurrences (n) of the opposite tone in the preceding sub-sequence of N = 11 tones
(the fitted N for that subject). The black-edged filled circles show the average response
for each n. Single trials: weighted-R2=0.230, one-sided permutation test for the R2,
1000 permutations, p-value<0.001, 1145 data points. Mean values: R2 = 0.934 p-
value=3.14x10−7, 12 data points. (b) Single-trial P300 AUC responses to standard
tones (blue, empty circles) and to oddball tones (solid red circles) as a function of
the optimal IB surprise predictor (N = 11, β = 48.33) for the same subject as in (a).
The black-edged solid circles show the average response for each surprise value. Single
trials: weighted-R2=0.231, one-sided permutation test for the R2, 1000 permutations,
P-value¡0.001, 1145 data points. Mean values: R2 = 0.939 p-value=2.22x10−7, 12 data
points. (c) color-coded weighted-R2 values of the linear regression analysis for all tested
IB compression parameters, for the same subject as in (a,b). The vertical axis denotes
the memory window length N . The horizontal axis denotes the representation accuracy
parameter β. The pair of model parameters (N, β) that achieved the highest R2 value
was used for the remainder of the analysis. (d) Surprise-related analysis (SRA). The
single-trial waveforms were averaged by the IB surprise associated with each trial and
are shown color-coded according to the surprise level (shown in the legend). The average
SRA waveforms exhibited a gradual increase in the P300 magnitude with the IB surprise
level.

for oddball sequences (e.g. as in Fig. 2b), in which all oddball events are considered as
surprising and are averaged together, and all standard events are considered
non-surprising and are averaged together, thus masking the gradual increase in the
amplitude. The SRA is also a generalization of the plots presented in Fig. 2c,d.

A multi-subject comparison of the NOC and the IB models

For all subjects, the maximal weighted-R2 obtained with the IB model was similar or
slightly higher than the maximal weighted-R2 obtained with the NOC model (see a
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subject-by-subject comparison in supplementary S2 Fig). To examine the combined
data of all subjects, we used the normalization of the AUC on the y-axis, as defined for
Fig. 2e,f. For the NOC model we had to use a normalization of the occurrences for the
x-axis since every subject had a different value for the memory length N . Therefore we
normalized the number of occurrences n with N (for each subject) to define a running
probability (RP). The IB surprise, on the other hand, provides a universal scale for all
subjects and needs no normalization. The mean responses of all subjects are plotted in
Fig. 4a,b. A linear trend was observed in both (NOC: R2=0.498, IB: R2=0.471). The
plots in the insets show the corresponding averaged responses. While the fitting
accuracies were comparable, it should be noted that the IB surprise accounted for a
wider range of P300 responses (as can be seen from the range of the vertical axes in the
insets of Fig. 4a,b).

Fig 4. Multi-subject comparison of the NOC and IB models. (a) The mean
normalized AUC of each subject is plotted as a function of the running probability
(RP). The RP on each trial is defined as p = n/N , where n is the number of occurrences
of the opposite tone (with respect to the current tone) in the preceding N tones in the
sequence, and N is the fitted model parameter. R2 = 0.498, 409 data points, error DOF
= 407, F-statistic vs. constant model: 404, p-value=7.28× 10−63 (b) The mean
normalized AUC of each subject is plotted as a function of the IB surprise. R2 = 0.471,
445 data points, error DOF = 443, F-statistic vs. constant model: 394, p-value = 0. (c)
The mean responses across all subjects as a function of the RP, calculated using the
data presented in (a). The error bars indicate the SEM. (d) The mean responses across
all subjects as a function of the IB surprise, calculated using the data presented in (b).
The error bars indicate the SEM. (e) Each pair of bars shows the estimated effective
capacity (in bits) for the optimal NOC model (blue bars) and for the optimal IB model
(red bars) for each subject. The effective capacity for the NOC model is defined as the
number of bits required to represent all possible values of occurrences from 0 to N ; i.e.,
log2(N + 1). For the IB model the estimated capacity is defined as I(X;M); i.e., the
mutual information between the past variable X = [0..N ] and the representation
variable M defined by IB. The colored map under each pair of columns shows the IB R2

map of that subject (as in Fig. 3c).

In order to quantify the amount of compression under each model, we calculated the
amount of memory (in bits) required for the past internal representation for each
subject, given the fitted model parameters (N for the NOC model and N, β for the IB
model). This is effectively an estimation of the individual’s memory capacity that was
relevant to the task, and thus was dubbed effective capacity. Fig. 4c shows a
subject-by-subject comparison of the effective capacity. Although the weighted-R2 was
fairly similar for the two models (see also supplementary S2 Fig), in terms of the
amount of utilized memory, the IB model suggests an account for the data by a much
more memory-efficient representation.
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Discussion

The estimation of memory capacity has been addressed by numerous studies that have
typically used behavioral measures [1, 3, 28–30]. Here we suggest a novel, indirect
approach for estimating recent memory capacity by utilizing the dependency of neural
responses to sequential stimuli on the internal representation of past stimuli. While this
framework is very general, we successfully demonstrated the concept using a
well-studied experimental paradigm in the ERP literature known as the oddball
paradigm and the P300 ERP component. By using a compression-dependent surprise, a
highly parsimonious model originally developed and used for explaining single-neuron
responses [25], we were able to account for single-trial variations in the P300 response.
This model also provided a quantitative estimate of the effective recent memory capacity
for each subject, which may be thought of as the amount of utilized memory that was
relevant to the task. By defining a task that is not explicitly memory-dependent, we
unconstrained this amount of memory and allowed natural forgetting of the stimulus
sequence. The framework included three types of forgetting: (1) forgetting the order of
the sequence (2) forgetting the distant past beyond the previous N elements and (3)
diminished accuracy of the past stimuli representation. We posited that subjects forget
as many of the stimulus details as possible, as long as the task performance is not
impaired above some individually set threshold. This hypothesis, and the optimal
compression defined by the three types of forgetting above, gained evidence from the
trial-by-trial P300 correspondence with the NOC model, and to an even greater extent
with the IB model. Importantly, the generality of the framework allows it to be applied
to various surprise (or prediction error) signals, thus yielding a memory capacity
estimation at different modes and levels in the hierarchy of stimulus processing (see
supplementary S4 Fig for the correspondence between surprise and response time).

To situate our results in the context of the current memory literature, the fuzzy
representation of the number of oddball occurrences (as illustrated in Fig. 1 right) has
much in common with the interference approach to working memory (WM) [31].
According to the IB framework these ”interfering” representations are the optimal form
of forgetting in limited capacity conditions in a given task. Since WM is also considered
task dependent [32], it implies an association between the memory capacity discussed
here and WM. It is also worth noting that in both of the compression models presented
here, less probable stimuli elicit higher surprise responses, which is consistent with the
”novelty-gated encoding” assumption of interference models [31]. However, WM
capacity is typically considered to be an inherent trait of each individual, whereas the
effective capacity we estimated here should be seen as memory devoted to the specific
task under the current state of the subject (that can be affected by motivation,
attention, fatigue etc.). Another important difference is that typically WM is thought
to contain under 10 elements which are represented rather accurately in memory [33].
In contrast, here we consider the effect of up to 50 elements in the past. These elements
are not remembered accurately according to the optimal (lossy) compression models;
rather, the relevant information in them affects the response to the current stimulus.
Thus the plausible link between WM and the relevant recent memory discussed here
should be tested in future experiments.

Another natural and intriguing link is to the predictive coding framework [12,34].
Within this framework it is hypothesized that the cortex constantly generates
predictions of incoming stimuli, and responds to deviants from these predictions by a
prediction error signal. More specifically, in hierarchical predictive coding
theories [12,35], the P300 has been linked to deviants from higher-order
expectations [36–38]. We expand on these results by reporting a more subtle P300
response to both deviants and standards (Fig. 2e-f, Fig. 3d), and also suggest a
computational framework to experimentally examine and characterize prediction error
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signals at various levels of the hierarchy, by identifying the past length and resolution
parameters (i.e., N, β) that best fit the data. There is also a compelling relation
between the resolution quantified by β and the precision expectation model of
attention [?] which should be explored in future studies.

We presented the results of a phenomenological model of an optimal strategy under
memory limitations. The advantage of this type of theoretical modeling is that it allows
for quantitative predictions with very few assumptions and parameters. However, the
specific mechanism by which the sequence of stimuli is transformed into a concise
memory state, the way in which this memory state affects the neural response to a new
stimulus or how a new memory state is created are beyond the scope of this paper.
Rather, the type of modeling presented here poses constraints on any such possible
mechanisms. Nevertheless, the P300, a well-studied ERP component, and the very
common oddball paradigm used in both human and non-human studies, makes it
possible to relate the results to known underlying mechanisms. Importantly, Rubin et
al. [25] showed that the IB model was able to explain the firing rate variability of early
single-neuron responses in the primary auditory cortex to oddball sequences. This
provides striking evidence for a lossy type of compression affecting responses as early as
at the single neuron level. The relationship between these single-neuron results and our
results on the higher-scale P300 ERP component calls for further investigation; however,
the same surprise model applied to both phenomena provides an intriguing link that
may shed more light on these multi-scale phenomena of novelty on one hand, and
attenuated responses to repeated stimuli on the other. With regard to the function of
these phenomena, both the P300 and the single neuron prediction-error responses have
been associated with memory update processes [39,40]. The combination of
compression-dependent prediction-error responses with memory-update mechanisms
that depend on these deviant responses may hint at a possible mechanism for the
formation of compressed representations [41,42].

Although the underlying mechanisms currently remain elusive, the literature on the
P300 still allows us to discuss several possible implications deriving from this model.
The P300 is known to be related to numerous factors such as attention [43], mental
workload [44], age [45] [46] and even neurological pathologies [47]. The NOC and IB
compression models provide a method to identify individual memory characteristics in a
handy way that is simple enough to be applied even on children [48] or individuals
incapable of complex tasks. This may contribute to developing quantitative diagnosis of
abnormalities related to short-term processing in various pathological conditions.

Methods

Subjects

Twenty healthy participants (age 31±10; 12 females) participated in the experiment, of
whom three were excluded according to criteria described below. All participants were
recruited via ads at Ben-Gurion University. The experimental procedures were approved
by the institutional ethics committee at Ben-Gurion University. Prior to the experiment,
the participants signed a written consent form after being properly informed of the
nature of the experiment. All participants were compensated for their participation.

Experimental protocol

Before the experiment, the participants were presented with a short example of a
two-tone sequence of 14 tones, out of which 2 were high tones. They were instructed to
press the space bar as quickly as possible each time they heard the high tone. The aim
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of the example was to let the subjects know which tone was the high tone and which
was the low, and to make sure they understood the task. If they did not press the space
bar each time the high tone was played, the example was played again. If they still
failed they were excluded from the database (one subject).

The experiment was made up of 5 blocks of a two-tone sequence, each containing 240
trials (tones). Each block had a different oddball probability [0.1, 0.2, 0.3, 0.4, 0.5] and
the tone for each trial was drawn independently from a Bernoulli sequence. On each
trial, a low tone (with a frequency of 1000 Hz) or a high tone (1263 Hz) was played for
125 ms. The participants had to detect whether it was the high or the low tone and
were required to press the space bar as quickly as possible if it was the high tone. They
did not receive feedback on their performance and the next tone was played with a fixed
inter-stimulus interval (ISI) of 1 sec whether they were right or wrong. Their reaction
time (RT) for each button-press was measured (with the exception of one subject for
whom RT data was not measured for technical reasons). For each subject a new
sequence was drawn and the order of the blocks was randomized. Between blocks the
participants were given a break and could continue to the next block whenever they
wished. Subjects were not informed about how the sequences were generated. The
experiment was realized using Matlab R2015a with the Psychophysics Toolbox
extension [49–51].

Data acquisition

EEG was recorded (bandpass filter: 0.1–60 Hz 8th order Butterworth, notch filter:
48–52 Hz 4th order Butterworth, 256 Hz sampling rate) using a g.HIamp amplifier and
a g.GAMMAsys cap (g.tec, Austria). For 8 subjects the EEG was recorded from the
following electrode positions: Fz, Cz, Pz, P3, P4, PO7, PO8, Oz, and left and right ear
electrodes. For the remaining 11 subjects the EEG was recorded using 61 electrodes
positioned according to the extended international 10–20 system, and left and right ear
electrodes. The anterior midline frontal electrode (AFz) served as the ground. The
active electrode system g.GAMMAsys transmits the EEG signals at an impedance level
of about 1 kΩ to the amplifier.

EEG data preprocessing

EEG data were analyzed using Matlab R2017a (Mathworks) with the EEGLAB [52]
toolbox (v14.1.1b) and the ERPLAB plugin (v6.1.4). Each participant’s EEG data were
bandpass filtered (0.1–30 Hz), and re-referenced to the average of the two ear electrodes.
Subsequently, epochs of -200 ms to 900 ms around the presentation of the tones were
extracted from each trial. We should first note that data preprocessing and analysis
procedure was conducted with the goal in mind to have an automatic, fast and reliable
procedure, for the sake of a possible later usage within a diagnostic or treatment tool
(e.g. in a neurofeedback treatment). To this end, we used a standard automatic
artifact-cleaning procedure based on the artifact subspace reconstruction
method [53,54], by applying the clean rawdata extension for EEGLAB with the
parameters arg flatline: 5, arg highpass: [0.25 0.75], arg channel: 0.7, arg noisy: 4,
arg burst: 5, arg window: ’off’. We then used independent component analysis (ICA)
( [55] and components classification for removing artifactual components using the
MARA plugin for EEGLAB [56,57]. In MARA, we modified the threshold of artifact
probability p artifact to 0.05 (instead of the default 0.5), so that components with a
p artifact higher than 0.05 were removed. On average, 39% of the components were
removed for the 64-electrode datasets (in the 8-electrode datasets there was only one
component overall that was removed).
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We first calculated the mean oddball and standard responses for each subject at
electrodes Cz and Pz. Since electrode Cz showed higher P300 amplitudes on average
across subjects (5.37 µV for Cz vs. 4.48 µV for Pz in the difference between oddball to
standard), the rest of the analysis was performed on the Cz channel. Having a clear
P300 peak (by visual ”eyeballing”) in the averaged ERP was determined as an inclusion
criteria for the study, therefore subjects for whom there was no clear peak in the mean
oddball response compared to the mean standard response in the relevant time range
(300-500 ms) were excluded from the rest of the analysis (two subjects, see
supplementary S1 Fig for the single-subject ERP plots of all subjects). In order to
define the time points for the calculation of the single-trial P300 area-under-the-curve
(AUC), we calculated the difference between the mean oddball response and the mean
standard response (Fig. 2b). We then automatically extracted the time point tpeak of
the maximal amplitude between 300 ms to 500 ms in this difference trace. Around tpeak,
we extracted the two time points t1, t2 where the trace crossed the horizontal axis. The
single-trial P300 feature was defined as the area-under-the-curve (AUC) between t1 and
t2 for each trial. It is worth noting that we used the AUC rather than the peak
amplitude because it demonstrates a similar dependency on the oddball probability as
the P300 amplitude (see Fig. 2e), but is theoretically expected to be a more robust
feature of the single-trial P300 than the amplitude since it is composed of a sum of
amplitudes. The custom Matlab routines developed for the study are available from
H.L.A. (hadar.levi@mail.huji.ac.il).

The naive oddball count (NOC) model

The mathematical details are given in the sections below. In short, the NOC model is
based on the minimal sufficient statistics (MSS) of the oddball sequence (Fig. 1 left) in
the following way: the predictor of the NOC model is constructed by first calculating
the number of oddball tones and the number of standard tones in a fixed window of size
N of the preceding sequence (Fig. 1 left, upper plot). N is the only parameter of the
model and represents the memory length affecting the current stimulus response; i.e.,
how far into the past the stimuli are counted. The response for the tone on each trial is
then modeled by the number of occurrences of the opposite tone in the past window;
e.g., if the high tone was played on a trial, the number of occurrences of the low tone in
the past window is taken as the predictor value for that trial (Fig. 1 left, bottom plot).
It should be noted that this simple model suggests a unified theoretical explanation for
two well-known multi-scale phenomena: the decreased response to repeated stimuli and
the increased response to novel or rare stimuli. In the following sections we give the
mathematical arguments for the optimality of this predictor.

Maximum likelihood estimation and sufficient statistics in the oddball
paradigm

In the field of parameter estimation, a sufficient statistic is a function of the data that
summarizes all the relevant information in the data for estimating a specific parameter
(for a formal definition see [58] p.35). For example, the empirical mean of a sequence of
random numbers is a sufficient statistic for estimating the mean of the distribution.

Here we consider a typical oddball sequence z1, z2, ...zN , zi ∈ {0, 1} generated using
a Bernoulli probability distribution:

p(zi) =

{
θ if zi = 1

1− θ if zi = 0

where θ is the oddball probability, also called the Bernoulli parameter. The zi’s are
referred to below as samples. By definition, a sufficient statistic for the Bernoulli
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parameter θ is the empirical mean of the sequence: 1
N

∑N
i=1 zi. Moreover, it can be

shown that the empirical mean is a minimal sufficient statistic (MSS), in the sense that
given this number, no additional information about the sequence (e.g. the order of the
elements) can improve the estimation of the oddball probability. For a formal definition
of a minimal sufficient statistics see [58] p.37. It is worth noting that for the Bernoulli
sequence, the maximum likelihood (ML) estimator of θ is tightly related to the MSS,

since θ̂ = 1
N

∑N
i=1 zi, where θ̂ denotes an estimator of θ.

Prediction in the oddball sequence

We now consider a ”past” sequence z1, z2, ...zN and a prediction of the ”next” element
zN+1 (denoted by y). Given the ML estimator θ̂ defined in the previous section, an

optimal prediction for y is given by the Bernoulli distribution with θ̂ as the Bernoulli
parameter, i.e.:

p(y|z1, ..., zN ) = p(y|θ̂) =

{
θ̂ if y = 1

1− θ̂ if y = 0

Note that θ̂ is simply the number of oddball occurrences in the N previous elements,
divided by N . The meaning of this well-known result is that simply keeping track of the
number of oddball occurrences in the past sequence is a powerful predictor of the next
tone.

The model predictor

As described above, the predictor of the NOC model is constructed by first calculating
the number of oddball tones and the number of standard tones in a fixed window of size
N of the preceding sequence. The response for the tone at each trial is then modeled by
the number of occurrences of the opposite tone in the past window (see Fig. 1 left).
Formally the predictor is defined as:

nt ≡

{
N − n if y = 1

n if y = 0

The information bottleneck (IB) model

The concept of minimal sufficient statistics can be generalized to cases with limited
memory resources. As mentioned above, given a minimal sufficient statistic for a
parameter of a probability distribution, no additional information on the samples can
improve the estimation of that parameter. On the other hand, it contains the minimal
information for an optimal estimation; i.e., any further decrease in that information will
result in a degraded estimation.

In cases of limited memory capacity, some information loss may be a necessity.
Given a certain information loss, what is the accuracy that can be achieved when
predicting the next element? The answer is provided by the IB method [26]; At each
level of compression (information loss) it provides an upper bound on the accuracy that
can be achieved in the prediction of a target variable (in our case the next tone in the
sequence).

the IB model [25] uses the IB method to define a compression-dependent predictive
surprise. Predictive surprise is defined as: [59–62]

S(future|past) = − log2 p(future|past)

In the case of the oddball sequence the next element is considered as the future, and the
past is the sequence of preceding elements to be considered. The probability
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p(future|past) is usually called the subjective probability since it is an estimation of the
true probability from which the sequence was generated. While there is a solid rationale
for the use of the log function [62,63], different models of predictive surprise usually
differ in the method employed for subjective probability estimation (see supplementary
S1 Text). However, typically these models implicitly assume that the past is represented
accurately in the brain.

Rubin et al. [25] considered the consequences of subjective past, to take into account
the common case of limited memory capacity. As described above, an optimal
representation of the past for the goal of predicting the next element is the sufficient
statistic

∑N
i=1 zi. In cases of limited memory the IB method shows that the optimal

compression is a representation with degraded precision (e.g., the subject only
remembers there were ”about” 4 oddball tones in the previous 10 tones). For these
cases, the subjective surprise is not determined by the true past, but rather by its
internal compressed representation m: Sm(future) ≡ − log p(future|m) and the
probability of having a specific representation m is given by p(m|past). Both the
probabilities p(m|past) and p(future|m) are determined by the optimal compression
provided by the IB method. The mathematical details of the model are given in the
following sections, as well as in [25].

The IB method

Given a random variable X representing the samples or a function of the samples, a
target variable Y , and a joint distribution p(x, y), x ∈ X y ∈ Y , the IB method defines
a compressed representation of X denoted by M that is most informative about the
target variable Y . In our case y is the next element in the oddball sequence, x is the
number of oddball occurrences in the previous N elements (i.e. x = Nθ̂, θ̂ similarly as
defined above), and m is a compressed representation of that number. Note that we

defined the past x as Nθ̂ (rather than any other function of the past sequence) since we

already know that θ̂ is an optimal compression of the sequence, and we are interested
now in a further compression. Also note, that although x represents the ”past” and y
represents the ”future”, the joint probability p(x, y) is assumed for simplicity to be
stationary. This assumption can be relaxed by empirically estimating p(x, y) and
updating it along the sequence.

The amount of compression of X is quantified by the mutual information between X
and M , denoted by I(X;M), whereas the information that M carries on the target
variable Y is quantified by I(M ;Y ). Ideally one would want to compress X as much as
possible (to use minimal memory resources) while keeping the maximal amount of
information on Y for optimal prediction accuracy; i.e. minimizing I(X;M) while
maximizing I(M ;Y ). Since there is a trade-off between the two, the optimal solution is
determined by the minimum of the Lagrangian:

L[p(m|x)] = I(X;M)− βI(M ;Y )

where β is the trade-off parameter, controlling the balance between the compactness of
the representation and the preservation of relevant information; i.e., the lower the β the
stronger the compression. For each β we obtain an optimal solution for pβ(m|x) and
pβ(y|m) which satisfy:

p(m|x) =
p(m)

C(x, β)
exp(−βDKL[p(y|x)||p(y|m)])

p(m) =
∑
x

p(x)p(m|x)
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p(y|m) =
∑
x

p(y|x)p(x|m)

where C(x, β) is a normalization function, and DKL is the Kullback-Leibler
divergence [58] which is a distance measure for probability distributions. This set of
self-consistent equations also determines an iterative algorithm to find the optimal
solution for any given p(x, y) and β. For further details on the IB principle and
algorithm see Tishby et al. [26].

The model predictor

We denote by yt+1 the next element, and by xt the minimal sufficient statistic of the N
preceding elements: xt =

∑t
i=t−N+1 zi, xt ∈ {0, 1, ...N}. Thus the IB predictive

surprise is defined as:

SIB(yt+1|xt) = −
∑
m

pIB(m|xt) log pIB(yt+1|m)

where m denotes a compressed representation of xt and we summarize over all possible
representations with their respective probability.

Note that we do not need to explicitly determine a specific compressed
representation (although it can be done, see agglomerative IB [64]). As specified in the
previous section, to use IB we only need the joint probability distribution of the past xt
and the future yt+1. To calculate this probability we assume that the subject has no
prior knowledge of the sequence; therefore we use a uniform prior on the oddball
probability which yields the following joint probability distribution:

p(yt+1 = 1, xt = n) =

∫ 1

0

(
N

n

)
θn+1(1− θ)N−ndθ =

n+ 1

(N + 1)(N + 2)

The IB surprise SIB(yt+1|xt) defined above is the subjective surprise level on each
trial. It is dependent on two parameters: the memory length N and the compression
parameter β. Note that in Fig. 1 yt+1 is simply referred to as the next tone, and for
brevity, n denotes the random variable of the past (denoted here by xt), as well as the
actual values obtained by xt.

By comparison with the NOC model, whereas in the NOC predictor the number of
past oddball occurrences is accurately kept in memory (e.g. 2 oddball tones in the
previous 4 tones), in the IB predictor this number can be represented in memory
inaccurately, (e.g. 2 oddball tones in the past may be represented by a high probability
for n = 2, but there is also some probability for other occurrences (0,1,3,4), as
illustrated in the upper pane in Fig. 1 right, by the variation in the intensity of the red
shading). This fuzziness is mathematically represented by a probability of the possible
values m can take, given the actual past n, i.e. p(m|n). The representation accuracy is
quantified by the mutual information between the past n and the representation m,
denoted by I(n;m), where the minimal value is 0 and the maximal value is the entropy
H(n) (in the case of m = n). Another difference to note between the models is that
although both models incorporate a compressed representation of the preceding
sequence, the NOC model is simply defined by the minimal sufficient statistics, whereas
the IB model is defined by the − log of probabilities.

Fitting the EEG data

We assumed that the P300 response was linearly dependent on the IB subjective
surprise (see the previous section for the definition of the IB subjective surprise). We
extracted the P300 AUC feature on each trial as described in the electrophysiological
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analyses section. Independently, we calculated the subjective surprise for each trial for
different N and β values; i.e., Sβ,N (z1, ...zn), where each such signal is called an IB
surprise predictor. In order to avoid numerical problems caused by insignificant
differences in surprise values, the surprise values were binned to bins of size 10−4 (using
Matlab’s histc function). To characterize the best model we then calculated a linear
regression fit between the single-trial AUC and the single-trial surprise values. Since
there was an unbalanced distribution over the surprise values (by definition, higher
surprise values are rarer), we used a weighted linear regression with inverse-probability
weighting [65]. The inverse-probability 1/p(s) was calculated using the true asymptotic
probabilities given by p(yt+1, xt) by summing over all probabilities with the same
surprise value (rather than by the noisy empirical probabilities of the surprise values).
In order to avoid multiple comparisons [25], P-values were calculated using a
permutation test by randomizing the oddball sequence order within each block and then
recalculating the surprise model of the permuted sequence. On 1000 permutations per
subject, the maximal weighted-R2 from each permutation was extracted and used for
the P-value calculation.

The optimal N in the NOC model was determined in a similar manner. For each N ,
an NOC predictor nt was determined by calculating, for each tone in the sequence, the
number of preceding tones of the opposite type in the preceding N tones (see the main
text for more details). Then a weighted-R2 was calculated, where the weights were
defined as for the case for the IB predictors, as inverse-probability weights using the
true asymptotic probabilities. The probability p(n) in the predictors is given by
p(yt+1 = 0, xt = n) + p(yt+1 = 1, xt = N − n).

Significance testing

For the weighted linear regression in the single-trial, single-subject analysis, p-values
were calculated using a 1000-fold permutation test by randomizing the sequence order
within each block and then recalculating the IB or NO predictor of the permuted
sequence. From each permutation the maximal weighted-R2 across all parameter space
was extracted and used for the permutation test. For other linear regression analyses
the reported p-values and F-statistics were calculated using Matlab’s built-in function
fitlm.
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Supporting information

S1 Fig.

Single subject P300 ERPs. The P300 ERP of all subjects at electrode Cz is shown,
each subject in a different plot. In red: the average of all oddball trials. In blue: the
average of all standard trials. The last two plots marked by a dashed red rectangle
correspond to two subjects where there was no clear difference between the oddball and
standard curves and who therefore were omitted from the remainder of the analyses.
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S2 Fig.

Subject-by-subject comparison of models performance. (Top) The
weighted-R2 of the two optimal models is compared for each subject. Each pair of blue
(NOC model) and magenta (IB model) bars depict a different subject. (Bottom) The
p-value for each model is shown for each participant. The p-value was calculated with a
1000-fold permutation test. The significance of p-value=0 here is p¡0.001.
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S3 Fig.

Single subject mean responses in the approximately sufficient compression
model. Average normalized P300 AUC responses as a function of the IB surprise for
three different subjects. The fitted parameters for each subject were: (a) N = 11,
β = 48.33 (b) N = 15, β = 2.64 (c) N = 8, β = 11.29. The weighted-R2 values for the
single-trials fit were: (a) 0.231 (b) 0.244 (c) 0.163. The R2 values for the fit of the mean
values (the plotted line) were: (a) 0.939 (b) 0.907 (c) 0.966. The error bars indicate the
SEM.
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S4 Fig.

Single subject response time as a function of the IB surprise. Results for
three subjects (same subjects as in supplementary S3 Fig), showing a non-linear and
non-monotonous dependency of the RT on the IB surprise. This behavior was
qualitatively different across subjects, showing that a multi-subject analysis is not
straightforward for the RT and calls for a more complex model, presumably due to
additional parameters affecting the response time. The surprise model parameters are
as indicated in supplementary S3 Fig The error bars indicate the SEM.
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S5 Fig.
A comparison of the NOC and IB models with the distance-from-target

model on oddball trials. (a) Single-trial and (b) average normalized P300 AUC
responses to oddball tones as a function of the distance (in number of elements) from
the last oddball in the sequence, for all subjects. R2 = 0.007, 5448 data points, error
DOF = 5446, F-statistic vs. constant model: 37.3, p-value=1.06× 10−09 (c) Single-trial
and (d) average normalized P300 AUC responses to oddball tones as a function of the
running probability, for all subjects. For each subject the best N was fitted as described
in the main text. R2 = 0.005, 5492 data points, error DOF = 5490, F-statistic vs.
constant model: 29.3, p-value=6.39× 10−08 (e) Single-trial and (f) average normalized
P300 AUC responses to oddball tones as a function of the IB surprise, for all subjects.
For each subject the best N and β were fitted as described in the main text. R2 = 0.01,
5448 data points, error DOF = 5446, F-statistic vs. constant model: 55.3,
p-value=1.21× 10−013 The running probability and IB surprise were binned such that
they have an identical number of values (28) on the x-axis as in (a). In all figures the
error bars indicate SEM. Notice how the IB surprise shows a consistent increase in the
AUC while explaining a large range of AUC responses.
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S1 Text Alternative surprise models for the P300. In the context of the
oddball paradigm, Tueting, Sutton and Zubin [1] showed in 1970 that the P300
amplitude is affected by the oddball probability of the sequence (among other
factors [2]). This was followed by other studies described below which showed
dependence of the P300 on the preceding sequence of tones, in addition to the effect of
the a-priori oddball probability. In 1976 an innovative study by Squires et al. [3]
suggested a model of trial-by-trial expectancy to account for fluctuations in the P300
amplitude due to an auditory oddball sequence. This was an impressive study, but the
model had several components and only considered the influence of up to five preceding
elements. A study a year later by Duncan-Johnson and Donchin [4] compared the effect
of the a-priori probability relative to the effect of the preceding tone and found that
both factors contributed to the P300 amplitude independently. However, this only
characterizes very short term memory effects (one preceding tone).

More recently, a model by Mars et al. [5] considered infinitely long sequences in the
past. The surprise of each event is modeled as the minus log of the probability
associated with each event given all preceding trials. The probability is estimated using
a maximum likelihood estimate and assuming a prior with equally likely events
(formally assuming a uniform Dirichlet prior over the oddball probabilities). This was
the first work, to the best of our knowledge, to give a formal account of the surprise in
single trials and associate it with single trial amplitudes of the P300. What is missing
from this work, in our view, is the eventuality of inter-subject differences in the surprise
model (all subjects have the same model with infinite memory length).

Finally, Kolossa et al. [6] suggested a predictive surprise model based on digital
filtering, combining both Mars’ and Squires’ models and redefining them as three
additive digital filtering processes. The surprise is modeled as the minus log of the
probability of the next element, where the probability is given as a sum of three
components: a short-term memory contribution depending on the number of oddball
occurrences in the entire sequence with a strong decaying memory factor, a long-term
memory contribution with a slower decay factor, and an alternation term which depends
on a few preceding elements. Kolossa’s model parameters can be easily interpreted and
connected to memory parameters; however, as Squires’ model it seems to have a
relatively large number of components and parameters.

Kolossa et al. thoroughly compared the above models [6] and also drew the attention
to the difference between models of predictive surprise and models of Bayesian surprise.
In models of predictive surprise the probability for the next element is estimated in each
trial and the surprise in each trial is modeled as the minus log of this probability.
Models of Bayesian surprise model the surprise as the revision in the internal
probability distribution over the possible elements after each trial. This is the distance
between the two estimated distributions, before and after observing each element. This
can be quantified, for example, using the DKL distance between the distributions. An
example of a Bayesian surprise model was given by Ostwald et al. [7] for the
somatosensory system under an oddball paradigm. However, Mars et al. [5] tested a
Bayesian surprise model on their P300 data as an alternative model and found their
predictive surprise model to give better results.

As we show in the main text, the dependency on the number of oddball occurrences
is observed for a good theoretical reason: given a memory length, in the oddball
paradigm the number of oddball occurrences in the preceding sequence is a minimal
sufficient statistic [8] to predict the next tone. The models mentioned above are all
dependent on this number, but Squires’ and Kolossa’s models contain more information
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about the exact sequence which is both unnecessary theoretically for efficient processing
of the oddball sequence, and also do not seem to have a significant advantage in
explaining the P300 data, as shown in Kolossa et al. Mars’ model, on the other hand,
may lose important information by unifying all subjects in a single model.

It is also worth noting a related predictor for the P300 amplitude known as the
target-to-target interval [9]; i.e., the number of non-target elements preceding the target
element. This predictor considers only target trials and was used to analyze mean
responses. A comparison with this model is shown in supplementary S5 Fig.
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