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Title: 

 

Efficient and accurate prediction of transmembrane topology from amino acid sequence only 

 

--------------------------------------------------------------------------------------------------------------------------------- 

 

 

Abstract: 

 

Motivation 

Rapid and accurate identification of transmembrane (TM) topology is well suited for the 

annotation of the entire membrane proteome. It is the initial step of predicting the structure and 

function of membrane proteins. However, existing methods that utilize only amino acid sequence 

information suffer from low prediction accuracy, whereas methods that exploit sequence profile 

or consensus need too much computational time. 

 

Method 

Here we propose a deep learning framework DeepCNF that predicts TM topology from amino 

acid sequence only. Compared to previous sequence-based approaches that use hidden Markov 

models or dynamic Bayesian networks, DeepCNF is able to incorporate much more contextual 

information by a hierarchical deep neural network, while simultaneously modeling the 

interdependency between adjacent topology labels. 

 

Result 

Experimental results show that PureseqTM not only outperforms existing sequence-based 

methods, but also reaches or even surpasses the profile/consensus methods. On the 39 newly 

released membrane proteins, our approach successfully identifies the correct TM segments and 

boundaries for at least 3 cases while all existing methods fail to do so. When applied to the entire 

human proteome, our method can identify the incorrect annotations of TM regions by UniProt 

and discover the membrane-related proteins that are not manually curated as membrane 

proteins. 

 

Availability 

http://pureseqtm.predmp.com/ 
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=========== 

Introduction: 

=========== 

 

Transmembrane proteins (TMPs) are key players in energy production, material transport, and 

communication between cells [1]. TMPs are encoded by ~30% genes in the various genomes [2] 

and have been targeted by ~50% of therapeutic drugs [3]. Despite their abundance and 

importance, the number of solved TMPs structures is relatively low compared to that of 

non-transmembrane proteins (non-TMPs). In particular, under the 40% sequence identity cutoff, 

there are only about 1500 non-redundant TMPs whereas the number of non-redundant 

non-TMPs is more than 34000. The underlying reason is that the experimental determination of 

TMPs is challenging as membrane proteins are often too large for NMR spectroscopy and difficult 

to be crystallized for X-ray crystallography [4]. Thus, it is critical to develop computational 

methods for the prediction of TMP structures from amino acid sequences, and the initial step is 

the accurate identification of the transmembrane topology [5]. 

 

As shown in the left part of Figure 1, transmembrane (TM) topology refers to the locations of the 

membrane-spanning segments, which could be represented as a 1D 0/1 string to indicate the 

location of each residue to reside in (label 1) or out of (label 0) the membrane. This simple but 

direct definition of TM topology is consistent with the 3-label definition used by many other 

works that divide non-TM regions (i.e., label 0) into inner or outer classes [6-10]. In this work, we 

only focus on the prediction of TM topology of the alpha-helical TMPs because of the following 

two facts: (i) almost all the TM regions in Eukaryotic TMPs are alpha-helical except some 

beta-barrel in the mitochondrial membrane [8]; (ii) more than 85% of the available TMPs that 

have 3D structures belong to the alpha-helical class [11]. If there is only one TM segment, then 

this membrane protein is denoted as a single-pass transmembrane protein (sTMP); similarly, a 

multi-pass transmembrane protein (mTMP) will contain two or more TM segments. Here we 

mainly focus on the topology prediction of multi-pass transmembrane proteins as about 75% of 

the current available alpha-helical TMPs are mTMPs [11]. 

 

Till now, a variety of approaches have been proposed to predict the 1D TM topology from the 

input sequence of a membrane protein. These approaches can be roughly categorized into three 

classes: (a) single-sequence-based methods that only rely on the input amino acid sequence 

information (or, ‘pureseq’ features). Two representative methods are TMHMM/Phobius [7, 12] 

and Philius [8], where the former established a hidden Markov model (HMM) and the latter 

employed a dynamic Bayesian network (DBN) model. The advantage of the pureseq methods is 

their fast running speed, while the disadvantage is the relatively low prediction accuracy; (b) 

evolutionary-based methods that consider the information embedded in the homologous 

multiple sequence alignment (MSA) through evolutionary analysis (or, ‘profile’ features). Two 

representative methods are OCTOPUS [10] and MEMSAT-SVM [9]. The advantage of the profile 

methods is their improved prediction accuracy over pureseq methods, but at the cost of 

significantly reduced running speed due to the search for MSA; (c) consensus methods that 

combine the outputs from different predictors. Topcons2 [13] and CCTOP [6] are the two 
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representatives. As the consensus methods also integrate the profile methods, their running 

speed cannot compete with that of the pureseq methods. Thus, it remains a question of if we can 

develop an approach for TM topology prediction that can reach the accuracy of profile or 

consensus methods but as efficient as pureseq methods. 

 

 

Figure 1. Illustration of the transmembrane (TM) topology of a multi-pass transmembrane protein and our 

proposed model for the prediction of TM topology. Left: the 1D amino acid sequence of an alpha-helical 

membrane protein (PDB ID: 2lckA) folds into a 3D structure embedded in the lipid bilayer membrane, in which 

those residues embedded are denoted as the TM topology. Right: our proposed model that consists of two 

modules, where the first module is for discriminating transmembrane proteins (TMPs) and non-TMPs, and the 

second module is for predicting the TM topology. 

 

 

Recently, we developed a deep learning framework deep convolutional neural fields (DeepCNF) 

[14] for a variety of protein sequence labeling problems ranging from secondary structure 

element (SSE) [15], solvent accessibility (ACC) [16], to order/disorder region (DISO) [17, 18], 

which obtained the state-of-the-art performance according to the third-party evaluations [19-22]. 

In this work, we employed DeepCNF for the prediction of TM topology labels based on amino 

acid sequence information only (denoted as PureseqTM). Briefly, DeepCNF can be viewed as 

conditional random field (CRF) with deep convolutional neural network (DCNN) as its non-linear 

feature generating function. DeepCNF can model not only complex relationship between the 

input features and TM labels, but also the correlation among adjacent TM labels. These 

properties give DeepCNF better ability to model long-range dependencies embedded in the input 
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features, and better performance over CRF (a model compatible to or even better than HMM and 

DBN) and DCNN on 1D sequence labeling tasks. Furthermore, besides considering amino acids as 

simply 20 alphabets, we may also take into account the physical-chemical properties of amino 

acids [23]. Consequently, our proposed method, PureseqTM, can easily take as input these 

pureseq features, and achieve the performance compatible to or even better than profile and 

consensus methods, while keeping the similar running speed of pureseq methods. 

 

As shown in the right part of Figure 1, PureseqTM has two modules: (i) a module for 

discriminating TMPs and non-TMPs, and (ii) a module for predicting TM topology. Experimental 

results show that PureseqTM greatly outperforms existing pureseq methods Phobius and Philius, 

especially on the identification of the correct number and boundaries of the TM segments 

(measured by protein-level and segment-level accuracy, respectively). Specifically, on the 39 

newly released mTMPs, PureseqTM achieved the best performance 0.667 in terms of 

protein-level accuracy, which is 12.9%, 7.7% and 5.2% better than Phobius, Philius and even 

Topcons2, respectively. Moreover, PureseqTM correctly identified the number and boundaries of 

the TM segments for at least 3 cases among this dataset where Phobius, Philius, or Topcons2 was 

not able to do so. Finally, we applied our method on the entire human proteome from UniProt 

[24]. The results indicate that PureseqTM can not only identify the incorrect annotations of TM 

regions by UniProt, but also discover the membrane-related proteins that are not reviewed as 

membrane proteins by UniProt. Since it is time-consuming to generate sequence profiles, our 

proposed method is a useful tool for proteome-wide TM topology prediction. 
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====== 

Results: 

====== 

 

 

Figure 2. Overview of our Deep Convolutional Neural Fields (DeepCNF) model for transmembrane (TM) topology 

label prediction from the amino acid sequence features only (i.e., pureseq features). Here L is the amino acid 

sequence length of the input protein. The probabilities of the output of Hidden Markov Model (HMM) and 

Dynamic Bayesian Network (DBN) are displayed in gray scale, where darker or lighter indicates higher or lower 

probabilities, respectively. CRF denotes Conditional Random Field (in purple), and 1D-DCNN denotes 1D Deep 

Convolutional Neural Network (in light green). 

 

 

 

Model Architecture: 

 

In general, as shown in Figure 2, the model architecture of PureseqTM could be considered as an 

integration of HMM and DBN to produce an initial estimation of the probabilities of the 

transmembrane topology labels as well as the probabilities of their transitions (or more precisely, 

topology change). Then the long-range dependencies embedded in the information are in turn 
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effectively exploited by a DeepCNF model to predict the binary topology labels at each amino 

acid position. 

 

HMM features generated by Phobius. Phobius [12] considers the transmembrane topology 

prediction problem as a supervised learning problem over the observed input amino acid 

sequences a= a1,…,aL, and output of the hidden topology labels y = y1,…,yL. The yi is from the four 

topology labels {s,i,m,o}, which correspond respectively to signal peptides, cytoplasmic 

(‘inside’) loops, membrane-spanning segments, and non-cytoplasmic (‘outside’) loops. Then 

Phobius established an HMM that is a generative model to produce a joint probability 

distribution between the observed sequence a and the hidden states y. When the HMM model is 

trained, it is possible to infer the posterior probability of the four topology labels at each amino 

acid position via a forward-backward algorithm. Thus, the generated four probabilities of the 

topology labels from Phobius become the HMM features for our proposed DeepCNF model. 

 

DBN features generated by Philius. DBN could be regarded as a strict generalizations of HMM [25], 

where the latter only contains two variables (one observation and one hidden state) in each time 

frame i and one connection between adjacent frames (i.e., the connection between the adjacent 

hidden states). On the contrary, DBN can model multiple variables in each frame as well as more 

than one connection between adjacent frames. This property enables DBN to encode the states 

that depict the transitions between the adjacent topology labels (i.e., ‘changeState’ according 

to Philius [8]). In particular, changeState can take value 0 or 1. If 1 is taken, then the topology 

label in the next frame will be changed. Therefore, instead of predicting the posterior probability 

of the four topology labels (i.e., changeState is set to 0) which respectively correspond to ‘ss’, 

‘ii’, ’mm’, and ’oo’, Philius is able to predict additional four posterior probability of the topology 

label transitions (i.e., changeState is set to 1) which respectively correspond to ‘xs’, ‘xi’, ’xm’ 

and ‘xo’ where ‘x’ indicate any other topology label. However, as the signal peptide starts from 

the N-terminal and the probability of ‘xs’ only has a value at the first frame, we may delete this 

state. Also, the ‘x’ could only be ‘m’ for ‘xi’ and ‘xo’ because of the state transition diagram in 

topology prediction. In summary, the generated seven transition probabilities between the 

topology labels from Philius become the DBN features for our proposed DeepCNF model. 

 

Additional amino acid features. In addition to the predicted probabilities of the topology labels 

from Phobius and Philius, we further utilize the features embedded in the input amino acid 

sequence (i.e., ‘pureseq’ features). One straightforward approach (denoted as one-hot encoding) 

uses a binary vector of 20 elements to indicate the amino acid type at position i. However, the 20 

amino acids are not simply alphabetic letters, as they encode a variety of physiochemical 

properties. These properties of the 20 amino acids could be obtained from an on-line database 

(AAindex) [23] that forms a 20X494 matrix (i.e., each amino acid has 494 physiochemical 

properties). This high dimensional and redundant data can be reduced to a 20x5 matrix (i.e., each 

amino acid can be represented by a 5-dimentional vector), which represents bipolar, secondary 

structure, molecular volume, relative amino acid composition, and electrostatic charge, 

respectively [26]. Consequently, these 20+5 pureseq features are added to our proposed 

DeepCNF model. 
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Binary topology label prediction by DeepCNF. It has been reported that the DeepCNF model was 

successfully applied to a variety of sequence labeling problems, such as protein secondary 

structure prediction [15], protein order/disorder region prediction [18], and detecting the 

boundaries of expressed transcripts from RNA-seq reads alignment [27]. Generally speaking, 

DeepCNF has two modules, CRF and DCNN. DeepCNF can not only model complex relationship 

between the features from the amino acid sequence and the topology label by a deep 

hierarchical architecture that allows the model to capture long-range dependencies embedded in 

these features (in parameters W and U), but also explicitly depict the interdependency between 

adjacent topology labels (in parameter T). 

 

--------------------------------------------------------------------------------------------------------------------------------- 

 

 

Performance evaluation: 

 

We measure the prediction results in terms of the following evaluation criteria: protein-level 

accuracy, segment-level accuracy, and residue-level accuracy. The protein-level accuracy (pAccu) 

refers to the definition that a correct prediction of the whole protein should have the correct 

number of transmembrane segments at approximately correct locations (overlap of at least five 

residues) [13]. For segment-level accuracy, we use segment recall (sReca) and segment precision 

(sPrec). The segment recall is defined as the approximately correct prediction of the 

transmembrane segment with overlap of at least five residues to the ground-truth segment; 

similarly, the definition for segment precision is the approximately correct ground-truth of the 

transmembrane segment with overlap of at least five residues to the predicted segment [8]. 

 

The residue-level accuracy is defined at each residue, which consists of Q2 accuracy, SOV score, 

recall (Reca), precision (Prec) and Matthews correlation coefficient (Mcc), respectively. The Q2 

accuracy is defined as the percentage of residues for which the predicted transmembrane 

topology label is correct. The Segment OVerlap (SOV) score [28] measures how well the 

ground-truth and the predicted transmembrane regions match, especially at the middle region 

instead of terminal regions (see Section S1 in Supplemental Material for details). In order to 

calculate recall, precision and Mcc, we define true positives (TP) and true negatives (TN) as the 

numbers of correctly predicted transmembrane and non-transmembrane residues, respectively; 

whereas false positives (FP) and false negatives (FN) are the numbers of misclassified 

transmembrane and non-transmembrane residues, respectively. Then recall and precision is 

defined as TP = (TP + FN) and TP = (TP + FP), respectively. Mcc is defined as follows: 

 

Mcc =
(TP × TN − FP × FN)

√(TP + FP)(TN + FP)(TP + FN)(TN + FN)
 

 

--------------------------------------------------------------------------------------------------------------------------------- 
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Performance on validation dataset: 

 

The performance of our approach PureseqTM was compared to the performance of Phobius [12] 

and Philius [8] on the 164 validation dataset (see Method for details on how we create the 164 

training and 164 validation dataset). Furthermore, to discover the importance of each input 

features, we conduct a study by incrementally adding the features from one-hot encoding, 

AAindex, HMM to DBN, respectively. This feature incremental study is critical as the HMM and 

DBN features originate from Phobius and Philius, and we need to show the performance to what 

extend PureseqTM can reach without using these features. 

 

As shown in Table 1, all our feature combination strategies outperform Phobius and Philius in 

terms of the segment-level, and the majority of the residue-level accuracy, such as Q2, SOV, and 

Mcc. Notably, our DeepCNF model trained by only one-hot encoding features outperforms 

Phobius and Philius, especially in terms of Q2, SOV, and Mcc from the residue-level accuracy, and 

segment recall and precision. These results suggest that there exist some long-range 

dependencies between amino acid sequence and transmembrane topology, and this information 

can be learned by our deep learning model better than that by HMM and DBN. Furthermore, 

with more features being added to DeepCNF, the performance, especially in terms of 

protein-level accuracy, increases incrementally. When all features are added, our method can 

reach 0.573 protein-level accuracy, which is compatible to Philius.  

 

Table 1. Overall transmembrane topology prediction accuracy on 164 membrane proteins from 

the validation dataset.  

 

 pAccu sReca sPrec Q2 SOV Reca Prec Mcc 

Phobius 0.500 0.889 0.905 0.816 0.837 0.797 0.715 0.601 

Philius 0.579 0.917 0.914 0.828 0.859 0.833 0.724 0.627 

DeepCNF trained by amino acid sequence only 

One-hot 0.543 0.935 0.917 0.836 0.865 0.786 0.785 0.648 

+ AAindex 0.561 0.945 0.922 0.838 0.868 0.796 0.789 0.653 

+ HMM 0.567 0.950 0.921 0.839 0.870 0.819 0.766 0.654 

+ DBN 0.579 0.935 0.912 0.842 0.881 0.804 0.771 0.654 

DeepCNF trained by sequence profile 

Profile 0.708 0.927 0.932 0.867 0.906 0.811 0.808 0.699 

+ One-hot 0.701 0.942 0.930 0.866 0.906 0.815 0.816 0.702 

+ AAindex 0.750 0.950 0.940 0.869 0.912 0.829 0.811 0.709 

+ HMM 0.732 0.952 0.938 0.866 0.911 0.830 0.808 0.705 

+ DBN 0.695 0.944 0.933 0.865 0.906 0.824 0.806 0.701 

 

Footnotes: 

‘+’ indicates that we incrementally add the feature in this row and those in the previous rows to our model. 

AAindex is the 5-dimentional reduced amino acid physiochemical properties. 

HMM is the hidden Markov model features generated by Phobius. 

DBN is the dynamic Bayesian network features generated by Philius. 
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--------------------------------------------------------------------------------------------------------------------------------- 

 

Performance on test dataset: 

 

To show the performance on “real-world” cases, we challenged our method on the 39 mTMPs 

dataset, in which all data are released after Jul 2016 [11] and no homologous to the entries in the 

328 training and validation set. Moreover, we performed a 3D structure comparison [29] 

between the proteins in the test dataset and those in the training dataset. Among the 39 mTMPs, 

7 (15) of them have structural analogs in the 328 dataset whose TMscore > 0.65 (0.55). This 

means that at least 60% to 82% of the mTMPs in our test dataset are novel fold to the training 

dataset [30]. This resembles actual challenges that no sequence or structure similarity could be 

found for those newly obtained mTMPs. 

 

   

(A) (B) (C) 

   

(D) (E) (F) 

Figure 3. Quality comparison of the prediction by our method PureseqTM, with Phobius, Philius and Topcons2 on 

the 39 test dataset. (A) to (C): comparison between our method (X-axis) and other three methods (Y-axis) in 

terms of Matthews correlation coefficient (Mcc). (D) to (F): comparison between our method (X-axis) and other 

three methods (Y-axis) in terms of segment overlap score (SOV). 

 

 

For this task, we not only compared our PureseqTM with Phobius and Philius that rely on the 

input amino acid sequence only (i.e., ‘pureseq’ methods), but also compared with Topcons2 [13] 

which is a consensus approach relying on the evolutionary profile additionally. As shown in Table 

2, not surprisingly, our method again achieves better performance than Phobius and Philius in 

terms of the key measurements in residue-level accuracy, such as Q2 (improved by 2.2%), SOV 

(improved by 3.6%) and Mcc (improved by 3.2%). Figure 3 shows the head-to-head comparison 
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of the Mcc and SOV values between PureseqTM and the other three methods. These results 

indicate that PureseqTM outperforms others in terms of Mcc and SOV for a large portion of the 

cases in the test dataset. 

 

It is surprising that PureseqTM achieved the best performance 0.667 in terms of protein-level 

accuracy, which is 12.9%, 7.7% and 5.2% better than Phobius, Philius and even Topcons2, 

respectively. These results show that the improvement of our method is even higher than that in 

the 164 validation set, especially in the protein-level accuracy. One possible explanation is that 

some of those mTMPs in the validation set overlap with the training data of Phobius and Philius. 

Consequently, these results indicate that our approach could be applied to a newly released 

mTMP that possibly has novel transmembrane topology, with only amino acid sequence as input. 

 

Table 2. Overall transmembrane topology prediction accuracy on 39 membrane proteins from the 

test dataset.  

 

 pAccu sReca sPrec Q2 SOV Reca Prec Mcc 

Phobius 0.538 0.833 0.911 0.808 0.826 0.750 0.715 0.579 

Philius 0.590 0.863 0.939 0.816 0.849 0.782 0.737 0.603 

Topcons2 0.615 0.851 0.910 0.819 0.840 0.759 0.724 0.593 

PureseqTM 0.667 0.892 0.934 0.838 0.885 0.762 0.777 0.635 

PureseqTMP 0.667 0.903 0.933 0.851 0.902 0.782 0.790 0.661 

 

Footnotes: 

‘P’ indicates that the sequence profile feature is used. 

 

 

Table 2 also shows a strange phenomenon that in terms of segment-level and residue-level 

accuracy, Philius, a pureseq method, outperforms the consensus method Topcons2 that relies on 

the evolutionary profile as well as the output of Philius. In order to explain this case, we conduct 

a similar feature incremental study on training data but start from the 40 evolution-related 

features (see Method for details of how to generate these profile features). As shown in the 

bottom part of Table 1, the performance reaches its peak till the AAindex features are added, and 

it decreases when adding HMM or DBN. This experiment might explain why the performance of 

Topcons2 is not comparable to that of Philius. 

 

If the DeepCNF model trained by the sequence profile (i.e., profile model) is applied to the 39 

test set, we find that in terms of residue-level accuracy, such as Q2 and SOV, the profile model 

gains ~1-2% compared to the model trained by residue-related features (i.e., pureseq model). 

However, it seems that the protein-level and segment-level accuracy of the profile model does 

not improve much over that of the pureseq model, which might indicate that the 

evolution-related features could improve the boundary detection, but are not that useful for 

identifying the transmembrane segment. This hypothesis could also be used to explain the 

phenomenon why Topcons2 does not outperform Philius in terms of the protein-level and 

segment-level accuracy. 
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--------------------------------------------------------------------------------------------------------------------------------- 

 

 

Case studies of the test set: 

 

To further demonstrate the performance of PureseqTM, we select three case studies from the 

test set where the ground-truth of the transmembrane topology is known from PDBTM [11]. 

 

5lnko. This protein is the chain o from the ovine respiratory complex I, which has 120 residues 

and 2 transmembrane helices. Note that this protein is structurally dissimilar to the training 

dataset, where the most similar protein only has TM-score 0.47 to this protein. This indicates that 

5lnko has a novel fold. As shown in Figure 4, our method predicted the correct number of 

transmembrane helices, while Phobius and Philius predicted one, and Topcons2 failed to predict 

this protein as a TMP. In terms of the residue-level accuracy (Table 3), our method reached 0.806, 

0.833 precision, 0.758 Mcc, 0.908 Q2, and 0.978 SOV, which indicated that the overlap between 

our prediction and the ground-truth is very large. Therefore, the success of this case indicates 

that PureseqTM could be applied to predict the transmembrane topology for those “real-world” 

new cases that no sequence or structure similarity could be found in the sequence or template 

database. 

 

Table 3. Transmembrane topology prediction accuracy of 5lnko. 

 

 pAccu sReca sPrec Q2 SOV Reca Prec Mcc 

Phobius 0 0.5 1 0.850 0.740 0.516 0.842 0.578 

Philius 0 0.5 1 0.842 0.741 0.516 0.800 0.553 

Topcons2 0 0.0 0.0 0.742 0.331 0.0 0.0 0.0 

PureseqTM 1 1 1 0.908 0.978 0.806 0.833 0.758 
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Figure 4. Case study of the transmembrane topology prediction of 5lnko. Here transmembrane or 

non-transmembrane regions are shown in red or cyan, respectively. The posterior probabilities generated by 

PureseqTM are shown in red curve, and the 0.5 threshold is shown in green line. (the same as below) 

 

++++++++++++++++++++++++++++++++++++++ 

 

 

5ldwY. This protein is the chain Y from the mammalian respiratory complex I, which has 141 

residues and 4 transmembrane helices. The most similar protein to 5ldwY in the training dataset 

has TM-score 0.545, which indicates that there is no strong structural similarity. As shown in 

Figure 5, our method predicted the correct number of transmembrane helices, while Topcons2 

predicted one and Phobius failed to predict this protein as a TMP. Although Philius successfully 

predicted the correct number of transmembrane helices, in terms of residue-level accuracy, our 

method is significantly better than Philius (Table 4). In particular, the Q2, SOV and Mcc of our 

method is 0.823, 0.928, and 0.642, respectively, which is 6%, 5%, and 10% better than that of 

Philius. From this case, we may also find out that Philius tends to predict longer transmembrane 

segments, which will cause a better recall but a lower precision. Another interesting 

phenomenon from this case study is that although using a similar model architecture, say HMM 

in Phobius and DBN in Philius, it seems that for most of the cases Philius outperforms Phobius in 

terms of protein-level accuracy. This hypothesis could also be inferred from the fact that with the 

inclusion of DBN features to our model, the protein-level accuracy increases significantly. 
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Table 4. Transmembrane topology prediction accuracy of 5ldwY. 

 

 pAccu sReca sPrec Q2 SOV Reca Prec Mcc 

Phobius 0 0.0 0.0 0.546 0.112 0.0 0.0 0.0 

Philius 1 1 1 0.759 0.871 0.875 0.683 0.542 

Topcons2 0 0.25 1 0.610 0.354 0.234 0.714 0.219 

PureseqTM 1 1 1 0.823 0.928 0.750 0.842 0.642 

 

 

 

Figure 5. Case study of the transmembrane topology prediction of 5ldwY. 

 

 

++++++++++++++++++++++++++++++++++++++ 

 

4he8E. This protein is the chain E from the respiratory complex I from Thermus thermophiles, 

which has 95 residues and 3 transmembrane helices. This protein has structural analogs in the 

training dataset, where the most similar protein has TM-score 0.694 to this protein. The 

sequence homologs (measured by Meff) of this protein is 1004. Figure 6 shows that our method 

and Topcons2 predicted the correct number of transmembrane helices, while Phobius and Philius 

predicted two. In terms of residue-level accuracy, the profile-based consensus method Topcons2 

outperforms PureseqTM, especially in SOV and Mcc (Table 5). This is normal that when a protein 

has a large amount of sequence homologs, the profile-based approach will gain increased 

performance in the residue-level measurements, as indicated in Table 1. Thus, if the profile 
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model of PureseqTM is used for this case, we shall obtain a much better prediction than 

Topcons2 (Table 5). Specifically, the Q2, SOV and Mcc of our profile mode is 0.852, 0.983, and 

0.708, respectively, which is 4%, 9%, and 3% better than that of Topcons2. 

 

Table 5. Transmembrane topology prediction accuracy of 4he8E. 

 

 pAccu sReca sPrec Q2 SOV Reca Prec Mcc 

Phobius 0 0.667 1 0.663 0.669 0.667 0.638 0.326 

Philius 0 0.667 1 0.663 0.678 0.733 0.622 0.335 

Topcons2 1 1 1 0.811 0.895 1.0 0.714 0.676 

PureseqTM 1 1 1 0.800 0.802 0.933 0.724 0.628 

PureseqTMP 1 1 1 0.853 0.968 0.933 0.792 0.717 

 

 

 

Figure 6. Case study of the transmembrane topology prediction of 4he8E. 

 

--------------------------------------------------------------------------------------------------------------------------------- 
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Discrimination of transmembrane and non-transmembrane proteins: 

 

Before predicting the transmembrane topology, a preliminary task is to distinguish TMPs and 

non-TMPs. This is critical for the application to genomic or proteomic data. To fulfill this task, we 

trained a model to discriminate TMPs and non-TMPs by randomly adding ~1000 proteins from 

the non-TMP dataset to the training set. To test the performance of this discrimination model, we 

compared with Phobius, Philius and Topcons2 on the discrimination dataset that contains 440 

TMPs (including both single-pass and multi-pass transmembrane proteins) and ~6400 non-TMPs. 

We define true positives (TP) and true negatives (TN) as the numbers of correctly predicted TMPs 

and non-TMPs, respectively; whereas false positives (FP) and false negatives (FN) are the 

numbers of misclassified TMPs and non-TMPs, respectively. 

 

Table 6. Discrimination accuracy of transmembrane and non-transmembrane proteins on the 

discrimination dataset. 

 

 TP FP TN FN Mcc 

Phobius 422 55 6363 18 0.916 

Philius 422 80 6338 18 0.891 

Topcons2 416 28 6390 24 0.937 

PureseqTM 425 50 6368 15 0.925 

 

As shown in Table 6, we observe that our method PureseqTM performs comparable to the other 

methods on this discrimination dataset, where all the four methods have relatively high success 

rate in distinguishing TMPs from non-TMPs. If we take a closer look at the 15 false negatives of 

PureseqTM, 12 (12) of them are also false negatives of Phobius (Philius), which indicates that the 

failure rate of discrimination of PureseqTM depends largely on the Phobius and Philius. 

Furthermore, among the 15 FNs, 8 of them (53.3%) are actually single-pass transmembrane 

proteins (sTMPs), which are not included in our training dataset. Similarly, if we take a look at the 

50 false positives, 45 (31) of them are also false positives of Phobius (Philius). Among the 50 FPs, 

35 of them (70%) are predicted to be sTMPs. These phenomena indicate that our discrimination 

model can be reliably applied to distinguish mTMPs from non-TMPs. However, there is still room 

for improving the success rate to discriminate sTMPs from non-TMPs. 

 

--------------------------------------------------------------------------------------------------------------------------------- 

 

 

Application to Human proteome: 

 

Given the lower rate of false classifications of TMPs and non-TMPs, as well as the higher rate of 

correct identification of transmembrane segment, it should be interesting to see the application 

of PureseqTM for detecting the Human membrane proteome. To do so, we obtained the 20416 

Human protein sequences from UniProt [24] to extract the reviewed transmembrane (TM) 

regions as ground truth, which results in total 5238 TMPs. Among these 5238 TMPs, 2399 are 

annotated as sTMPs and the remaining 2839 are mTMPs. It should be noted that even when 
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there is proof for the existence of TM segments, it is difficult to determine their boundaries. Thus, 

only 52 of the TMPs has experimental evidence (i.e., UniProt ECO: 0000269), while most of the 

ground truth annotations are based on predictions by TMHMM, Memsat and Phobius. To show 

the performance of PureseqTM, we first ran a discrimination study on Human TMPs and 

non-TMPs, we then predicted the TM topology segments on each identified TMP. We compared 

our method with Phobius, Philius, and Topcons2, respectively. Finally, several case studies are 

shown to illustrate the usefulness of PureseqTM for (i) correcting the UniProt entries whose TM 

segments are mislabeled, and (ii) discovering novel mTMPs that are not annotated by UniProt. 

 

Table 7. Discrimination accuracy of transmembrane and non-transmembrane proteins on the 

Human proteome from UniProt. 

 

 TP FP TN FN Mcc 

Phobius 4939 514 14879 299 0.898 

Philius 4768 414 14708 470 0.886 

Topcons2 4812 466 14752 426 0.886 

PureseqTM 4912 380 14852 326 0.910 

 

Table 7 shows that PureseqTM correctly identifies 4912 (93.7%) TM proteins, second best only to 

Phobius that is one of the references for the ground-truth. Taking a closer look at the 326 false 

negatives of PureseqTM, we find that 251 (286) of them are also false negatives of Phobius 

(Philius). Interestingly, among the 326 FN, only 36 (11%) of them are mTMPs, whereas most of 

them belong to sTMPs. In particular, among the 290 sTMPs, about 115 (155) of them belong to 

type I (type II) signal-anchor sTMP, and about 20 of them belong to mitochondria TM proteins 

(mtTMPs). Therefore, more efforts shall be paid to improve the recognition rate for sTMPs and 

mtTMPs. 

 

Table 8. Overall transmembrane topology prediction accuracy on the 5238 reviewed Human 

membrane proteins from UniProt. 

 

 pAccu sReca sPrec Q2 SOV Reca Prec Mcc 

Phobius 0.734 0.916 0.915 0.936 0.935 0.857 0.810 0.785 

Philius 0.651 0.885 0.867 0.934 0.922 0.830 0.772 0.750 

Topcons2 0.669 0.894 0.876 0.933 0.916 0.813 0.799 0.759 

PureseqTM 0.696 0.920 0.888 0.934 0.932 0.803 0.818 0.759 

 

Table 8 shows that PureseqTM reaches the second best to Phobius in terms of protein-level 

accuracy, segment-level accuracy as well as residue-level accuracy. This result implies that the TM 

topology boundaries detected by PureseqTM are closer to the UniProt annotation than those 

detected by Philius and Topcons2. However, it should be noted that the ground-truth itself in this 

task is actually a consensus annotation result, which will bias heavily to Phobius.  

 

Here we point out that the TM topologies of a variety of UniProt entries are not correctly 

annotated. Specifically, there exist 186 UniProt entries in which the number and boundaries of 
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TM segments only match with Phobius, but not with Philius, Topcons, or PureseqTM 

(Supplemental Table S4). For example, sodium-dependent phosphate transport protein 3 

(UniProt ID: O00624, and gene ID: SLC17A2) has 439 residues and was reported to have 6-12 TM 

segments [31]. Phobius and UniProt annotate 9 segments, but Philius, Topcons, and PureseqTM 

all predict 11 segments (Figure 7). An alternative evidence to show SLC17A2 being an 11 segment 

mTMP comes from the PredMP service [32] 

(http://database.predmp.com/#/databasedetail/O00624) that performs de novo folding assisted 

by the predicted contact map from RaptorX-Contact [33]. As shown in Figure 7, the Meff (number 

of non-redundant sequence homologs) value of SLC17A2 reaches ~9,680, and ln(Neff) is 4.9 

where Neff is the length-normalized Meff. According to literature [34], when ln(Neff) is larger 

than 3.5, the predicted 3D models by RaptorX-Contact on average will have TMscore≥0.6, which 

indicates that this 3D model is likely to have a correct fold. Hence, we strongly believe that 

SLC17A2 is an mTMP with 11 TM segments, and the UniProt annotation is incorrect. 

 

 

 

Figure 7.  Case study of the transmembrane topology prediction of SLC17A2 (UniProt ID: O00624). The 3D 

structure model is de novo folded by the PredMP server that utilized the predicted contact map from 

RaptorX-Contact. The number of non-redundant sequence homologs (Meff) and log of length-normalized Meff 

(Neff) of this protein is ~9,680 and 4.9, respectively. 
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Among the 380 false positives of PureseqTM, we found that 349 (209) of them are also false 

positives of Phobius (Philius) and 262 (68.9%) of them are predicted to be sTMPs. For the 

remaining 118 UniProt entries that are predicted to be mTMPs by PureseqTM, we figured out 

that 41 of them are also predicted to be a TMP by Phobius, Philius, and Topcons2 (Supplemental 

Table S5). This phenomenon indicates that these non-TMP UniProt entries might have a chance 

to be relevant to membrane (e.g., either buried within, interfacial to, or cross the membrane). 

We show here that at least the following 9 entries: Q9UMS5, Q8N3S3, Q9Y5W8, Q5JWR5, 

Q6NT55, P11511, P51690, Q9BXQ6, and O95197, satisfy these conditions according to the 

literature. For example, the putative homeodomain transcription factor 1 (UniProt ID: Q9UMS5, 

and gene ID: PHTF1) has 762 residues. In 2003, J. Oyhenart et. al. determined that PHTF1 should 

be an integral membrane protein localized in an Endoplasmic Reticulum (ER) [35]. Later on, Reta 

Birhanu Kitat et. al. performed an experiment based on high-PH reverse-phase StageTip 

fractionation to confirm that PHTF1 is a membrane protein [36]. According to our analysis, PHTF1 

contains 7 transmembrane helices (Figure 8). This evidence is not only supported by the 

prediction result from Topcons2, but also from the published literature by A. Manuel et. al., in 

which they proposed that the stretches of hydrophobic amino acid residues (from amino acids 99 

to 115, 122 to 138, 477 to 493, 533 to 549, 610 to 626, 647 to 663, and 736 to 752) might be 

membrane-spanning domains [37]. The range of these transmembrane segments is quite close to 

PureseqTM and Topcons2 (Figure 8). 

 

 

Figure 8. Case study of the transmembrane topology prediction of PHTF1 (UniProt ID: Q9UMS5). 
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Finally, we ask a question of whether or not PureseqTM could find a new membrane protein (MP) 

that neither is labeled by UniProt, nor is predicted to be a MP by Phobius, Philius, and Topcons2. 

To answer this question, we first collected a subset from the 118 UniProt entreis that are 

predicted to be non-TMP by all the other three methods. This list contains 11 entries, and at least 

one entry Q9BY12 (S phase cyclin A-associated protein in the endoplasmic reticulum, SCAPER) 

has strong literature evidence to be a membrane-related protein. Specifically, Tsang et. al. first 

reported that SCAPER is a perinuclear protein localized to the nucleus and primarily to the ER, in 

which SCAPER is most enriched in the membrane fraction [38]. Later on, Tsang et. al. further 

indicated that SCAPER may either be associated with the surface of the membrane or a 

transmembrane protein that spans the membrane at least twice [39]. This coincides with our 

prediction as shown in Figure 9. 

 

 

Figure 9. Case study of the transmembrane topology prediction of SCAPER (UniProt ID: Q9BY12). 

 

 

--------------------------------------------------------------------------------------------------------------------------------- 

 

 

Runtime analysis: 

 

We test the execution time of PureseqTM, Phobius and Philius on a Fedora25 system with 128Gb 

memory and two E5-2667v4 (3.2 GHz) processors. As PureseqTM requires only amino acid 

sequence information, the runtime for a single protein with 500 residues is about 2.5 second, 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 6, 2019. ; https://doi.org/10.1101/627307doi: bioRxiv preprint 

https://doi.org/10.1101/627307


which is much faster than those profile methods that need at least several minutes (or even 

hours) to construct the MSA. When the protein length grows, the runtime increases linearly 

(Figure 10). By default, PureseqTM will first call Phobius and Philius to generate the HMM and 

DBN features. Therefore, it’s normal that the runtime of PureseqTM is roughly the summation of 

the runtime of Phobius and Philius. As shown in Table 1, the performance of PureseqTM does not 

differ much if the HMM and DBN features are not added. We denote this mode as 

PureseqTM_fast, which can accelerate the runtime considerably to less than 0.5 second for a 500 

length protein (Figure 10).  

 

 
 

Figure 10. The runtime analysis of PureseqTM, Phobius and Philius with different protein lengths. Note that 

PureseqTM_fast is the fast mode of PureseqTM without using HMM and DBN features. 

 

=============================================================================== 
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======================= 

Conclusion and discussion: 

======================= 

 

In this paper, we proposed a deep learning method, PureseqTM, for transmembrane topology 

prediction from amino acid sequence only (i.e., pureseq features). PureseqTM makes its 

uniqueness from the other methods in that it employs a deep probabilistic graphical model, 

DeepCNF, to simultaneously capture long-range dependencies embedded in the input features as 

well as explicitly depict the interdependency between adjacent topology labels. Compared to 

HMM and DBN, CRF (a key module in DeepCNF) does not have the strict independence 

assumptions. This property allows CRF to accommodate any contextual information, which makes 

the feature design in CRF much more flexible than that in HMM and DBN. Experimental results 

show that PureseqTM performs much better than the state-of-the-art pureseq methods, and 

even reaches or outperforms the profile and consensus methods, in terms of protein-level, 

segment-level, and residue-level accuracy. Therefore, PureseqTM is the first approach, to our 

knowledge, that can reach high prediction accuracy while keeping efficient running speed, which 

enables the accurate annotation of the entire membrane proteome in reasonable time. 

 

Our feature incremental study has three important findings. Firstly, the influence of the profile 

features in transmembrane topology (TM) is less important compared to that in other protein 

structural properties such as 3-state secondary structure element (SSE), 3-state solvent 

accessibility (ACC), and 2-state order/disorder region (DISO). According to the literature [14, 18], 

the difference of the prediction accuracy in terms of QX (here X indicates the number of labels, 

such as Q3 for SSE and ACC, and Q2 for DISO and TM) between pureseq features and profile 

features are 10%, 8.5%, 4%, and 2% for SSE, ACC, DISO, and TM, respectively. Secondly, we found 

that the HMM and DBN features could further improve the prediction accuracy with the pureseq 

features, but fail to do so with the profile features. This might explain the phenomenon that in 

some cases the prediction accuracy of a consensus approach does not outperform the single 

method integrated in that consensus approach. Thirdly, although PureseqTM incorporates the 

HMM and DBN features generated by the two state-of-the-art pureseq methods Phobius and 

Philius, we show that without these features (say, only use the one-hot amino acid encoding 

feature) PureseqTM can still reach higher performance than Phobius and Philius in terms of 

segment-level and residue-level accuracy. 

 

One obvious limitation of our method is the relatively low performance when the input sequence 

is an sTMP, as shown in Table 6 and 7. This is normal because we excluded all the sTMPs from our 

training/validation data. The underlying reasons are two folds: (i) the physical-chemical 

properties of sTMPs are quite different from that of mTMPs, where the formers are mostly 

represented by water-soluble domains. If we add those sTMPs to train our model, the prediction 

accuracy of mTMPs will be influenced (data not shown); (ii) currently, compared to mTMPs, 

sTMPs only constitutes about 25% of the PDBTM database. However, according to our analysis, 

among ~5200 human membrane proteins, ~45% of them are sTMPs. This data imbalance issue 

will cause the trained model to be biased to mTMPs. Therefore, in order to solve this problem, 
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we shall distinguish them separately by a discrimination model (as what we did for discriminating 

TMPs and non-TMPs), and train different models for predicting the TM region(s). Further, to solve 

the limited number of sTMPs in the PDBTM (less than 150 if we set the non-redundancy 

threshold to 25% sequence identity) for training purpose, there appears a Membranome 

database that provides structural and functional information about more than 6000 sTMPs from 

a variety of model organisms [40]. 

 

We may further improve the TM topology prediction for mTMPs by leveraging the 2D pairwise 

features embedded in the co-evolutionary information [33]. It is obvious that the pairwise TM 

helical-helical interactions are critical for the formation of TM topology, in which the underlying 

pairwise features are the 2D distance map that contains all square distances between each pair 

of the residues. Recently, these pairwise features, as described by contact map or distance map, 

could be predicted accurately from co-evolutionary analysis through ultra-deep learning models 

[33, 34, 41]. Recently, a similar approach has been successfully applied to predict the SSE and 

significantly improved the accuracy [42]. Thus, we believe that such approach could also improve 

the TM topology prediction by a large margin. 
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======== 

Method: 

======== 

 

 

Datasets: 

 

There are three datasets used in this work: training, testing, and discrimination. We train and 

validate our method on the training dataset. The test dataset is applied for testing our method 

and comparing it with other approaches. The discrimination dataset is used for distinguishing 

transmbrane and non-transmembrane proteins.  

 

Training dataset. The dataset used to train our proposed method is a subset of 510 

transmembrane proteins created in Jul 2016 from PDBTM [11], in which any two proteins share 

less than 25% sequence identity [32]. Specifically, we choose 328 alpha-helical multi-pass 

transmembrane proteins (mTMPs) from this 510 dataset, and divide them randomly into two 

equally sized sets: one for training and the other for validation (Supplemental Table S1 and S2).  

 

Testing dataset. To test the performance of our method and compare with other approaches, we 

collect a set of TMPs from PDBTM which are released after Jul 2016, or with no homology with 

the 510 dataset. To remove redundancy with the 328 training/validation dataset, we use a strict 

rule that (i) any two proteins in the test set share less than 25% sequence identity; (ii) there is no 

protein in the test set that shares >25% sequence identity or BLAST [43] E-value <0.001 with any 

proteins in the training/validation dataset. This creates a test dataset containing 39 mTMPs 

(Supplemental Table S3). We use a protein structure alignment tool DeepAlign [29] to perform 3D 

structure comparison between the proteins in the test dataset and those in the training dataset. 

 

Discrimination dataset. To show the performance of discriminating transmembrane proteins 

(TMPs) and non-transmembrane proteins (non-TMPs), we collect a subset containing 440 

alpha-helical TMPs from the 510 dataset as the TMP dataset. For the non-TMP dataset, we first 

download the PDB25 dataset released in Sep 2016 [44], in which any two proteins share less than 

25% sequence identity. We then exclude the proteins in PDB25 sharing >25% sequence identity 

or having a BLAST E-value <1 with any of the 510 dataset. This results in 6418 proteins as the 

non-TMP dataset. 

 

To label each residue from a given TMP sequence, we used the following 9 labels extracted from 

PDBTM [11]: 1 (Side1), 2 (Side2), B (Beta-strand), H (alpha-helix), C (coil), I (membrane-inside), L 

(membrane-loop), F (interfacial helix), and U (unknown localizations). As in this work we focus on 

alpha-helical mTMPs, the 9 labels are reduced to binary classification in which label H is denoted 

as ‘1’ and all other labels are denoted as ‘0’. For non-TMPs, we label all residues as ‘0’. 

 

--------------------------------------------------------------------------------------------------------------------------------- 
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Input features: 

 

Our method in the ‘pureseq’ mode only relies on the residue-related features. If evolutionary 

profile information is provided, our method in the ‘profile’ mode could also take as input the 

evolution-related features.  

 

If the ‘pureseq’ mode is chosen, our method only takes input the 36 residue-related features: (i) 

amino acid identity represented as a binary vector of 20 elements (or, one-hot encoding); (ii) 

reduced AAindex [23] which contains 5 highly interpretable numeric patterns of amino acid 

variability (see Table 2 in [26]). These features allow a richer representation of amino acids that 

reflect polarity, secondary structure, molecular volume, codon diversity, and electrostatic charge 

[16]; (iii) 4 predicted probabilities of the transmembrane topology labels from Phobius [12], 

which are cytoplasmic (label ‘i’), non-cytoplasmic (label ‘o’), transmembrane region (label ‘m’), 

and signal peptide (label ‘s’), respectively; (iv) 7 predicted transition probabilities between the 

transmembrane topology labels from Philius [8], which are ‘ii’, ‘oo’, ‘mm’, ‘ss’, ‘mi’, ‘mo’ and 

‘xm’, respectively, where ‘x’ indicates ‘i’ or ‘o’.  

 

If the ‘profile’ mode is chosen, besides the 20 one-hot encoding and 5 AAindex features, we use 

additional 40 evolution-related features. In particular, we use 20 position specific scoring matrix 

(PSSM) generated by PSI-BLAST [43] to encode the evolutionary information at each residue. We 

also use 20 hidden Markov model (HMM) profile generated by HHpred [45], which is 

complementary to PSSM to some degree. The reason why we do not use the 4+7 predicted 

probabilities of the topology labels in the profile mode is due to the fact that they do not improve 

the prediction accuracy (Table 1), especially the protein-level accuracy, on the validation dataset. 

The evolution-related features could be generated as a TGT file using the procedure 

https://github.com/realbigws/TGT_Package. 

 

--------------------------------------------------------------------------------------------------------------------------------- 

 

 

DeepCNF training: 

 

The training procedure for the topology prediction using the DeepCNF model is based on the 

procedure used for training protein secondary structure element (SSE) [15]. In particular, we fix 

the model architecture with the following parameters: 5 layers, 100 neurons and 11 window 

length per position for each layer.  

 

Although similar with the model to train SSE, here we use two cascaded procedures to train the 

predictor for 2-state transmembrane topology: (i) a model to distinguish TMPs and non-TMPs, 

and (ii) a model for accurately detecting transmembrane topology regions. We describe the 

detailed training procedures for each of them. 
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Model for detecting transmembrane topology regions. We first describe how to train the model 

on mTMPs. We train our model using the 164 entries from the training set and validate our 

model on the 164 entries from the validation set. As the model architecture is fixed, there is only 

one tunable hyper-parameter lambda in DeepCNF model, which is used for reducing over-fitting 

with a L2 norm. We try a variety of values ranging from 0,0.5,1,1.5,2,2.5,3.5,5,7.5,10,12.5,15,17.5, 

20,22.5,25,27.5,30 and find out that lambda=20 produces the best performance on validation 

dataset (actually, there is no large difference when lambda ranges from 5 to 30). Although the 

trained model could detect topology regions accurately, it does not performwell on the 

discrimination task. The underlying reason is that we do not feed any non-TMP as the training 

data. We denote this trained model as ‘puretm.model’. A similar approach could be applied 

for training the model with evolution-related features, and we denote this model as 

‘proftm.model’. 

 

Model to distinguish TMPs and non-TMPs. To train this model, we use the same 164 entries from 

the training set and randomly choose 1000 proteins from the non-TMP dataset, while keeping 

the 164 entries from the validation set as is. Note that there is a highly imbalanced 

non-TMP/TMP ratio (around 15:1) in this task. To deal with the imbalanced distribution of the 

topology labels, we train the DeepCNF model by maximizing AUC which is an unbiased measure 

for class-imbalanced data [46]. An alternative approach to train this discrimination model is to 

initialize the DeepCNF with the trained model ‘puretm.model’, and to early stop when the 

AUC value on the validation set declines. We denote this trained model as ‘detect.model’. 

 

Feature incremental study. To show the importance of each type of features in the ‘pureseq’ 

mode, we conduct an incremental study which is similar to a reverse operation of ablation study. 

Specifically, as there are four types of features: one-hot encoding, AAindex, HMM, and DBN, we 

incrementally add them to train the DeepCNF model on the 164 training set and check the 

performance on the 164 validation set. The order we choose for the four types of features is 

according to their model complexity. If the newly added feature type could significantly improve 

the prediction accuracy on the validation dataset in all measurements, then we conclude that 

such type of feature will make large contribution to the prediction. Otherwise, the feature might 

not be that important. A similar feature incremental study could be conducted for the ‘profile’ 

mode. 

 

--------------------------------------------------------------------------------------------------------------------------------- 

 

 

Transmembrane topology prediction: 

 

When an amino acid sequence is given, PureseqTM will first call detect.model to distinguish 

TMP and non-TMP (Figure 1). If TMP is identified, then PureseqTM will employ puretm.model 

to predict the transmembrane topology (‘1’ for transmembrane and ‘0’ for non-transmembrane) 

and also the corresponding probabilities at each residue. Our method also enables the sequence 

profile as the input when the ‘profile’ mode is on. It should be noted that if the predicted 

transmembrane segment satisfies the two conditions: (i) the segment length is above 30 and (ii) 
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there exist two peaks in the predicted probability, then PureseqTM will cut this segment into two 

at the position where the local minimum of the probability is found. 

 

--------------------------------------------------------------------------------------------------------------------------------- 

 

 

Programs to compare: 

 

We compare our method with the following programs: Phobius [12], Philius [8], and Topcons2 [13] 

for 2-state transmembrane topology prediction. Phobius and Philius are methods that only rely 

on the input sequence information (i.e., ‘pureseq’ methods); Topcons2 is a consensus approach 

that combines the outputs from different predictors ranging from Phobius, Philius, SCAMPI [47] 

and OCTOPUS [10]. It should be noted that SCAMPI is a pureseq method, whereas OCTOPUS 

relies on the evolutionary profile (i.e., a ‘profile’ method). 

 

We run Phobius and Philius with their default parameters. For Topcons2, we submit all the 

relevant sequences from the datasets to its server to obtain the prediction results. It should be 

noted that all of the three approaches return more labels (such as signal peptide) other than 

binary topology prediction. To transfer their results into 2-state transmembrane topology, we 

only keep the probability in state ‘transmembrane’ as label ‘1’, while regarding other states as 

label ‘0’ (i.e., non- transmembrane). 

 

--------------------------------------------------------------------------------------------------------------------------------- 

 

 

Data and software availability: 

 

The web server implementing the DeepCNF model for transmembrane topology prediction from 

the amino acid sequence features only is publicly available at http://pureseqtm.predmp.com/. 

The code for the stand-alone package is maintained on GitHub 

(https://github.com/PureseqTM/pureseqTM_package). The list of the training, validation, and 

testing dataset is available in the Supplemental Material. For more detailed information about 

the relevant dataset, such as the Human proteome dataset, users are suggested to visit 

https://github.com/PureseqTM/PureseqTM_Dataset. 

 

=============================================================================== 
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Supplemental Material for: 

Efficient and accurate prediction of transmembrane topology 

from amino acid sequence only 

-------------------------------------------------------------------------------------------------------------------------------- 

 

 

S1   Segment OVerlap (SOV) Score 
 

The Segment Overlap score (SOV) measures overlap between the observed and the predicted 

transmembrane (TM) topology segments instead of per-residue accuracy. The predictions that 

have high per-residue accuracy but deviate from experimental segment length distributions 

have lower SOV scores. SOV score ranges from 0 to 1 with 1 indicating the perfect overlap. 

Brief description of SOV is as follows. To calculate 2-state SOV, the predicted transmembrane 

topology of one protein sequence is parsed into segments such that each segment has a single 

topology type (either TM:1 or non-TM:0). Let S1 be the observed transmembrane topology and 

S2 the predicted transmembrane topology. For each type        ,      is the set of segment 

pair         with type   where    is from S1,    is from S2, and there must be at least one 

residue overlap with    and   . That is,                                             . 

In contrast,                                          . 

Then the segment overlap score between S1 and S2 is calculated as follows: 

           
 

 
∑ ∑

                   

                              
       

where            is the length of the overlap between    and   ,            is the length of 

the total span of    and   , and       is the length of   ,          is defined as 

                                      ⌊
     

 
⌋  ⌊

     

 
⌋  and   is defined as   

∑            , where      ∑                   ∑               
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S2   Dataset of training/validation and testing 
 

 

Supplemental Table S1. A list of 164 training data. 

2a9hA 4or2A 3b9wA 3mp7A 3udcA 3zjzA 2q67A 5i1mV 

3x3bA 1vf5B 1jb0K 4p6vD 2q7mA 2yevB 4httA 2iubA 

4g7vS 5i6zA 1q90B 5iofA 1e7pC 1yewC 4j72A 3o0rB 

4nppA 5a63C 1fx8A 2wsc1 3nymA 5c6oA 3wdoA 3chxB 

4ymsC 3dwwA 2loqA 5ctgA 2lnlA 3orgA 4gbyA 1p7bA 

2mgyA 1c17M 4qndA 4o9uB 5doqA 4o9pB 4y7jA 5a1sA 

2jafA 3lw54 3iyzA 4zp0A 3jcuD 2pnoA 1m57A 2lorA 

4zw9A 1nekD 4hzuS 2evuA 4il3A 3oufA 4twkA 5f1cA 

2ks9A 4mqsA 4hw9A 2nq2A 5ek0A 4c9jA 2oarA 4njnA 

3b4rA 3ddlA 3eh3A 3a7kA 4px7A 1bhaA 3cn5A 2yevC 

1q16C 3wmfA 4bgnA 3dhwA 5awwY 3pjzA 3zuxA 2wpdJ 

3wmmM 4he8D 1qleC 3jycA 3v5sA 2w1pA 2gfpA 1oedC 

3d31C 3jbrE 5awzA 2h8aA 3pjsK 1yq3C 3x29A 3j9tR 

3zevA 5irxA 4xu4A 3m71A 3cx5C 4b4aA 4z3nA 5a40A 

4ri2A 2wscK 1s5lB 4wgvA 4j05A 2jlnA 1ar1B 4y28K 

2ziyA 2bl2A 4a2nB 3vr8C 3q7kA 4f35A 4hkrA 3ukmA 

1kf6D 1orsC 2mmuA 1kf6C 4tquN 4hycA 4k1cA 4dxwA 

3lnmB 2nmrA 5ekeA 4gd3A 2ksrA 2f93B 4pirA 4ntjA 

3b5dA 4ea3A 4ytpC 3dl8E 4qtnA 3pwhA 2wswA 5jagA 

5c8jI 4q2eA 3tijA 2k73A 3ze3A 3mk7C 3jcuZ 5i32A 

3dinE 5awwG 5i20A 3j1zP     

 

 

 

Supplemental Table S2. A list of 164 validation data. 

 

4atvA 2akhA 1fftB 4xxjA 3kj6A 3effK 2n4xA 4knfA 

4rfsS 3wo7A 2yiuA 2d57A 4us3A 3chxC 4tq3A 4kt0K 

3o7pA 3um7A 4o6yA 4pgrA 2kseA 2z73A 2xq2A 3l1lA 

4gycB 1fftC 4gx5A 4bwzA 5iwsA 4u4tA 3jcuS 3k3fA 

4o6mA 4cskA 1yq3D 4h33A 4he8C 5aymA 4uc1A 4y28G 

3j08A 2lckA 4bpmA 3qe7A 1kqfC 4hyoA 2f95B 1xl4A 

4ryiA 2k9pA 5abbZ 4in5L 1p49A 5azbA 3ejzA 4nykA 

4huqT 4r1iA 5a6eB 4ymkA 1pw4A 4zr0A 2kyhA 5i6cA 

4mbsA 2m67A 1gzmA 2l35A 3iz1A 4cadC 4chvA 4dojA 
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2y5yA 2ksdA 4kppA 1h2sB 4bemJ 5d0yA 5ezmA 4ltoA 

1nekC 3vr8D 2m6bA 4od4A 5araW 3tx3A 4rngA 4cfgA 

5garO 2wsc3 2bg9A 2nr9A 2mpnA 2akhB 5id3A 2wscG 

3wxvA 4tquM 3vouA 4ezcA 4jkvA 4dveA 4m58A 3gi8C 

3kp9A 4o9pA 2lomA 3zk1A 5fn2B 4czbA 2ksfA 3rkoA 

4djiA 3qnqA 3p5nA 4ytpD 4z7fA 4huqS 3jcuR 4qncA 

4l6rA 4tkrA 4zr1A 3wvfA 4p6vE 5cfbA 4p79A 2r6gG 

3hd6A 3mktA 4rdqA 4phzA 2vpwC 4mndA 3mk7A 5dirA 

3ux4A 5araT 2lp1A 4rp8A 4g1uA 4kjrA 4xnvA 4z34A 

2losA 4quvA 4p6vB 5doqB 3s0xA 2r6gF 4y28L 3uq7A 

3ug9A 5ee7A 4f4lA 4wd7A 4ky0A 2llyA 1xioA 2wscL 

3v2wA 4u9lA 2xutA 4v1fA     

 

 

 

Supplemental Table S3. A list of 39 testing data. 

 

1pb4D 4m64B 5ldwN 5tcxA 

1zc7A 5eikA 5ldwY 5tsaA 

2gfzA 5fgnA 5lnko 5ttaA 

2m0qA 5h1qA 5mg3F 5voxc 

2mn6B 5ijiA 5mrwA 5vreA 

3g6bA 5l75F 5n6hA 5wtrA 

3rkoK 5l75G 5o0tA 5wufA 

3rkoN 5ldwJ 5sv0B 5x5yF 

4he8E 5ldwK 5sv9A 5x5yG 

4j7cK 5ldwM 5t77A  
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S3   Dataset relevant to UniProt Human proteome 
 

Supplemental Table S4. A list of 186 UniProt entries in which the number and boundaries of 

transmembrane segments only match with Phobius, but not Philius, Topcons, and PureseqTM. 

Q9HDB5 Q99572 Q8IZS8 Q8IV31 Q9NVA4 Q9HCM3 Q8NGS6 Q8NGL7 O75352 

Q9HBU9 Q6ZT12 Q86VU5 Q9NRX5 Q6NXT6 Q9Y6K0 Q8NGS4 Q9UGF6 Q9NZP5 

O15120 Q5T4S7 Q5TH69 Q16842 Q16635 Q5JZY3 Q8NGT2 Q8NGG0 Q8NGE3 

Q8TEB9 Q9P2D8 Q9UIR0 Q11203 Q8IUA7 Q15884 Q68CR7 Q8NG80 Q8NGX3 

Q53FV1 Q16572 Q96MX0 Q9BYT1 Q96SE0 Q9N2K0 P60507 P0C7N8 Q8NGY0 

Q9BZA8 A0A1B0GTY4 P0C7U3 Q96G79 Q9UKB5 Q9H1C3 Q5T6L9 B2RTY4 Q8NGS5 

O75452 Q6ZS81 Q86YA3 Q99624 P08910 P60509 Q9NWS6 O60431 Q8NGT0 

Q13423 Q9UBH6 Q11130 Q96JT2 Q3MIX3 Q76MJ5 A6NC97 Q8NH93 P0C617 

O00624 Q6ZU64 O60774 Q7Z3Q1 Q9UM73 B6SEH8 Q5JX69 Q8NGP3 Q6IF42 

Q86XR5 P98187 Q96CU9 Q8TBB6 Q7Z5J8 P05981 A0A1B0GTK4 A6NJW4 Q8WUY8 

P58400 A0A087X1C5 O43464 Q8NG04 O95870 Q5VW36 Q8NGS9 O14524 Q8IW70 

Q9H209 Q9NRD9 Q9Y4D8 P50443 Q9NP78 Q8NBF6 Q8NG92 Q86X29 Q9P283 

C9JH25 Q86SJ6 Q8NCG7 A0AV02 Q4ZG55 Q58HT5 Q9H210 Q9Y693 Q14656 

Q9H208 Q9Y2G3 Q6ZUT9 A6NIM6 O43292 Q96M19 Q8WZ84 Q96KK3 Q5W0B7 

Q6J4K2 Q8IWY9 Q9UBM7 Q9H1N7 Q3MIP1 Q07812 O95047 A6NDP7 Q8N661 

Q7L5N7 Q9P2K9 Q9BS91 Q96RN1 Q6P9B9 Q16611 Q8NGM8 Q8NH01 Q96DC7 

Q86VR2 Q8N6G5 P61009 Q96HH6 P34903 A6QL63 Q6IEY1 P30954 Q8TDW4 

P42702 Q7Z6A9 P60602 Q9BVT8 O95461 Q6UXD1 Q8NGC5 Q8NHC4 Q96NR3 

Q86WI0 P30988 Q9H4F1 Q9C0B7 Q9NR82 P03891 P47890 Q8NGS8 Q9HCF6 

Q9H490 Q8IU99 O75204 Q8N4L1 Q96RP8 Q8NGR1 Q8NH00 O95013 O43173 

Q8NCS4 Q96HV5 Q7Z402 Q15035 Q6ZP80 Q6UWJ1    

 

 

Supplemental Table S5. A list of 41 UniProt entries annotated as non-transmembrane protein 

but predicted to be a transmembrane protein by Phobius, Philius, Topcons2 and PureseqTM. 

P04156 H3BN30 P54793 Q6P4D5 Q92543 

Q9BRX8 Q6NT55 P51689 Q92843  

Q9BUV8 O60397 P56539 P38567  

Q9UMS5 P10635 Q9BQE5 Q96MZ0  

Q9NY59 P11511 Q9BPW4 O94919  

Q14442 P20815 Q9BWW8 P80365  

Q8N3S3 P13498 O95197 Q96KR4  

Q9Y5W8 Q9HB55 Q9BXQ6 Q8N699  

Q5JWR5 Q16678 Q5VUY0 Q96EZ4  

O95873 P51690 Q9H1A4 P63135  
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