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Title: 

 

Efficient and accurate prediction of transmembrane topology from amino acid sequence only 

 

--------------------------------------------------------------------------------------------------------------------------------- 

 

 

Abstract: 

 

Motivation 

Fast and accurate identification of transmembrane (TM) topology is well suited for the 

annotation of whole membrane proteome, and in turn the initial step to predict the structure 

and function of membrane proteins. However, till now the methods that utilize only amino acid 

sequence (pureseq) will suffer from low prediction accuracy, whereas the methods that exploit 

sequence profile or consensus will need too much computing time. 

 

Method 

This article employs a deep learning framework DeepCNF that predicts TM topology from amino 

acid sequence only. Compared to previous pureseq approaches that based on Hidden Markov 

Models (HMM) or Dynamic Bayesian Network (DBN), DeepCNF can accommodate a lot more 

context information by a hierarchical deep neural network, and simultaneously model the 

interdependency between adjacent topology labels. 

 

Result 

Experimental results show that our TM prediction method PureseqTM not only outperforms 

existing pureseq methods, but also reaches or even surpasses the profile/consensus methods. On 

the 39 newly released membrane proteins, our approach successfully identifies the correct TM 

segments and boundaries for at least 3 cases while either of the other approaches failed to do so. 

When applied to the entire Human proteome, our method can identify the incorrect annotations 

of TM regions by UniProt, as well as discover the membrane-related proteins that are not 

manually curated as membrane protein. 

 

Availability 

http://pureseqtm.predmp.com/ 
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=========== 

Introduction: 

=========== 

 

Transmembrane proteins (TPs) are key players in energy production, material transport, and 

communication between cells [1]. TPs are encoded by ~30% genes in the various genomes [2] 

and have been targeted by ~50% of therapeutic drugs [3]. Despite their abundance and 

importance, the number of solved TPs structures is relatively low compared to those of 

non-transmembrane proteins (non-TPs). In particular, if we take the non-redundancy threshold to 

40% sequence identity, then there are only about 1500 non-redundant TPs whereas the 

non-redundant number of non-TPs is more than 34000. The underlying reason is that the 

experimental determination of TPs is challenging as membrane proteins are often too large for 

NMR spectroscopy and difficult to crystallize for X-ray crystallography [4]. Thus, it is critical to 

develop computational methods for the prediction of TP structure from amino acid sequence, 

and the initial step is the accurate identification of the transmembrane topology [5]. 

 

As shown in the left part of Figure 1, transmembrane (TM) topology refers to the locations of the 

membrane-spanning segments, which could be represented as a 1D 0/1 string to indicate the 

location of each residue to reside in (label 1) or out of (label 0) the membrane. This simple but 

direct definition of TM topology is consistent with the 3-label definition used by many other 

works that divides non-TM regions (i.e., label 0) into inner or outer sides [6-10]. In this work, we 

only focus on the prediction of TM topology of the alpha-helical TPs because of the following two 

facts: (i) almost all the TM regions in Eukaryotic TPs are alpha-helical except some of them are 

beta-barrel in the mitochondrial membrane [8]; (ii) more than 85% of the available TPs that have 

3D structure belong to the alpha-helical TPs [11]. If there is only one TM segment, then this 

membrane protein is denoted as single-pass transmembrane protein (sTP); similarly, a multi-pass 

transmembrane protein (mTP) will contain two or more TM segments. Here we mainly focus on 

the topology prediction of multi-pass transmembrane protein as about 75% of the current 

available alpha-helical TPs are mTPs [11]. 

 

Till now, a variety of approaches have been proposed to predict the 1D TM topology from the 

input sequence of a membrane protein. These approaches can be roughly categorized into three 

groups: (a) single-sequence-based methods that only rely on the input amino acid sequence 

information (or, ‘pureseq’ features). Two representative methods are TMHMM/Phobius [7, 12] 

and Philius [8], where the former established a Hidden Markov Model (HMM) model and the 

latter employed a Dynamic Bayesian Network (DBN) model. The advantage of the pureseq 

methods is their extremely fast running speed, while the disadvantage is the relatively low 

prediction accuracy; (b) evolutionary-based methods that consider the information embedded in 

the homologous Multiple Sequence Alignment (MSA) through evolutionary analysis (or, ‘profile’ 

features). Two representative methods are OCTOPUS [10] and MEMSAT-SVM [9]. The advantage 

of the profile methods is their improved prediction accuracy over pureseq methods, but at the 

cost of significantly reduced running speed due to the search for MSA; (c) consensus methods 

that combine the outputs from different predictors. TOPCONS2 [13] and CCTOP [6] are the two 
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representatives. As the consensus methods will also integrate the profile methods, their running 

speed can’t compete with that of the pureseq methods. So, it remains a question that can we 

develop an approach for TM topology prediction that can reach the accuracy of profile or 

consensus methods but as efficient as pureseq methods. 

 

 

Figure 1. Illustration of the transmembrane (TM) topology of a multi-pass transmembrane protein and our 

proposed model for the prediction of TM topology. Left: the 1D amino acid sequence of an alpha-helical 

membrane protein (PDB ID: 2lckA) will fold into a 3D structure embedded in the lipid bilayer membrane, in which 

those residues embedded are denoted as the TM topology. Right: our proposed model that consists of two 

modules, where the first module is for discriminating transmembrane proteins (TPs) and non-TPs, and the second 

module is for predicting the TM topology. 

 

 

Recently, we have developed a deep learning framework Deep Convolutional Neural Fields 

(DeepCNF) [14] for a variety of protein sequence labeling problems ranging from secondary 

structure element (SSE) [15], solvent accessibility (ACC) [16], to order/disorder region (DISO) [17, 

18], which obtained the top-tier performance according to the third-party evaluations [19-22]. In 

this work, we employed DeepCNF for the prediction of TM topology labels based on amino acid 

sequence information only (denoted as PureseqTM). Briefly, DeepCNF can be viewed as 

Conditional Random Field (CRF) with Deep Convolutional Neural Network (DCNN) as its 

non-linear feature generating function. DeepCNF can model not only complex relationship 

between the input features and TM labels, but also the correlation among adjacent TM labels. 

These properties give DeepCNF better ability to model long-range dependencies embedded in 
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the input features, and better performance over CRF (a model compatible to or even better than 

HMM and DBN) and DCNN on 1D sequence labeling tasks. Furthermore, besides considering 

amino acid as simply 20 alphabets, we may also take into account the physical-chemical 

properties of amino acids [23]. Consequently, our proposed method PureseqTM can easily take 

as input these pureseq features, and achieve the performacne compatible to or even better than 

profile and consensus methods, while keeps the similar running speed of pureseq methods. 

 

As shown in the right part of Figure 1, PureseqTM has two modules: (i) a module for 

discriminating TPs and non-TPs, and (ii) a module for predicting TM topology. Experimental 

results show that PureseqTM greatly outperforms existing pureseq methods Phobius and Philius, 

especially on the identification of the correct number and boundaries of the TM segments 

(measured by protein-level and segment-level accuracy, respectively). Specifically, on the 39 

newly released mTPs, PureseqTM achieved the best performance 0.667 in terms of protein-level 

accuracy, which is 12.9%, 7.7% and 5.2% better than Phobius, Philius and even Topcons2, 

respectively. Moreover, PureseqTM correctly identified the number and boundaries of the TM 

segments for at least 3 cases among this dataset where Phobius, Philius, or Topcons2 was not 

able to do so. Finally, we applied our method on the entire Human proteome from UniProt [24]. 

The results indicate that PureseqTM can not only identify the incorrect annotations of TM regions 

by UniProt, but also discover the membrane-related proteins that are not reviewed as membrane 

protein by UniProt. Since it is time-consuming to generate sequence profiles, this makes our 

method a good tool for proteome-wide TM topology prediction. 
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====== 

Result: 

====== 

 

 

Figure 2. Overview of our Deep Convolutional Neural Fields (DeepCNF) model for transmembrane (TM) topology 

label prediction from the amino acid sequence features only (i.e., pureseq features). Here L is the amino acid 

sequence length of the input protein. The probabilities of the output of Hidden Markov Model (HMM) and 

Dynamic Bayesian Network (DBN) are displayed in gray scale, where darker or lighter indicates higher or lower 

probabilities, respectively. CRF denotes Conditional Random Field (in purple), and 1D-DCNN denotes 1D Deep 

Convolutional Neural Network (in light green). 

 

 

Model Architecture: 

 

In general, as shown in Figure 2, the model architecture of PureseqTM could be considered as an 

integration of Hidden Markov Model (HMM) and Dynamic Bayesian Network (DBN) to produce 

an initial estimation of the probabilities of the transmembrane topology labels as well as the 

probabilities of their transitions (or more precisely, topology change). Then the long-range 

dependencies embedded in these information are in turn effectively exploited by a Deep 
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Convolutional Neural Field (DeepCNF) model for predicting the binary topology labels at each 

amino acid position. 

 

HMM features generated by Phobius. Phobius [12] considers the transmembrane topology 

prediction problem as a supervised learning problem over the observed input amino acid 

sequences a= a1,…,aL, and output the hidden topology labels y = y1,…,yL. The yi is from the four 

topology labels {s,i,m,o}, which correspond respectively to signal peptides, cytoplasmic 

(‘inside’) loops, membrane-spanning segments, and non-cytoplasmic (‘outside’) loops. Then 

Phobius established a HMM that is a generative model to produce a joint probability distribution 

between observed sequence a and hidden states y. When the HMM model is trained, it is 

possible to inference the posterior probability of the four topology labels at each amino acid 

position via Forward-Backward algorithm. Thus, the generated four probabilities of the topology 

labels from Phobius become the HMM features for our proposed DeepCNF model. 

 

DBN features generated by Philius. DBN could be regarded as a strict generalizations of HMM [25], 

where the latter only contains two variables (one observation and one hidden state) in each time 

frame i and one connection between adjacent frames (i.e., the connection between the adjacent 

hidden states). On the contrary, DBN can model multiple variables in each frame as well as more 

than one connection between adjacent frames. This property enables DBN to encode the states 

that depict the transitions between the adjacent topology labels (i.e., ‘changeState’ according 

to Philius [8]). In particular, changeState can take value 0 or 1. If 1 is taken, then the topology 

label in the next frame shall be changed. Therefore, instead of predicting the posterior 

probability of the four topology labels (i.e., changeState is set to 0) which respectively 

correspond to ‘ss’, ‘ii’, ’mm’, and ’oo’, Philius is able to predict additional four posterior 

probability of the topology label transitions (i.e., changeState is set to 1) which respectively 

correspond to ‘xs’, ‘xi’, ’xm’ and ‘xo’ where ‘x’ indicate any other topology label. However, as 

signal peptide starts from the N-terminal and the probability of ‘xs’ only has value at the first 

frame, we may delete this state. Also, the ‘x’ could only be ‘m’ for ‘xi’ and ‘xo’ because of the 

state transition diagram in topology prediction. In summary, the generated seven transition 

probabilities between the topology labels from Philius become the DBN features for our 

proposed DeepCNF model. 

 

Additional amino acid features. In addition to the predicted probabilities of the topology labels 

from Phobius and Philius, we may further utilize the features embedded in the input amino acid 

sequence (i.e., ‘pureseq’ features). One straightforward approach (denoted as one-hot encoding) 

uses a binary vector of 20 elements to indicate the amino acid type at position i. However, the 20 

amino acids are not simply alphabetic letters, as they encode a variety of physiochemical 

properties. These properties of the 20 amino acids could be obtained from an on-line database 

(AAindex) [23] that forms a 20X494 matrix (i.e., each amino acid has 494 physiochemical 

properties). This high dimensional and redundant data can be reduced to a 20x5 matrix (i.e., each 

amino acid can be represented by a 5-dimentional vector), which basically represents bipolar, 

secondary structure, molecular volume, relative amino acid composition, and electrostatic charge, 

respectively [26]. Consequently, these 20+5 pureseq features are added to our proposed 

DeepCNF model. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 5, 2019. ; https://doi.org/10.1101/627307doi: bioRxiv preprint 

https://doi.org/10.1101/627307


 

Binary topology label prediction by DeepCNF. It has been reported that DeepCNF model was 

successfully applied to a variety of sequence labeling problems, such as protein secondary 

structure prediction [15], protein order/disorder region prediction [18], and detecting the 

boundaries of expressed transcripts from RNA-seq reads alignment [27]. Generally speaking, 

DeepCNF has two modules: (i) the Conditional Random Fields (CRF), and (ii) the Deep 

Convolutional Neural Network (DCNN). DeepCNF can not only model complex relationship 

between the features from the amino acid sequence and the topology label by a deep 

hierarchical architecture that allows the capture of long-range dependencies embedded in these 

features (in parameters W and U), but also explicitly depict the interdependency between 

adjacent topology labels (in parameter T). 

 

--------------------------------------------------------------------------------------------------------------------------------- 

 

 

Performance evaluation: 

 

We measure the prediction results in terms of the following evaluation criteria: protein-level 

accuracy, segment-level accuracy, and residue-level accuracy. The protein-level accuracy (pAccu) 

refers to the definition that a correct prediction of the whole protein should have the correct 

number of transmembrane segments at approximately correct locations (overlap of at least five 

residues) [13]. For segment-level accuracy, we use segment recall (sReca) and segment precision 

(sPrec). The segment recall is defined as the approximately correct prediction of the 

transmembrane segment with overlap of at least five residues to the ground-truth segment; 

while the vice versa is the definition for segment precision [8]. 

 

The residue-level accuracy is defined at each residue, which consists of Q2 accuracy, SOV score, 

recall (Reca), precision (Prec) and Matthews correlation coefficient (Mcc), respectively. The Q2 

accuracy is defined as the percentage of residues for which the predicted transmembrane 

topology label is correct. The Segment OVerlap (SOV) score [28] measures how well the 

ground-truth and the predicted transmembrane regions match, especially at the middle region 

instead of terminal regions (see section S1 in Supplemental Material for details). In order to 

calculate recall, precision and Mcc, we define true positives (TP) and true negatives (TN) as the 

numbers of correctly predicted transmembrane and non-transmembrane residues, respectively; 

whereas false positives (FP) and false negatives (FN) are the numbers of misclassified 

transmembrane and non-transmembrane residues, respectively. Then recall and precision is 

defined as TP = (TP + FN) and TP = (TP + FP), respectively. Mcc is defined as follows: 

 

Mcc =
(TP × TN − FP × FN)

√(TP + FP)(TN + FP)(TP + FN)(TN + FN)
 

 

--------------------------------------------------------------------------------------------------------------------------------- 
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Performance on validation dataset: 

 

The performance of our approach PureseqTM was compared to the performance of Phobius [12] 

and Philius [8] on the 164 validation dataset. Furthermore, to discover the importance of each 

input features, we conduct a study by incrementally adding the features from one-hot encoding, 

AAindex, HMM to DBN, respectively. This feature incremental study is critical as the HMM and 

DBN feature originate from Phobius and Philius, and we need to show the performance to what 

extend PureseqTM can reach without using these features. 

 

As shown in Table 1, all our feature combination strategies outperform Phobius and Philius in 

terms of segment-level, and a large collection of residue-level accuracy, such as Q2, SOV, and Mcc. 

Notably, our DeepCNF model trained by only one-hot encoding features outperforms Phobius 

and Philius, especially in terms of Q2, SOV, and Mcc from residue-level accuracy, and segment 

recall and precision. This result suggests that there exist some long-range dependencies between 

amino acid sequence and transmembrane topology, and this information can be learned by our 

deep learning model better than that by HMM and DBN. Furthermore, with more features being 

added to DeepCNF, the performance, especially in terms of protein-level accuracy, increases 

incrementally. When all features are added, our method can reach 0.573 protein-level accuracy, 

which is compatible to Philius.  

 

Table 1. Overall transmembrane topology prediction accuracy on 164 membrane proteins from 

the validation dataset.  

 

 pAccu sReca sPrec Q2 SOV Reca Prec Mcc 

Phobius 0.500 0.889 0.905 0.816 0.837 0.797 0.715 0.601 

Philius 0.579 0.917 0.914 0.828 0.859 0.833 0.724 0.627 

DeepCNF trained by amino acid sequence only 

One-hot 0.543 0.935 0.917 0.836 0.865 0.786 0.785 0.648 

+ AAindex 0.561 0.945 0.922 0.838 0.868 0.796 0.789 0.653 

+ HMM 0.567 0.950 0.921 0.839 0.870 0.819 0.766 0.654 

+ DBN 0.579 0.935 0.912 0.842 0.881 0.804 0.771 0.654 

DeepCNF trained by sequence profile 

Profile 0.708 0.927 0.932 0.867 0.906 0.811 0.808 0.699 

+ One-hot 0.701 0.942 0.930 0.866 0.906 0.815 0.816 0.702 

+ AAindex 0.750 0.950 0.940 0.869 0.912 0.829 0.811 0.709 

+ HMM 0.732 0.952 0.938 0.866 0.911 0.830 0.808 0.705 

+ DBN 0.695 0.944 0.933 0.865 0.906 0.824 0.806 0.701 

 

Footnotes: 

‘+’ indicates that we incrementally add the feature in this row and those in the previous rows to our model. 

AAindex is the 5-dimentional reduced amino acid physiochemical properties. 

HMM is the Hidden Markov Model features generated by Phobius. 

DBN is the Dynamic Bayesian Network features generated by Philius. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 5, 2019. ; https://doi.org/10.1101/627307doi: bioRxiv preprint 

https://doi.org/10.1101/627307


 

--------------------------------------------------------------------------------------------------------------------------------- 

 

Performance on test dataset: 

 

To show the performance on “real-world” cases, we challenge our method using the 39 mTPs 

dataset, in which all data are released after Jul 2016 [11] and not homologous to the entries in 

the 328 training/validation set. Moreover, we performed a 3D structure comparison [29] 

between the proteins in the test dataset and those in the training dataset. Among the 39 mTPs, 

about 7 (15) of them have structural analogs in the 328 dataset whose TMscore > 0.65 (0.55). 

This means that at least 60% to 82% of the mTPs in our test dataset are novel fold to the training 

dataset [30]. This resembles actual challenges that no sequence or structure similarity could be 

found for those newly obtained mTPs. 

 

   

(A) (B) (C) 

   

(D) (E) (F) 

Figure 3. Quality comparison of the prediction by our method PureseqTM, with Phobius, Philius and Topcons2 on 

the 39 test dataset. (A) to (C): comparison between our method (X-axis) and other three methods (Y-axis) in 

terms of Matthews correlation coefficient (Mcc). (D) to (F): comparison between our method (X-axis) and other 

three methods (Y-axis) in terms of Segment overlap score (SOV). 

 

 

For this task, we not only compare our PureseqTM with Phobius and Philius that rely on the input 

amino acid sequence only (i.e., ‘pureseq’ methods), but also compare with Topcons2 [13] which 

is a consensus approach relying on evolutionary profile additionally. As shown in Table 2, not 

surprisingly, our method again achieves better performance than Phobius and Philius in terms of 

some key measurements in residue-level accuracy, such as Q2 (better than 2.2%), SOV (better 

than 3.6%) and Mcc (better than 3.2%). Figure 3 shows the head-to-head comparison of the Mcc 
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and SOV values between PureseqTM and the other three methods. These results indicate that 

PureseqTM outperforms others in terms of Mcc and SOV for a large portion of the cases in the 

test dataset. 

 

Nonetheless, it’s really surprising that PureseqTM achieved the best performance 0.667 in terms 

of protein-level accuracy, which is 12.9%, 7.7% and 5.2% better than Phobius, Philius and even 

Topcons2, respectively. These results show that the improvement of our method is even higher 

than that in the 164 validation set, especially in protein-level accuracy. One possible explanation 

is that some of those mTPs in the validation set overlap with the training data of Phobius and 

Philius. Consequently, these results indicate that our approach could be applied to a newly 

released mTP that possibly has novel transmembrane topology, with only amino acid sequence as 

input. 

 

Table 2. Overall transmembrane topology prediction accuracy on 39 membrane proteins from the 

test dataset.  

 

 pAccu sReca sPrec Q2 SOV Reca Prec Mcc 

Phobius 0.538 0.833 0.911 0.808 0.826 0.750 0.715 0.579 

Philius 0.590 0.863 0.939 0.816 0.849 0.782 0.737 0.603 

Topcons2 0.615 0.851 0.910 0.819 0.840 0.759 0.724 0.593 

PureseqTM 0.667 0.892 0.934 0.838 0.885 0.762 0.777 0.635 

PureseqTMP 0.667 0.903 0.933 0.851 0.902 0.782 0.790 0.661 

 

Footnotes: 

‘P’ indicates that the sequence profile feature is used. 

 

 

Table 2 also shows a weird phenomenon that in terms of segment-level and residue-level 

accuracy, Philius, a pureseq method, outperforms the consensus method Topcons2 that relies on 

evolutionary profile as well as the output of Philius. In order to explain this case, we conduct a 

similar feature incremental study on training data but start from the 40 evolution-related 

features. See Method for details of how to generate these profile features. As shown in the 

bottom part of Table 1, the performance reaches its peak till the AAindex features are added, and 

it will decrease when adding HMM or DBN. This experiment might explain why the performance 

of Topcons2 is not compatible to that of Philius. 

 

If the DeepCNF model trained by sequence profile (i.e., profile model) is applied to the 39 test set, 

we may find that in terms of residue-level accuracy, such as Q2 and SOV, the profile model will 

gain ~1-2% compared to the model trained by residue-related features (i.e., pureseq model). 

However, it seems that the protein-level and segment-level accuracy of the profile model doesn’t 

improve a lot over that of the pureseq model, which might indicate that the evolution-related 

features could improve the boundary detection, but not that useful for identifying the 

transmembrane segment. This hypothesis could also be used to explain the phenomenon why 

Topcons2 didn’t improve a lot over Philius in terms of protein-level and segment-level accuracy. 
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--------------------------------------------------------------------------------------------------------------------------------- 

 

 

Case studies of the test set: 

 

To show the performance of our PureseqTM method, we select three case studies from the test 

set where the ground-truth of the transmembrane topology is known from PDBTM [11]. 

 

5lnko. This protein is the chain o from the ovine respiratory complex I, which has 120 residues 

and 2 transmembrane helices. Note that this protein is structurally dissimilar to the training 

dataset, where the most similar protein only has TMscore 0.47 to this protein. This indicates that 

5lnko has a novel fold. As shown in Figure 4, our method predicted the correct number of 

transmembrane helices, while Phobius, Philius predicted one and Topcons2 failed to predict this 

protein as a TP. In terms of the residue-level accuracy (Table 3), our method reached 0.806, 0.833 

precision, 0.758 Mcc, 0.908 Q2, and 0.978 SOV, which indicated that the overlap between our 

prediction and the ground-truth is very large. Therefore, the success of this case indicates that 

PureseqTM could be applied to predict the transmembrane topology for those “real-world” new 

cases that no sequence or structure similarity could be found in the sequence or template 

database. 

 

Table 3. Transmembrane topology prediction accuracy of 5lnko. 

 

 pAccu sReca sPrec Q2 SOV Reca Prec Mcc 

Phobius 0 0.5 1 0.850 0.740 0.516 0.842 0.578 

Philius 0 0.5 1 0.842 0.741 0.516 0.800 0.553 

Topcons2 0 0.0 0.0 0.742 0.331 0.0 0.0 0.0 

PureseqTM 1 1 1 0.908 0.978 0.806 0.833 0.758 
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Figure 4. Case study of the transmembrane topology prediction of 5lnko. Here transmembrane or 

non-transmembrane regions are shown in red or cyan, respectively. The posterior probabilities generated by 

PureseqTM are shown in red curve, and the 0.5 threshold is shown in green line. (the same as below) 

 

++++++++++++++++++++++++++++++++++++++ 

 

 

5ldwY. This protein is the chain Y from the mammalian respiratory complex I, which has 141 

residues and 4 transmembrane helices. The most similar protein to 5ldwY in the training dataset 

has TMscore 0.545, which indicates that there is no strong structural similarity. As shown in 

Figure 5, our method predicted the correct number of transmembrane helices, while Topcons2 

predicted one and Phobius failed to predict this protein as a TP. Although Philius successfully 

predicted the correct number of transmembrane helices, in terms of residue-level accuracy, our 

method is significantly better than Philius (Table 4). In particular, the Q2, SOV and Mcc of our 

method is 0.823, 0.928, and 0.642, respectively, which is 6%, 5%, and 10% better than that of 

Philius. From this case, we may also found out that Philius tend to predict longer transmembrane 

segment, which will cause a better recall but lower down the precision. Another interesting 

phenomenon from this case study is that although using similar model architecture, say HMM in 

Phobius and DBN in Philius, it seems that for most of the cases Philius outperforms Phobius in 

terms of protein-level accuracy. This hypothesis could also be inferred from the fact that with the 

inclusion of DBN feature to our model, the protein-level accuracy increased significantly. 
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Table 4. Transmembrane topology prediction accuracy of 5ldwY. 

 

 pAccu sReca sPrec Q2 SOV Reca Prec Mcc 

Phobius 0 0.0 0.0 0.546 0.112 0.0 0.0 0.0 

Philius 1 1 1 0.759 0.871 0.875 0.683 0.542 

Topcons2 0 0.25 1 0.610 0.354 0.234 0.714 0.219 

PureseqTM 1 1 1 0.823 0.928 0.750 0.842 0.642 

 

 

 

Figure 5. Case study of the transmembrane topology prediction of 5ldwY. 

 

 

++++++++++++++++++++++++++++++++++++++ 

 

4he8E. This protein is the chain E from the respiratory complex I from Thermus thermophiles, 

which has 95 residues and 3 transmembrane helices. This protein has structural analogs in the 

training dataset, where the most similar protein has TMscore 0.694 to this protein. The sequence 

homologs (measured by Meff) of this protein is 1004. Figure 6 shows that our method and 

Topcons2 predicted the correct number of transmembrane helices, while Phobius and Philius 

predicted two. In terms of residue-level accuracy, the profile-based consensus method Topcons2 

outperforms PureseqTM, especially in SOV and Mcc (Table 5). This is normal that when a protein 

has a large amount of sequence homologs, the profile-based approach will gain increased 

performance in the residue-level measurements, as indicated in Table 1. Thus, if the profile 
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model of PureseqTM is used for this case, we shall obtain a much better prediction than 

Topcons2 (Table 5). Specifically, the Q2, SOV and Mcc of our profile mode is 0.852, 0.983, and 

0.708, respectively, which is 4%, 9%, and 3% better than that of Topcons2. 

 

Table 5. Transmembrane topology prediction accuracy of 4he8E. 

 

 pAccu sReca sPrec Q2 SOV Reca Prec Mcc 

Phobius 0 0.667 1 0.663 0.669 0.667 0.638 0.326 

Philius 0 0.667 1 0.663 0.678 0.733 0.622 0.335 

Topcons2 1 1 1 0.811 0.895 1.0 0.714 0.676 

PureseqTM 1 1 1 0.800 0.802 0.933 0.724 0.628 

PureseqTMP 1 1 1 0.853 0.968 0.933 0.792 0.717 

 

 

 

Figure 6. Case study of the transmembrane topology prediction of 4he8E. 

 

--------------------------------------------------------------------------------------------------------------------------------- 
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Discrimination of transmembrane and non-transmembrane proteins: 

 

Before predicting the transmembrane topology, a preliminary task is to distinguish transmemrane 

proteins (TPs) and non-transmembrane proteins (non-TPs). This is critical for the application to 

genomic or proteomic data. To fulfill this task, we train a model to discriminate TPs and non-TPs 

by randomly adding ~1000 proteins from the non-TP dataset to the training set. To test the 

performance of this discrimination model, we compare with Phobius, Philius and Topcons2 on 

the discrimination dataset that contains 440 TPs (including both single-pass and multi-pass 

transmembrane proteins) and ~6400 non-TPs. We define true positives (TP) and true negatives 

(TN) as the numbers of correctly predicted TPs and non-TPs, respectively; whereas false positives 

(FP) and false negatives (FN) are the numbers of misclassified TPs and non-TPs, respectively. 

 

Table 6. Discrimination accuracy of transmembrane and non-transmembrane proteins on the 

discrimination dataset. 

 

 TP FP TN FN Mcc 

Phobius 422 55 6363 18 0.916 

Philius 422 80 6338 18 0.891 

Topcons2 416 28 6390 24 0.937 

PureseqTM 425 50 6368 15 0.925 

 

As shown in Table 6, we observe that our method PureseqTM performs compatible to the other 

methods on this discrimination dataset, where all the four methods have relatively high success 

rate in distinguishing TPs from non-TPs. If we take a close look at the 15 false negatives of 

PureseqTM, 12 (12) of them are also false negatives of Phobius (Philius), which indicates that the 

failure rate of discrimination of PureseqTM depends largely on the Phobius and Philius. 

Furthermore, among the 15 FNs, 8 of them (53.3%) are actually single-pass transmembrane 

proteins (sTPs), which are not included in our training dataset. Similarly, if we take a look at the 

50 false positives, 45 (31) of them are also false positives of Phobius (Philius). Among the 50 FPs, 

35 of them (70%) are predicted to be sTPs. These phenomena indicate that our discrimination 

model can be reliably applied to distinguish mTPs from non-TPs. However, there is still room for 

improving the success rate to discriminate sTPs from non-TPs. 

 

--------------------------------------------------------------------------------------------------------------------------------- 

 

 

Application to Human proteome: 

 

Given the lower rate of false classifications of TPs and non-TPs, as well as the higher rate of 

correct identification of transmembrane segment, it should be interesting to see the application 

of PureseqTM for detecting the Human membrane proteome. To do so, we obtained the 20416 

Human protein sequences from UniProt [24] to extract the reviewed transmembrane (TM) 

regions as ground truth, which results in total 5238 TPs. Among these 5238 TPs, 2399 are 

annotated as sTPs and the remaining 2839 are mTPs, respectively. It should be noted that even 
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when there is proof for the existence of TM segments, it is difficult to determine their boundaries. 

Thus, only 52 of the TPs has experimental evidence (i.e., UniProt ECO: 0000269), while most of 

the ground truth annotations are based on predictions by TMHMM, Memsat and Phobius. To 

show the performance of PureseqTM, we first run a discrimination study on Human TPs and 

non-TPs, we then predict the TM topology segments on each identified TPs. We compare our 

method with Phobius, Philius, and Topcons2, respectively. Finally, several case studies will be 

displayed to imply the usefulness of PureseqTM for (i) correcting the UniProt entries whose TM 

segments are mislabeled, and (ii) discovering novel mTPs that are not annotated by UniProt. 

 

Table 7. Discrimination accuracy of transmembrane and non-transmembrane proteins on the 

Human proteome from UniProt. 

 

 TP FP TN FN Mcc 

Phobius 4939 514 14879 299 0.898 

Philius 4768 414 14708 470 0.886 

Topcons2 4812 466 14752 426 0.886 

PureseqTM 4912 380 14852 326 0.910 

 

First of all, Table 7 shows that PureseqTM correctly identifies 4912 (93.7%) TM proteins, second 

best only to Phobius that is one of the references for the ground-truth. Taking a close look at the 

326 false negatives of PureseqTM, we find that 251 (286) of them are also false negatives of 

Phobius (Philius). Interestingly, among the 326 FN, only 36 (11%) of them are mTPs, whereas 

most of them belong to sTPs. In particular, among the 290 sTPs, about 115 (155) of them belong 

to type I (type II) signal-anchor sTP, and about 20 of them belong to mitochondria TM proteins 

(mtTPs). Therefore, more efforts shall be paid to improve the recognition rate for sTPs and mtTPs. 

 

Table 8. Overall transmembrane topology prediction accuracy on the 5238 reviewed Human 

membrane proteins from UniProt. 

 

 pAccu sReca sPrec Q2 SOV Reca Prec Mcc 

Phobius 0.734 0.916 0.915 0.936 0.935 0.857 0.810 0.785 

Philius 0.651 0.885 0.867 0.934 0.922 0.830 0.772 0.750 

Topcons2 0.669 0.894 0.876 0.933 0.916 0.813 0.799 0.759 

PureseqTM 0.696 0.920 0.888 0.934 0.932 0.803 0.818 0.759 

 

Secondly, Table 8 shows that PureseqTM reaches the second best to Phobius in terms of 

protein-level accuracy, segment-level accuracy as well as residue-level accuracy. This result 

implies that the TM topology boundaries detected by PureseqTM are closer to the UniProt 

annotation than those detected by Philius and Topcons2. However, it should be noted that the 

ground-truth itself in this task is actually a consensus annotation result, which will bias heavily to 

Phobius.  

 

Thirdly, we point out that the TM topologies of a variety of UniProt entries are not correctly 

annotated. Specifically, there exist 186 UniProt entries in which the number and boundaries of 
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TM segments only match with Phobius, but not Philius, Topcons, and PureseqTM (Supplemental 

Table S4). Here comes one example, sodium-dependent phosphate transport protein 3 (UniProt 

ID: O00624, and gene ID: SLC17A2), which has 439 residues and was reported to have 6-12 TM 

segments [31]. Phobius and UniProt annotate 9 segments, but Philius, Topcons, and PureseqTM 

all predict 11 segments (see Figure 7). An alternative evidence to show SLC17A2 being an 11 

segment mTP comes from PredMP service [32] 

(http://database.predmp.com/#/databasedetail/O00624) that performs de novo folding assisted 

by the predicted contact map from RaptorX-Contact [33]. As shown in Figure 7, the Meff (number 

of non-redundant sequence homologs) value of SLC17A2 reaches ~9,680, and ln(Neff) is 4.9 

where Neff is the length-normalized Meff. According to literature [34], when ln(Neff) is larger 

than 3.5, the predicted 3D models by RaptorX-Contact on average will have TMscore≥0.6, which 

indicates that this 3D model is likely to have a correct fold. Hence, we might have strong 

evidences to show that SLC17A2 shall be an mTP with 11 TM segments, and the UniProt 

annotation is incorrect. 

 

 

 

Figure 7.  Case study of the transmembrane topology prediction of SLC17A2 (UniProt ID: O00624). The 3D 

structure model is de novo folded by PredMP server that utilized the predicted contact map from 

RaptorX-Contact. The number of non-redundant sequence homologs (Meff) and log of length-normalized Meff 

(Neff) of this protein is ~9,680 and 4.9, respectively. 
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Fourthly, among the 380 false positives of PureseqTM, we find that 349 (209) of them are also 

false positives of Phobius (Philius), and 262 (68.9%) of them are predicted to be sTPs. For the 

remaining 118 UniProt entries that are predicted to be mTPs by PureseqTM, we figured out that 

41 of them are also predicted to be a TP by Phobius, Philius, and Topcons2 (Supplemental Table 

S5). This phenomenon indicates that these non-TP UniProt entries might have a chance to be 

relevant to membrane (e.g., either buried within, interfacial to, or cross the membrane). We 

show here that at least the following 9 entries: Q9UMS5, Q8N3S3, Q9Y5W8, Q5JWR5, Q6NT55, 

P11511, P51690, Q9BXQ6, O95197 satisfy these conditions according to the literatures. For 

example, let’s take a detailed look at the putative homeodomain transcription factor 1 (UniProt 

ID: Q9UMS5, and gene ID: PHTF1), which has 762 residues. In the year 2003, J. Oyhenart et. al. 

determined that PHTF1 should be an integral membrane protein localized in an Endoplasmic 

Reticulum (ER) [35]. Later on, in the year 2015, Reta Birhanu Kitat et. al. performed an 

experiment based on high-PH reverse-phase StageTip fractionation to confirm that PHTF1 is a 

membrane protein [36]. According to our analysis, PHTF1 might contain 7 transmembrane helices 

(Figure 8). This evidence is not only supported by the prediction result from Topcons2, but also 

from the published literature by A. Manuel et. al., in which they proposed that the stretches of 

hydrophobic amino acid residues (from amino acids 99 to 115, 122 to 138, 477 to 493, 533 to 549, 

610 to 626, 647 to 663, and 736 to 752) might be membrane-spanning domains [37]. The range 

of these transmembrane segments is quite close to PureseqTM and Topcons2 (Figure 8). 

 

 

Figure 8. Case study of the transmembrane topology prediction of PHTF1 (UniProt ID: Q9UMS5). 
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Finally, we challenge a question whether or not PureseqTM could find a new membrane protein 

(MP) that neither is labeled by UniProt, nor is predicted to be a MP by Phobius, Philius, and 

Topcons2. To answer this question, we first collect a subset from the 118 UniProt entreis that are 

predicted to be non-TP by all the other three methods. This list contains 11 entries, and at least 

one entry Q9BY12 (S phase cyclin A-associated protein in the endoplasmic reticulum, SCAPER) 

has strong literature evidences to be a membrane-related protein. Specifically, William Y. Tsang et. 

al. first reported that SCAPER is a perinuclear protein localized to the nucleus and primarily to the 

ER, in which SCAPER is most enriched in the membrane fraction [38]. Later on, William Y. Tsang et. 

al. further indicated that SCAPER may either be associated with the surface of the membrane or 

a transmembrane protein that spans the membrane at least twice [39]. This coincides with our 

prediction as shown in Figure 9. 

 

 

Figure 9. Case study of the transmembrane topology prediction of SCAPER (UniProt ID: Q9BY12). 

 

 

=============================================================================== 
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======================= 

Conclusion and discussion: 

======================= 

 

This article has presented a deep learning method PureseqTM for transmembrane topology 

prediction from amino acid sequence only (i.e., pureseq features). PureseqTM makes its 

uniqueness from the other methods in that it employs a deep probabilistic graphical model 

DeepCNF to simultaneously capture long-range dependencies embedded in the input features as 

well as explicitly depict the interdependency between adjacent topology labels. Compared to 

HMM and DBN, CRF (a key module in DeepCNF) does not have the strict independence 

assumptions. This property allows CRF to accommodate any context information, which makes 

the feature design in CRF much more flexible than that in HMM and DBN. Experimental results 

show that PureseqTM performs much better than the state-of-the-art pureseq methods, and 

even reaches or outperforms the profile and consensus methods, in terms of protein-level, 

segment-level, and residue-level accuracy. Therefore, PureseqTM is the first approach, to our 

knowledge, that can reach high prediction accuracy while keeps efficient running speed, which 

enables the accurate annotation of whole membrane proteome in reasonable time. 

 

Our feature incremental study has revealed three important discoveries. Firstly, the influence of 

the profile feature in transmembrane topology (TM) is less important compared to that in other 

protein structural properties such as 3-state secondary structure element (SSE), 3-state solvent 

accessibility (ACC), and 2-state order/disorder region (DISO). According to literatures [14, 18], the 

difference of the prediction accuracy in terms of QX (here X indicates the number of labels) 

between pureseq features and profile features are 10%, 8.5%, 4%, and 2% for SSE, ACC, DISO, and 

TM, respectively. Secondly, we found that the HMM and DBN features could further improve the 

prediction accuracy with the pureseq features, but fail to do so with the profile features. This 

might explain the phenomenon that in some cases the prediction accuracy of a consensus 

approach does not outperform the single method integrated in that consensus approach. Thirdly, 

although PureseqTM incorporates the HMM and DBN features generated by the two 

state-of-the-art pureseq methods Phobius and Philius, we show that without these features (say, 

only use the one-hot amino acid encoding feature) PureseqTM can still reach higher performance 

than Phobius and Philius in terms of segment-level and residue-level accuracy. 

 

One obvious limitation of our method is the relatively low performance when the input sequence 

is a single-pass transmembrane protein (sTP), as shown in Table 6 and 7. This is normal because 

we exclude all the sTPs from our training/validation data. The underlying reasons are two folds: (i) 

the physical-chemical properties of sTPs are quite different with that of multi-pass 

transmembrane protein (mTPs), where the formers are mostly represented by water-soluble 

domains. If we add those sTPs to train our model, the prediction accuracy of mTPs will be 

influenced (data not shown); (ii) currently, compared to mTPs, sTPs only constitutes about 25% of 

the PDBTM database. However, according to our analysis, among ~5200 Human membrane 

proteins, ~45% of them are sTPs. This data imbalance will cause the trained model to be biased 

to mTPs. Therefore, in order to solve this problem, we shall distinguish them separately by a 
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discrimination model (as what we’ve done for discriminating TPs and non-TPs), and train different 

models for predicting the TM region(s). Further, to solve the limited number of sTPs in the 

PDBTM (less than 150 if we set the non-redundancy threshold to 25% sequence identity) for 

training purpose, there appears a Membranome database that provides structural and functional 

information about more than 6000 sTPs from a variety of model organisms [40]. 

 

We may further improve the TM topology prediction for mTPs by leveraging the 2D pairwise 

features embedded in the co-evolutionary information [33]. It is obvious that the pairwise TM 

helical-helical interactions are critical for the formation of TM topology, in which the underlying 

pairwise features are the 2D distance map that contains all square distances between each pair 

of the residues. Recently, these pairwise features, as described by contact map or distance map, 

could be predicted accurately from co-evolutionary analysis through ultra-deep learning model 

[33, 34, 41]. Recently, a similar approach has been successfully applied to predict the SSE and 

significantly improved the accuracy [42]. Thus, we believe that such approach could also improve 

the TM topology prediction by a large margin. 
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======== 

Method: 

======== 

 

 

Datasets: 

 

In general, there are three datasets used in this work: training, testing, and discrimination. We 

train and validate our method on the training dataset. The test dataset is applied for testing our 

method and comparing it with other approaches. The discrimination dataset is used for 

distinguishing tramsmbrane and non-transmembrane proteins. Below please find the details of 

each dataset. 

 

Training dataset. The dataset used to train our proposed method is a subset of 510 

transmembrane proteins created in Jul 2016 from PDBTM [11], in which any two proteins share 

less than 25% sequence identity [32]. Specifically, we choose 328 alpha-helical multi-pass 

Transmembrane Proteins (mTPs) from this 510 dataset, and divide them randomly into two 

equally sized sets: one for training and the other for validation (Supplemental Table S1 and S2).  

 

Testing dataset. To test the performance of our method and compare with other approaches, we 

collect a set of TPs from PDBTM which are released after Jul 2016, or with no homology with the 

510 dataset. To remove redundancy with the 328 training/validation dataset, we use a strict rule 

that (i) any two proteins in the test set share less than 25% sequence identity; (ii) there is no 

protein in the test set that shares >25% sequence identity or BLAST [43] E-value <0.001 with any 

proteins in the training/validation dataset. This creates a test dataset containing 39 mTPs 

(Supplemental Table S3). We use a protein structure alignment tool DeepAlign [29] to perform 3D 

structure comparison between the proteins in the test dataset and those in the training dataset. 

 

Discrimination dataset. To show the performance of discriminating Transmembrane Proteins (TPs) 

and non-Transmembrane Proteins (non-TPs), we collect a subset containing 440 alpha-helical TPs 

from the 510 dataset as the TP dataset. For non-TP dataset, we first download the PDB25 dataset 

released at Sep 2016 [44], in which any two proteins share less than 25% sequence identity. We 

then exclude the proteins in PDB25 sharing >25% sequence identity or having a BLAST E-value <1 

with any of the 510 dataset. This results in 6418 proteins as the non-TP dataset. 

 

To label each residue from a given TP sequence, we used the following 9 labels extracted from 

PDBTM [11]: 1 (Side1), 2 (Side2), B (Beta-strand), H (alpha-helix), C (coil), I (membrane-inside), L 

(membrane-loop), F (interfacial helix), and U (unknown localizations). As in this work we focus on 

alpha-helical mTPs, the 9 labels are reduced to binary classification in which label H is denoted as 

‘1’ and all other labels are denoted as ‘0’. For non-TPs, we label all residues as ‘0’. 

 

--------------------------------------------------------------------------------------------------------------------------------- 
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Input features: 

 

Basically, our method in ‘pureseq’ mode only relies on the residue-related features. If 

evolutionary profile information is provided, our method in ‘profile’ mode could also take as 

input the evolution-related features. Below please find the details of each type of features. 

 

If ‘pureseq’ mode is on, then our method only takes input the 36 residue-related features: (i) 

amino acid identity represented as a binary vector of 20 elements (or, one-hot encoding); (ii) 

reduced AAindex [23] which contains 5 highly interpretable numeric patterns of amino acid 

variability (see Table 2 in [26]). These features may allow for a richer representation of amino 

acids that reflect polarity, secondary structure, molecular volume, codon diversity, and 

electrostatic charge [16]; (iii) 4 predicted probabilities of the transmembrane topology labels 

from Phobius [12], which are cytoplasmic (label ‘i’), non-cytoplasmic (label ‘o’), transmembrane 

region (label ‘m’), and signal peptide (label ‘s’), respectively; (iv) 7 predicted transition 

probabilities between the transmembrane topology labels from Philius [8], which are ‘ii’, ‘oo’, 

‘mm’, ‘ss’, ‘mi’, ‘mo’ and ‘xm’, respectively, where ‘x’ indicates ‘i’ or ‘o’.  

 

If ‘profile’ mode is on, besides the 20 one-hot encoding and 5 AAindex features, we use 

additional 40 evolution-related features. In particular, we use 20 position specific scoring matrix 

(PSSM) generated by PSI-BLAST [43] to encode the evolutionary information at each residue. We 

also use 20 Hidden Markov Model (HMM) profile generated by HHpred [45], which is 

complementary to PSSM to some degree. The reason why we didn’t use the 4+7 predicted 

probabilities of the topology labels in profile mode is due to the fact that they didn’t improve the 

prediction accuracy (Table 1), especially the protein-level accuracy, on the validation dataset. The 

evolution-related features could be generated in TGT file using the procedure 

https://github.com/realbigws/TGT_Package. 

 

--------------------------------------------------------------------------------------------------------------------------------- 

 

 

DeepCNF training: 

 

The training procedure for the topology prediction using the DeepCNF model was based on the 

procedure used for training protein secondary structure element (SSE) [15]. In particular, we fix 

the model architecture with the following parameters: 5 layers, 100 neurons and 11 window 

length per position for each layer. The underlying reason is that such model architecture could 

reach or close to the best performance on validation data. 

 

Although similar with the model to train SSE, here we use two cascaded procedures to train the 

predictor for 2-state transmembrane topology: (i) a model to distinguish TPs and non-TPs, and (ii) 

a model for accurately detecting transmembrane topology regions. We describe the detailed 

training procedures for the two models as follows. 
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Model for detecting transmembrane topology regions. We first describe how to train the model 

on mTPs. We train our model using the 164 entries from the training set and validate our model 

on the 164 entries from the validation set. As the model architecture is fixed, there is only one 

tunable hyper-parameter lambda in DeepCNF model, which is used for reducing over-fitting with 

a L2 norm. We tried a variety of values ranging from 0,0.5,1,1.5,2,2.5,3.5,5,7.5,10,12.5,15,17.5, 

20,22.5,25,27.5,30 and found out that lambda=20 will produce the best performance on 

validation dataset (actually, there is no large difference when lambda is setting from 5 to 30). 

Although the trained model could detect topology regions accurately, it’s not performing well on 

the discrimination task. The underlying reason is straightforward as we didn’t feed any non-TP as 

the training data. We denote this trained model as ‘puretm.model’. A similar approach could 

be applied for training the model with evolution-related features, and we denote this model as 

‘proftm.model’. 

 

Model to distinguish TPs and non-TPs. To train this model, we use the same 164 entries from the 

training set and randomly choose 1000 proteins from the non-TP dataset, while keep the 164 

entries from validation set as is. Note that there is a highly imbalanced non-TP/TP ratio (around 

15:1) in this task. To deal with the imbalanced distribution of the topology labels, we train the 

DeepCNF model by maximizing AUC which is an unbiased measure for class-imbalanced data [46]. 

An alternative approach to train this discrimination model is to initialize the DeepCNF with the 

trained model ‘puretm.model’, and to early stop when the AUC value on the validation set 

declines. We denote this trained model as ‘detect.model’. 

 

Feature incremental study. To show the importance of each type of features in ‘pureseq’ mode, 

we conduct an incremental study which is similar to a reverse operation of ablation study. 

Specifically, as there are four types of features: one-hot encoding, AAindex, HMM, and DBN, we 

incrementally add them to train the DeepCNF model on the 164 training set and check the 

performance on the 164 validation set. The order we choose for the four types of features is 

according to their model complexity. If the newly added feature type could significantly improve 

the prediction accuracy on validation dataset in all measurements, then we may infer that such 

type of feature will make large contribution to the prediction. On the other hand, if the newly 

added feature could only improve the accuracy in a part of the measurement but worsen or 

doesn’t change the others, then such feature might not be that important. A similar feature 

incremental study could be conducted for ‘profile’ mode. 

 

--------------------------------------------------------------------------------------------------------------------------------- 

 

 

Transmembrane topology prediction: 

 

When an amino acid sequence is input, PureseqTM will first call detect.model to distinguish 

TP and non-TP. If TP is identified, then PureseqTM will employ puretm.model to predict the 

transmembrane topology (‘1’ for transmembrane and ‘0’ for non-transmembrane) and also the 

corresponding probabilities at each residue. Our method also enables the sequence profile as the 
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input when ‘profile’ mode is on. It should be noted that if the predicted transmembrane segment 

satisfies the two conditions: (i) the segment length is above 30 and (ii) there exist two peaks in 

the predicted probability, then PureseqTM will cut this segment into two at the position where 

the local minimum of the probability is found. 

 

--------------------------------------------------------------------------------------------------------------------------------- 

 

 

Programs to compare: 

 

We compare our method with the following programs: Phobius [12], Philius [8], and TOPCONS2 

[13] for 2-state transmembrane topology prediction. Phobius and Philius are methods that only 

rely on the input sequence information (i.e., ‘pureseq’ methods); TOPCONS2 is a consensus 

approach that combines the outputs from different predictors ranging from Phobius, Philius, 

SCAMPI [47] and OCTOPUS [10]. It should be noted that SCAMPI is a pureseq method, whereas 

OCTOPUS rely on evolutionary profile (i.e., ‘profile’ method). 

 

We run Phobius and Philius with their default parameters. For TOPCONS2, we submit all the 

relevant sequences from the datasets to its server to obtain the prediction results. It should be 

noted that all of the three approaches will return more labels (such as signal peptide) other than 

binary topology prediction. To transfer their results into 2-state transmembrane topology, we 

only keep the probability in state ‘transmembrane’ as label ‘1’, while regarding other states as 

label ‘0’ (i.e., non- transmembrane). 

 

--------------------------------------------------------------------------------------------------------------------------------- 

 

 

Data and software availability: 

 

The web server implementing the DeepCNF model for transmembrane topology prediction from 

the amino acid sequence features only is publicly available at http://pureseqtm.predmp.com/. 

The code for the stand-alone package is maintained on GitHub 

(https://github.com/PureseqTM/pureseqTM_package). The list of the training, validation, and 

testing dataset is available in the Supplemental Material. For more detailed information about 

the relevant dataset, such as the Human proteome dataset, users are suggested to visit 

https://github.com/PureseqTM/PureseqTM_Dataset. 

 

=============================================================================== 
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Supplemental Material for: 

Efficient and accurate prediction of transmembrane topology 

from amino acid sequence only 

-------------------------------------------------------------------------------------------------------------------------------- 

 

 

S1   Segment OVerlap (SOV) Score 
 

The Segment Overlap score (SOV) measures overlap between the observed and the predicted 

transmembrane (TM) topology segments instead of per-residue accuracy. The predictions that 

have high per-residue accuracy but deviate from experimental segment length distributions 

have lower SOV scores. SOV score ranges from 0 to 1 with 1 indicating the perfect overlap. 

Brief description of SOV is as follows. To calculate 2-state SOV, the predicted transmembrane 

topology of one protein sequence is parsed into segments such that each segment has a single 

topology type (either TM:1 or non-TM:0). Let S1 be the observed transmembrane topology and 

S2 the predicted transmembrane topology. For each type        ,      is the set of segment 

pair         with type   where    is from S1,    is from S2, and there must be at least one 

residue overlap with    and   . That is,                                             . 

In contrast,                                          . 

Then the segment overlap score between S1 and S2 is calculated as follows: 

           
 

 
∑ ∑

                   

                              
       

where            is the length of the overlap between    and   ,            is the length of 

the total span of    and   , and       is the length of   ,          is defined as 

                                      ⌊
     

 
⌋  ⌊

     

 
⌋  and   is defined as   

∑            , where      ∑                   ∑               
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S2   Dataset of training/validation and testing 
 

 

Supplemental Table S1. A list of 164 training data. 

2a9hA 4or2A 3b9wA 3mp7A 3udcA 3zjzA 2q67A 5i1mV 

3x3bA 1vf5B 1jb0K 4p6vD 2q7mA 2yevB 4httA 2iubA 

4g7vS 5i6zA 1q90B 5iofA 1e7pC 1yewC 4j72A 3o0rB 

4nppA 5a63C 1fx8A 2wsc1 3nymA 5c6oA 3wdoA 3chxB 

4ymsC 3dwwA 2loqA 5ctgA 2lnlA 3orgA 4gbyA 1p7bA 

2mgyA 1c17M 4qndA 4o9uB 5doqA 4o9pB 4y7jA 5a1sA 

2jafA 3lw54 3iyzA 4zp0A 3jcuD 2pnoA 1m57A 2lorA 

4zw9A 1nekD 4hzuS 2evuA 4il3A 3oufA 4twkA 5f1cA 

2ks9A 4mqsA 4hw9A 2nq2A 5ek0A 4c9jA 2oarA 4njnA 

3b4rA 3ddlA 3eh3A 3a7kA 4px7A 1bhaA 3cn5A 2yevC 

1q16C 3wmfA 4bgnA 3dhwA 5awwY 3pjzA 3zuxA 2wpdJ 

3wmmM 4he8D 1qleC 3jycA 3v5sA 2w1pA 2gfpA 1oedC 

3d31C 3jbrE 5awzA 2h8aA 3pjsK 1yq3C 3x29A 3j9tR 

3zevA 5irxA 4xu4A 3m71A 3cx5C 4b4aA 4z3nA 5a40A 

4ri2A 2wscK 1s5lB 4wgvA 4j05A 2jlnA 1ar1B 4y28K 

2ziyA 2bl2A 4a2nB 3vr8C 3q7kA 4f35A 4hkrA 3ukmA 

1kf6D 1orsC 2mmuA 1kf6C 4tquN 4hycA 4k1cA 4dxwA 

3lnmB 2nmrA 5ekeA 4gd3A 2ksrA 2f93B 4pirA 4ntjA 

3b5dA 4ea3A 4ytpC 3dl8E 4qtnA 3pwhA 2wswA 5jagA 

5c8jI 4q2eA 3tijA 2k73A 3ze3A 3mk7C 3jcuZ 5i32A 

3dinE 5awwG 5i20A 3j1zP     

 

 

 

Supplemental Table S2. A list of 164 validation data. 

 

4atvA 2akhA 1fftB 4xxjA 3kj6A 3effK 2n4xA 4knfA 

4rfsS 3wo7A 2yiuA 2d57A 4us3A 3chxC 4tq3A 4kt0K 

3o7pA 3um7A 4o6yA 4pgrA 2kseA 2z73A 2xq2A 3l1lA 

4gycB 1fftC 4gx5A 4bwzA 5iwsA 4u4tA 3jcuS 3k3fA 

4o6mA 4cskA 1yq3D 4h33A 4he8C 5aymA 4uc1A 4y28G 

3j08A 2lckA 4bpmA 3qe7A 1kqfC 4hyoA 2f95B 1xl4A 

4ryiA 2k9pA 5abbZ 4in5L 1p49A 5azbA 3ejzA 4nykA 

4huqT 4r1iA 5a6eB 4ymkA 1pw4A 4zr0A 2kyhA 5i6cA 

4mbsA 2m67A 1gzmA 2l35A 3iz1A 4cadC 4chvA 4dojA 
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2y5yA 2ksdA 4kppA 1h2sB 4bemJ 5d0yA 5ezmA 4ltoA 

1nekC 3vr8D 2m6bA 4od4A 5araW 3tx3A 4rngA 4cfgA 

5garO 2wsc3 2bg9A 2nr9A 2mpnA 2akhB 5id3A 2wscG 

3wxvA 4tquM 3vouA 4ezcA 4jkvA 4dveA 4m58A 3gi8C 

3kp9A 4o9pA 2lomA 3zk1A 5fn2B 4czbA 2ksfA 3rkoA 

4djiA 3qnqA 3p5nA 4ytpD 4z7fA 4huqS 3jcuR 4qncA 

4l6rA 4tkrA 4zr1A 3wvfA 4p6vE 5cfbA 4p79A 2r6gG 

3hd6A 3mktA 4rdqA 4phzA 2vpwC 4mndA 3mk7A 5dirA 

3ux4A 5araT 2lp1A 4rp8A 4g1uA 4kjrA 4xnvA 4z34A 

2losA 4quvA 4p6vB 5doqB 3s0xA 2r6gF 4y28L 3uq7A 

3ug9A 5ee7A 4f4lA 4wd7A 4ky0A 2llyA 1xioA 2wscL 

3v2wA 4u9lA 2xutA 4v1fA     

 

 

 

Supplemental Table S3. A list of 39 testing data. 

 

1pb4D 4m64B 5ldwN 5tcxA 

1zc7A 5eikA 5ldwY 5tsaA 

2gfzA 5fgnA 5lnko 5ttaA 

2m0qA 5h1qA 5mg3F 5voxc 

2mn6B 5ijiA 5mrwA 5vreA 

3g6bA 5l75F 5n6hA 5wtrA 

3rkoK 5l75G 5o0tA 5wufA 

3rkoN 5ldwJ 5sv0B 5x5yF 

4he8E 5ldwK 5sv9A 5x5yG 

4j7cK 5ldwM 5t77A  
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S3   Dataset relevant to UniProt Human proteome 
 

Supplemental Table S4. A list of 186 UniProt entries in which the number and boundaries of 

transmembrane segments only match with Phobius, but not Philius, Topcons, and PureseqTM. 

Q9HDB5 Q99572 Q8IZS8 Q8IV31 Q9NVA4 Q9HCM3 Q8NGS6 Q8NGL7 O75352 

Q9HBU9 Q6ZT12 Q86VU5 Q9NRX5 Q6NXT6 Q9Y6K0 Q8NGS4 Q9UGF6 Q9NZP5 

O15120 Q5T4S7 Q5TH69 Q16842 Q16635 Q5JZY3 Q8NGT2 Q8NGG0 Q8NGE3 

Q8TEB9 Q9P2D8 Q9UIR0 Q11203 Q8IUA7 Q15884 Q68CR7 Q8NG80 Q8NGX3 

Q53FV1 Q16572 Q96MX0 Q9BYT1 Q96SE0 Q9N2K0 P60507 P0C7N8 Q8NGY0 

Q9BZA8 A0A1B0GTY4 P0C7U3 Q96G79 Q9UKB5 Q9H1C3 Q5T6L9 B2RTY4 Q8NGS5 

O75452 Q6ZS81 Q86YA3 Q99624 P08910 P60509 Q9NWS6 O60431 Q8NGT0 

Q13423 Q9UBH6 Q11130 Q96JT2 Q3MIX3 Q76MJ5 A6NC97 Q8NH93 P0C617 

O00624 Q6ZU64 O60774 Q7Z3Q1 Q9UM73 B6SEH8 Q5JX69 Q8NGP3 Q6IF42 

Q86XR5 P98187 Q96CU9 Q8TBB6 Q7Z5J8 P05981 A0A1B0GTK4 A6NJW4 Q8WUY8 

P58400 A0A087X1C5 O43464 Q8NG04 O95870 Q5VW36 Q8NGS9 O14524 Q8IW70 

Q9H209 Q9NRD9 Q9Y4D8 P50443 Q9NP78 Q8NBF6 Q8NG92 Q86X29 Q9P283 

C9JH25 Q86SJ6 Q8NCG7 A0AV02 Q4ZG55 Q58HT5 Q9H210 Q9Y693 Q14656 

Q9H208 Q9Y2G3 Q6ZUT9 A6NIM6 O43292 Q96M19 Q8WZ84 Q96KK3 Q5W0B7 

Q6J4K2 Q8IWY9 Q9UBM7 Q9H1N7 Q3MIP1 Q07812 O95047 A6NDP7 Q8N661 

Q7L5N7 Q9P2K9 Q9BS91 Q96RN1 Q6P9B9 Q16611 Q8NGM8 Q8NH01 Q96DC7 

Q86VR2 Q8N6G5 P61009 Q96HH6 P34903 A6QL63 Q6IEY1 P30954 Q8TDW4 

P42702 Q7Z6A9 P60602 Q9BVT8 O95461 Q6UXD1 Q8NGC5 Q8NHC4 Q96NR3 

Q86WI0 P30988 Q9H4F1 Q9C0B7 Q9NR82 P03891 P47890 Q8NGS8 Q9HCF6 

Q9H490 Q8IU99 O75204 Q8N4L1 Q96RP8 Q8NGR1 Q8NH00 O95013 O43173 

Q8NCS4 Q96HV5 Q7Z402 Q15035 Q6ZP80 Q6UWJ1    

 

 

Supplemental Table S5. A list of 41 UniProt entries annotated as non-transmembrane protein 

but predicted to be a transmembrane protein by Phobius, Philius, Topcons2 and PureseqTM. 

P04156 H3BN30 P54793 Q6P4D5 Q92543 

Q9BRX8 Q6NT55 P51689 Q92843  

Q9BUV8 O60397 P56539 P38567  

Q9UMS5 P10635 Q9BQE5 Q96MZ0  

Q9NY59 P11511 Q9BPW4 O94919  

Q14442 P20815 Q9BWW8 P80365  

Q8N3S3 P13498 O95197 Q96KR4  

Q9Y5W8 Q9HB55 Q9BXQ6 Q8N699  

Q5JWR5 Q16678 Q5VUY0 Q96EZ4  

O95873 P51690 Q9H1A4 P63135  
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