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Abstract 

Substantial genome-wide association study (GWAS) work in Parkinson’s disease (PD) has led to an 

increasing number of loci shown reliably and robustly to be associated with the increased risk of the 

disease. Prioritising causative genes and pathways from these studies has proven problematic. Here, we 

present a comprehensive analysis of PD GWAS data with expression and methylation quantitative trait 

loci (eQTL/mQTL) using Colocalisation analysis (Coloc) and transcriptome-wide association analysis 

(TWAS) to uncover putative gene expression and splicing mechanisms driving PD GWAS signals. 

Candidate genes were further characterised by determining cell-type specificity, weighted gene co-

expression (WGNCA) and protein-protein interaction (PPI) networks. 

Gene-level analysis of expression revealed 5 genes (WDR6, CD38, GPNMB, RAB29, TMEM163) that 

replicated using both Coloc and TWAS analyses in both GTEx and Braineac expression datasets. A 

further 6 genes (ZRANB3, PCGF3, NEK1, NUPL2, GALC, CTSB) showed evidence of disease-associated 

splicing effects. Cell-type specificity analysis revealed that gene expression was overall more prevalent in 

glial cell-types compared to neurons. The WGNCA analysis showed that NUPL2 is a key gene in 3 

modules implicated in catabolic processes related with protein ubiquitination (protein ubiquitination 

(p=7.47e-10) and ubiquitin-dependent protein catabolic process (p = 2.57e-17) in nucleus accumbens, 

caudate and putamen, while TMEM163 and ZRANB3 were both important in modules indicating 

regulation of signalling (p=1.33e-65] and cell communication (p=7.55e-35) in the frontal cortex and 

caudate respectively. PPI analysis and simulations using random networks demonstrated that the 

candidate genes interact significantly more with known Mendelian PD and parkinsonism proteins than 

would be expected by chance. The proteins core proteins this network were enriched for regulation of the 

ERBB receptor tyrosine protein kinase signalling pathways. 

Together, these results point to a number of candidate genes and pathways that are driving the associations 

observed in PD GWAS studies. 
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Introduction 

Parkinson’s disease (PD) is the second most common neurodegenerative condition worldwide, 

characterised by bradykinesia, rigidity and tremor (Lees et al.). Recent efforts in genome-wide associated 

studies have unveiled over 40 risk loci (Chang et al., 2017a). However, the genes and the genomic 

processes driving the disease mechanisms remain largely unknown. Most genome wide associations 

studies (GWAS) risk variants fall in the non-coding regions of the genome. Several studies show that 

complex trait-associated variants can act as expression and splicing quantitative trait loci (eQTL/sQTL), 

and exploring eQTLs has proven a fruitful method to follow up GWAS results (Emilsson et al., 2008; 

Nica et al., 2010). An improved understanding of the underlying mechanisms via which these risk variants 

act will be instrumental to the understanding of PD pathophysiology. 

 

Several public brain tissue-specific eQTL datasets have become available in recent years. These include 

the Braineac dataset by the UK Brain Expression Consortium (UKBEC) (Trabzuni et al., 2011a) and the 

Genotype-Tissue Expression (GTEx) consortium (Ramasamy et al., 2014; The GTEx Consortium, 2015). 

Such datasets have enabled the interpretation of GWAS results in the context of regulatory effects of risk 

variants on genes. These datasets offer differing opportunities and limitations, CommonMind has a large 

number but only one brain region, whereas Gtex and Braineac provide overlapping but non-identical brain 

regions and provide a platform for splicing and regulatory analyses. 

 

There have also been recent advances in statistical methods allowing much more detailed interrogation of 

GWAS and eQTL summary association data to elucidate complex disease mechanisms: Coloc 

(Giambartolomei et al., 2014) is a method that uses a Bayesian framework to assign a posterior probability 

to the hypothesis that two traits share a causal variant. Other methods quantify the genetic correlation 

between gene expression and disease GWAS; Summary Mendelian randomization (SMR) leverages 

Mendelian randomization methods to assess the degree to which the disease outcome could be causally 

explained by changes in gene expression (Zhu et al., 2016); Transcriptome-wide association study 
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(TWAS) and MetaXcan are based on marrying disease GWAS data with prediction models trained on 

reference expression data to assess the association between gene expression and disease (Gusev et al., 

2016; Barbeira et al., 2017). Here we have selected Coloc and TWAS as the primary methods of eQTL 

analysis, in order to gain complementary information on the relationship between gene expression and PD 

(Gusev, 2017). 

 

The availability of large transcriptomic datasets and advanced statistical tools and methods to integrate 

expression platform with GWAS data improves our ability to identify candidate disease-causing genes to 

investigate further (Dobbyn et al., 2017; Pardiñas et al., 2018). Recent efforts in PD at the 7p15.3 locus 

have shown the risk variants in GPNMB act as expression QTL (Murthy et al., 2017). 

 

Here we present a systematic interrogation of PD risk loci from the most recent GWAS (Chang et al., 

2017b) to uncover putative genes and genomic events, within the PD risk loci, based on gene expression, 

splicing regulation and methylation in the human brain. This work is a reference example to be applied to 

different neurodegenerative diseases. 

 

Methods 

Parkinson’s disease GWAS data 

Summary statistics from the combined discovery and replication phases of the recent GWAS meta-

analysis of PD were used (Chang et al., 2017b). This includes 8,055,803 genotyped and imputed variants 

in up to 26,035 PD cases and 403,190 controls of European ancestry. For the purposes of this study, all 

alleles were aligned on the forward strand, and all effect sizes and allele frequencies were converted with 

respect to the non-reference allele in build GRCh37. All genes overlapping the region 1Mb up or 

downstream of a SNP with a PD p-value ≤ 5×10-8 were selected for the initial analysis. The analysis was 

then extended to include all genes in the genome, to identify candidate genes in loci that have not reached 
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genome-wide significance in the PD GWAS, but where the collective evidence with expression data 

suggests a colocalised signal. 

Braineac eQTL data 

The UKBEC Braineac dataset contains data from 10 brain regions obtained from 134 control individuals: 

frontal cortex, temporal cortex, occipital cortex, hippocampus, thalamus, putamen, substantia nigra, 

medulla, cerebellum, and white matter, together with the average expression across all 10 regions 

(Trabzuni et al., 2011b; Trabzuni et al., 2013; Ramasamy et al., 2014). Gene expression was quantified 

using Affymetrix Exon 1.0 ST arrays, and the genotyping was performed using Illumina Infinium Human 

Omni1-Quad BeadChip  microarrays then imputed to the European panel of the phase-1 1000 Genomes 

Project (Li et al., 2009; Li et al., 2010). The genotyped and imputed data were restricted to ~5.88 million 

SNPs with MAF ≥ 0.05 and imputation r2 > 0.5. For each gene of interest, all SNP associations within 

1Mb up and downstream of the gene were collected (http://www.braineac.org). 

GTEx eQTL data 

The  GTEx V7 dataset (The GTEx Consortium, 2015) includes eQTL data from 13 brain tissues with 

sample sizes ranging from 154 to 80: cerebellum, caudate, cortex, nucleus accumbens, cerebellar 

hemisphere, frontal cortex, putamen, hippocampus, anterior cingulate cortex, hypothalamus, amygdala, 

spinal cord (cervical C1), substantia nigra. Gene expression in these samples has been obtained using 

paired-end RNA-seq (Illumina TruSeq), and genotype data from whole genome sequencing. Full summary 

eQTL data for the tissues of interest was downloaded from the GTEx web portal 

(http://www.gtexportal.org/home/). 

 

Brain methylation data 

 

Genome-wide methylation profiles were obtained from both substantia nigra and frontal cortex of 134 

individuals with PD from the Parkinson’s Disease UK Brain Bank, using the Illumina Infinium 
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HumanMethylation450 BeadChip (HM450). Cis PDmQTLs were defined as correlations between the 

target PD SNP genotype and DNAm levels of CpGs within a 500kb window of the SNP base position. 

Linear models were fitted to test whether DNAm beta-values for each CpG were predicted by SNP 

genotypes. We included covariates for age at death, gender, population stratification, batch and post-

mortem interval. We retained the strongest SNP-CpG pair at a 5% false discovery rate to be used in 

downstream analyses. CpGs were mapped to genes if they were within 10kb of the gene transcription start 

/ end base position according to HG19 coordinates. 

Coloc analysis 

 

To assess the probability of the same SNP being responsible for both change in PD risk and modulating 

the expression levels of a gene, we used the Coloc method (Giambartolomei et al., 2014). Both Braineac 

and GTEx eQTL datasets were harmonised with the PD GWAS dataset, to ensure that the regression 

coefficients were reported with respect to the non-reference alleles in build GRCh37, and variants 

overlapping with the PD-GWAS dataset were kept for analysis. Coloc uses estimated approximate Bayes 

factors from summary association data to compute posterior probabilities for five hypotheses: 

H0 No shared causal variant in the region 

H1 There is a causal PD variant but no eQTL variant 

H2 There is a causal eQTL variant but no PD variant 

H3 Both studies have a different causal variant within the analysed region 

H4 There is a shared causal variant within the analysed region 

We used the default Coloc priors of p1=10-4, p2=10-4, p12=10-5 (p1 = the probability that a given SNP is 

associated with PD, p2 = probability that a given SNP is a significant eQTL, p12 = probability that a given 

SNP is both a PD hit and an eQTL). 

For both the Braineac and GTEx datasets, we derived posterior probabilities (PPH0-4) for each gene and 

considered PPH4 ≥ 0.75 as strong evidence for colocalization. For Braineac, we also looked at genes 

where there is strong evidence of colocalization at exon-level for a given exon (exon PPH4 ≥ 0.75), but 
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evidence against colocalization for the whole gene (gene PPH3 > gene PPH4), to identify potential 

splicing events causing PD. 

 

TWAS 

 

To assess the degree to which changes in gene expression or splicing might be associated with PD 

case/control status, we performed a TWAS/MWAS using the method by Gusev et al. (Gusev et al., 2016). 

Expression reference weights were obtained from the CommonMind Consortium (CMC) dorsolateral 

prefrontal cortex (DLPFC) RNA-seq and RNA-seq splicing datasets, which are based on 467 samples 

(209 schizophrenia cases, 206 controls, 52 affective disorder cases), and methylation data from our PD 

brain methylation dataset (Senthil et al., 2017) . For all genes (or isoforms for splicing analysis), 

TWAS/MWAS p-values were obtained, and all genes/isoforms passing multiple testing correction at FDR 

0.05 level, genome-wide were considered as significant. Where multiple genes were implicated within a 

region, we performed further conditional analyses using Fusion to identify whether there were single or 

joint TWAS/MWAS signals at each locus. Conditional analyses were performed independently across 

gene expression and methylation datasets. 

 

Weighted gene co-expression network analysis (WGCNA) 

We performed a weighted gene co-expression network analysis (WGCNA) with k-means applied to 

transcriptomic data from GTEx and Braineac to generate co-expression modules (Forabosco et al., 2013; 

Bettencourt et al., 2014; Botía et al., 2017). Briefly, each module is associated to a cell type based on the 

enrichment of cell type-specific genes within the module. The enrichment is assessed by using a Fisher’s 

exact test to determine whether we find an overlap between the module genes and the brain cell type 

markers that is more significant than random chance. Each gene of interest is then assigned to a “primary” 

cell type based on its module membership (MM). Module membership is the correlation of the expression 

of our gene of interest with the first principal component of each module. This correlation is always 
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between 0 and 1And we use MM as a measure of how reliable is the assignment of each gene to its 

module.  

 

Cell-type specificity analysis 

 

We investigated the cell-type specific expression of the Coloc prioritised genes, using the immunopanning 

data from humans and mouse, and co-expression analysis of the GTEx and Braineac data (Zhang et al., 

2014; Zhang et al., 2016; Soreq et al., 2017). From the immunopanning data, cell type-specific 

enrichment values were obtained or calculated for each gene and for each cell type analysed. Enrichment 

was calculated as expression prevalence by dividing the average expression of the gene in one cell type by 

the average expression across all other cell types. Each gene of interest was then assigned to a “primary 

cell type” of interest based on the highest cell type-specific enrichment value observed. 

 

Literature-derived PPI networks 

 

We extracted currently known protein interactors (PPIs) for the proteins (seeds) encoded by the genes 

prioritized in this manuscript (coloc protein network). PPIs were identified for each seed protein based 

upon entries in the following databases within the IMEX consortium (PMID: 22453911): APID 

Interactomes, BioGrid, bhf-ucl, InnateDB, InnateDB-All, IntAct, mentha, MINT, InnateDB-IMEx, 

UniProt, and MBInfo by means of the “PSICQUIC” R package (version 1.15.0 by Paul Shannon, 

http://code.google.com/p/psicquic/). For 2 of the seeds (TMEM163 and NEK) no human protein 

interaction data was available thus they were excluded form the analysis. After downloading PPIs (21 

January 2018), Protein IDs were converted to uniprot and Entrez IDs. All databases were merged after 

removal of TrEMBL, non-protein interactors (e.g. chemicals), obsolete Entrez and Entrez matching to 

multiple Swiss-Prot identifiers. All PPIs underwent quality control (QC) following the weighted protein-

protein interaction network analysis (WPPINA) pipeline as previously described to remove: i) all non-
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human annotations, and; ii) all poor quality annotations (Ferrari et al., 2017). The interactions were then 

scored taking into consideration the number of different publications reporting the interaction, and the 

number of different methods reporting the interaction. All the interactors with a final score ≤ 2 were 

discarded to control for replication and reduce false positive rate. Of note, UBC (coding for the protein 

ubiquitin) was removed due to the pervasive nature of covalent ubiquitylation of proteins as part of the 

ubiquitin/proteasome degradation pathway. A similar network (Mendelian protein network) was prepared 

for Mendelian, Parkinson’s/parkinsonism proteins (SNCA, LRRK2, GBA, SMPD1, VPS35, DNAJC13, 

PINK1, PRKN, DJ1, FBXO7, SYNJ1, DNAJC6, PRKRA, C19Orf12, PANK2, SPG11, RAB39B, ATP13A2, 

PLA2G6 and WDR45) and for 118 genes with a negative score in the coloc analysis (the latter being used 

as a negative control protein network, Supplementary Table 1. The final networks were visualized 

through the freely available Cytoscape 3.5.0 software (Shannon et al., 2003). Functional enrichment was 

on the relevant genes prioritized through WPPINA was performed using g:Profiler (doi: 

10.1093/nar/gkw199) on the 8th February 2018 allowing for Gene Ontology (GO) Biological Processes 

(BP) terms to be queried. 

Results 

Gene-level results 

 

Overall, 515 genes were present within 1Mb of a genome-wide significant PD SNP in the Braineac 

dataset, and 748 in at least one GTEx brain tissue dataset, with 470 of these overlapping. In Braineac, 9 

genes had strong evidence for colocalization at gene level in at least one brain region, while in GTEx, 42 

genes had strong evidence for association. Fifteen of these 42 genes were not present in Braineac, so 

replication across both datasets was possible in 27 genes. In the TWAS analysis, 137 genes were 

significant at FDR 0.05 level, of which 61 were within 1Mb of a PD significant SNP. Five genes (WDR6, 

CD38, GPNMB, RAB29, TMEM163; Table 1) replicated across Coloc and TWAS results (Figure 1A). An 

additional 5 genes falling outside 1Mb of a PD significant SNP showed strong association for 
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colocalization in both Braineac and GTEx and were significant in the TWAS analysis.   Illustrative 

regional association plots for the highest PPH4 genes and brain regions in Braineac (RAB29) in average 

expression across all brain regions) and GTEx (CD38 in Putamen) are in Figure 2A-B.  Full details for all 

genes that showed strong evidence for colocalization in either Braineac or GTEx, and full details of all 

genes significant at FDR 0.05 level in the TWAS analysis are found in Supplementary Tables 2-3. 

 

Splicing results 

 

Overall, 25 genes had strong evidence for colocalization for at least one exon in at least one brain region 

in Braineac. For 15 genes there was evidence suggesting that the association is driven by an exon-level 

splicing event (exon PPH4 > 0.75) rather than a gene-level expression effect (gene PPH3 > PPH4). In the 

TWAS analysis, 129 genes had evidence for splicing in at least one isoform at FDR 0.05 level. Of these, 

40 were within 1Mb of a PD significant SNP. 6 genes with a putative splicing effect in the Coloc analysis 

showed a significant splicing effect in the TWAS analysis (ZRANB3, PCGF3, NEK1, NUPL2, GALC, 

CTSB) (Figure 1B). We then assessed the eQTL p-values of the top SNP suggested by Coloc for the 

associated exon and the gene as a whole, showing that for the vast majority of these associations, the 

gene-level p-value is not significant, while the exon-level is. These genes are summarized in Table 2. An 

additional 2 genes falling outside 1Mb of a PD significant SNP showed evidence of splicing in all datasets 

and analyses. Full details for all genes that showed strong evidence for colocalization in either Braineac or 

GTEx, and full details of all genes significant at FDR 0.05 level in the TWAS analysis are found in 

Supplementary Tables 5-6. 

 

MWAS results 

 

We then integrated PD summary statistics with summary level methylation data for 37,460 CpGs. 134 

CpGs survived FDR correction and conditional analysis in substantia nigra (mapping to 107 unique genes) 
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and . 117 CpGs survived FDR correction and conditional analysis in substantia nigra (mapping to 93 

unique genes) (Supplementary Table 6). Of the MWAS significant genes, 3 overlap with the Coloc 

expression or splicing hits (Table 3). 

 

Cell-type specificity and WGCNA 

 

The results for the cell-type specificity analysis are shown in Figure 3. Although no single cell-type 

dominated, Coloc prioritized gene expression was overall more prevalent in glial cell-types compared to 

neurons. This finding was consistent across analyses performed using mouse immunopanning data 

generated from cortex, human-immunopanning data also generated using cortical tissue and using inferred 

cell-specific gene expression generated using co-expression networks across all brain regions including 

substantia nigra. WGCNA results are summarised in Table 3: NUPL2, TMEM163 and ZRANB3 were the 

most relevant genes (MM > 0.76) within 3 modules in different brain regions. NUPL2 was a key gene 

within the darkturquoise, blue and skyblue modules in nucleus accumbens, caudate and putamen 

respectively. Interestingly, these modules’ most relevant functions indicated catabolic processes related 

with protein ubiquitination (protein ubiquitination [GO:0016567, p=7.47e-10]; ubiquitin-dependent 

protein catabolic process [GO:0006511, p = 2.57e-17]). TMEM163 and ZRANB3 were both important in 

the turquoise module in the frontal cortex and caudate respectively. This module indicated chemical 

transmission at the synapse as a major associated function (regulation of signalling [GO:0023051, 

p=1.33e-65]; cell communication [GO:0007154, p=7.55e-35]).  

 

Literature-derived PPI network 

 

Interestingly the protein products (WPPINA analysis) of the 11 genes prioritized by the Coloc analysis 

revealed connection (principally through a second degree level of connection) with a number of proteins 

that are also relevant for Mendelian forms of PD and parkinsonism (Figure 4A). The number of 
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connections (n=9) was higher than expected based on random simulation of protein connectivity (Figure 

4B) obtained by analysing the connections of 1000 control networks characterized by the same number of 

seeds as the experimental network. Control networks were built by using random combinations of seed-

genes sampled out of the pool of 118 genes characterized by evidence against colocalization within the 

Coloc analysis (PPH3>0.75). Most of these random networks resulted in no connections with 

PD/parkinsonism related proteins, with the maximum observed number of connections of 4. This result 

suggests a disease specific and consistent interaction between protein products of the Coloc genes and 

Mendelian PD/parkinsonism proteins.  

 

Since proteins that interact together are likely to share similar functions, we investigated if there were 

shared pathways/biological processes associated with this core of connected Coloc and Mendelian 

proteins (input list for enrichment in Supplementary Table 8). Results are summarized in (Figure 4C) 

and reported in Supplementary Table 9, and suggest that there is an enrichment of proteins involved in 

or regulating the ERBB receptor tyrosine protein kinase signalling pathways. 

 

Discussion 

 

With the increasing number of GWA studies, our ability to map disease associated variants exceeds our 

ability to interpret their biological function. Here, we have performed a comprehensive analysis by 

colocalization of eQTL and GWAS signals in PD, using the latest PD-GWAS. We have interrogated these 

data with publicly available brain eQTL datasets (Braineac and GTex). This multi-layered approach has 

identified 11 genes, which we postulate underlie PD risk. Of these, 5 affect gene expression regulation and 

6 influence alternative splicing. We found evidence of methylation regulation for 3 of these candidate 

genes.  

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 5, 2019. ; https://doi.org/10.1101/627216doi: bioRxiv preprint 

https://doi.org/10.1101/627216
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Of the candidate genes presented here, CD38 is involved in insulin regulation, emphasizing a possible role 

of glucose metabolism in PD (Okamoto et al., 1997).  This is supported by recent work indicating a 

relationship between BMI and PD, and a randomized controlled trial of exenatide, a glucagon-like 

peptide-1 receptor agonist, as a disease modifying agent for PD (Athauda et al., 2017; Noyce et al., 2017). 

Furthermore, a role for CD38 in regulating neuroinflammation, especially in glial cells, has been 

proposed, which is consistent with the enrichment of CD38 in astrocytes in the cell-type specificity 

analysis (Wei et al., 2009). The link between GALC and Krabbe adds weight to the recent work on the 

role of lysosomal pathways in PD (Wenger, 2011; Dehay et al., 2013; Robak et al., 2017). Furthermore, 

the data from this study reinforces that status of the RAB29 gene as the priority candidate for the 

chromosome 1q32 locus association. Recent studies providing further functional evidence linking RAB29 

(aka RAB7L1) to LRRK2, and implicating RAB29 as a substrate for LRRK2 kinase activity, also support 

this designation (Fujimoto et al., 2018; Liu et al., 2018; Purlyte et al., 2018). Interestingly, in the 

GPNMB/NUPL2 locus, the PD GWAS results suggest only one independent signal, while the results 

presented in this paper nominate both GPNMB (gene level) and NUPL2 (splicing) with strong PPI 

evidence connecting both to Mendelian or sporadic risk genes. This could be explained by the true causal 

gene being one of the two, or a single mechanism mediated through the effects on both genes, or 

potentially yet undetected independent PD GWAS signals at the locus affecting independent risk genes. 

 

The WGCNA and WPPINA approaches allow prioritization of genes as a global functional unit. The 

WGCNA analysis suggested that 3 of the Coloc prioritized genes (NUPL2, TMEM163 and ZRANB3) may 

be relevant for supporting functions related with the ubiquitin proteasome system, neuronal development 

and the chemical transmission at the synapse. The WPPINA analysis indicated that the proteins encoded 

by the Coloc prioritized genes interact with Mendelian PD/parkinsonism proteins suggesting the existence 

of a common functional unit of genes/proteins – related to the ERBB signalling pathways – that increases 

the risk for developing sporadic as well as familial PD. 
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It is noteworthy, that this study has considered only cis-eQTLs, due to the current challenges in robustly 

quantifying trans-eQTLs. Furthermore, this study only considered eQTLs in the brain and no other 

tissues. The Coloc analysis applied here assumes that the true causal variant underlying the disease has 

been captured in both the GWAS and eQTL datasets. The PD-GWAS data used here has been imputed to 

the latest HRC panel (v1.1), and the genotypes in the GTEx data are generated with whole-genome 

sequencing, maximising the chances of this assumption being met. However, the Braineac data used here 

has been imputed to 1000 Genomes phase 1, potentially reducing our power to replicate candidate genes 

in this dataset. Another limitation in the colocalization tools used here is that they assume one independent 

signal for each gene at each locus for both the GWAS and QTL results. Finally, the methods used here 

cannot exclude pleiotropy, whereby a disease-causing SNP affects the regulation of an unrelated gene via 

a separate pathway. 

 

While the overlap between GTEx and Braineac derived results are encouraging, there are some 

inconsistencies.  This may be due to potential methodological differences in tissue collection, RNA 

extraction, platforms, and analyses pipelines.  in  addition, these differences might reflect divergent cell-

type specificity of the expression and splicing effects.  

 

A key strength of this study is that this is a large and comprehensive exploration of PD GWAS and eQTL 

dataset from human brain. We replicated our Coloc results across two platforms: Braineac and GTEx, 

generated through microarray, and RNA-seq, respectively, and performed additional validation using 

TWAS in the CMC DLPC dataset. This has resulted in prioritizing 11 candidate causal genes for PD 

based on GWAS hits to be further investigated biologically in different animal or cell models for PD. 

Furthermore, we are highlighting biological reasons for their likely functional contribution to PD 

pathogenesis. We acknowledge further functional work will be required to mechanistically link these 

genes to PD, but the genetic and analytical approaches applied here suggest that these are the putative 

gene and genomic events underlying these risk loci. Techniques such as chromosome conformation 
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capture and generating cell models with altered gene expression and splicing patterns will be key to 

characterise the potential role of these genes in PD pathogenesis. 
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Tables: 

Table 1. Gene-based results 

Gene Locus Direction 
Top PD SNP 

position 

Braineac brain 

regions 

GTEx brain 

regions 

WDR6 NCKIPSD/CDC71' - chr3:48748989 

Thalamus 

White matter 

Caudate, 

Cerebellar 

Hemisphere, 

Cerebellum, 

Cortex, Frontal 

Cortex (BA9), 

Hippocampus, 

Putamen, 

Substantia 

nigra 

CD38 FAM200B/CD38' - chr4:15737101 Putamen 

Caudate, Cortex, 

Frontal Cortex 

(BA9), Nucleus 

accumbens, 

Putamen 

GPNMB 
KLHL7/NUPL2/GPN

MB' 
+ chr7:23293746 

Average all 

Cerebellum 

Hippocampus 

Occipital cortex 

Putamen 

Temporal 

Amygdala, 

Anterior 

cingulate cortex 

(BA24), 

Caudate, 

Cerebellar 

Hemisphere, 

Cerebellum, 
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cortex Cortex, Frontal 

Cortex (BA9), 

Hippocampus, 

Hypothalamus, 

Nucleus 

accumbens, 

Putamen 

RAB29 NUCKS1/SLC41A1' + chr1:205723572 Average all 

Anterior 

cingulate cortex 

(BA24), 

Caudate, 

Cerebellum, 

Cortex, 

Hippocampus, 

Nucleus 

accumbens, 

Putamen, Spinal 

cord cervical c-1, 

Substantia 

nigra 

TMEM163 TMEM163/CCNT2' + chr2:135539967 Frontal cortex Hypothalamus  

 

 

Table 2. Splicing results 

Gene Tissue Exon PPH3 PPH4 
Top 

Coloc SNP 

Exon 

p-

value 

Gene 

p-

value 

PPH3  PPH4  
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ZRANB3 Hippocampus ENSE00001468503 0.06 0.93 rs6741007 
1.37E-

06 
0.27 0.20 0.07 

PCGF3 Average all ENSE00001954691 0.05 0.87 rs34311866 
3.32E-

05 
0.20 0.26 0.07 

NEK1 Medulla ENSE00002024254 0.11 0.78 rs6828248 
7.13E-

05 
0.11 0.28 0.08 

NUPL2 Cerebellum ENSE00001346995 0.24 0.76 rs12539467 
8.62E-

09 
0.06 0.26 0.17 

GALC Frontal cortex ENSE00001729062 0.12 0.81 rs2008686 
7.71E-

05 
0.03 0.27 0.19 

CTSB Average all ENSE00001374998 0.10 0.78 rs1692821 
3.14E-

05 
0.47 0.27 0.05 

CTSB White matter ENSE00001374998 0.09 0.77 rs1293298 
3.66E-

05 
0.08 0.27 0.07 

 

Table 3. MWAS hits overlapping with Coloc hits 

GENE CPG DIRECTION P CONDITIONAL P REGION 

GPNMB cg17274742 - 6.00E-18 4.00E-19 Frontal cortex 

GPNMB cg08455073 - 1.40E-17 1.40E-05 Substantia nigra 

TMEM163 cg00897703 + 7.00E-06 2.30E-03 Frontal cortex 

CTSB cg07593977 - 1.30E-04 1.30E-04 Substantia nigra 
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Figure legends 

Figure 1. A: Flowchart of gene expression analysis. Overall, 5 genes replicated across GTEx and 

Braineac, and in the TWAS analysis. CMC = CommonMind Consortium; DLPC = dorsolateral prefrontal 

cortex; TWAS = transcriptome-wide association study. B: Flowchart of splicing analysis. Overall, 6 genes 

replicated across Coloc splicing analysis in Braineac and TWAS sQTL analysis. For Coloc, the splicing 

analysis consisted of identifying genes with evidence for colocalization at the level of at least one exon 

(exon PPH4 > 0.75) and evidence against colocalization for the expression of the whole gene (gene PPH3 

> PPH4). CMC = CommonMind Consortium; DLPC = dorsolateral prefrontal cortex; TWAS = 

transcriptome-wide association study. 

Figure 2. Regional association plots of GPNMB with Braineac data (A) and RAB29 with GTEx data (B). 

The -log10 p-values are presented on the association of each SNP with gene expression (orange) and risk 

of PD (green), illustrating the likely colocalization of the signals and the likely presence of a shared causal 

variant. 

Figure 3. – Cell-type specific expression of Coloc prioritised genes in human and mouse, and using GTEx 

and Braineac data. These results illustrate the overrepresentation of glial cell types compared to neuronal 

cell types among the candidate genes. 

Figure 4. – Literature-derived PPIs network. (A) WPPINA network visualisation of the PPIs specific for 

the proteins (seeds) coded by the Coloc genes (green nodes). Minor protein interaction partners are shown 

in blue, whilst Mendelian Parkinson’s/parkinsonism proteins interacting with parts of the seeds’ 

interactome are reported in pink. Major interaction partners, i.e. that they bridge interaction between at 

least a Coloc protein and a Mendelian protein are labelled in grey. (B) The negative control protein 

network has been randomly sampled to generate 1000 random networks with similar features to the actual 

Coloc network. These therefore included same/similar number of seeds (9 seeds) to the Coloc protein 

network and were matched to the Mendelian protein network to quantify the number of Mendelian 

proteins able to interact with the random seeds’ interactome. Random simulation and experimental results 
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are shown in blue and red, respectively. (C) Nodes highlighted in yellow (Coloc proteins connected to 

Mendelian PD proteins and internodes) were used to run functional enrichment. The most specific terms 

of enrichment are reported in the table with their adjusted p-value, GO term identifier and name. The 

proteins that contributed to the enrichment of the terms reported in tables are circled in red. 
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