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Abstract. Good empirical applications of geometric morphometrics (GMM) typically

involve several times more variables than specimens, a situation the statistician refers to

as “high p/n,” where p is the count of variables and n the count of specimens. This note

calls your attention to two predictable catastrophic failures of one particular multivariate

statistical technique, between-groups principal components analysis (bgPCA), in this high-

p/n setting. The more obvious pathology is this: when applied to the patternless (null)

model of p identically distributed Gaussians over groups of the same size, both bgPCA

and its algebraic equivalent, partial least squares (PLS) analysis against group, necessarily

generate the appearance of huge equilateral group separations that are actually fictitious

(absent from the statistical model). When specimen counts by group vary greatly or

when any group includes fewer than about ten specimens, an even worse failure of the

technique obtains: the smaller the group, the more likely a bgPCA is to fictitiously identify

that group as the end-member of one of its derived axes. For these two reasons, when

used in GMM and other high-p/n settings the bgPCA method very often leads to invalid

or insecure bioscientific inferences. This paper demonstrates and quantifies these and

other pathological outcomes both for patternless models and for models with one or two

valid factors, then offers suggestions for how GMM practitioners should protect themselves

against the consequences for inference of these lamentably predictable misrepresentations.

The bgPCA method should never be used unskeptically — it is never authoritative — and

whenever it appears in partial support of any biological inference it must be accompanied

by a wide range of diagnostic plots and other challenges, many of which are presented here

for the first time.

Keywords: between-group principal components analysis, ratio of variables to cases,

high p/n data sets, discriminant function analysis in high dimensions, factor analysis and

discrimination, the Marchenko-Pastur theorem, geometric morphometrics, predictable mis-

takes in biometric data analysis, effects of varying group size, alternatives to canonical
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variates analysis.

1. Introduction

Figure 1 shows two scatterplots based on analyses of the same simulated data set

of 30 specimens divided into three groups of ten each. The specimens are modeled as

having been “measured” on a total of 300 variables, for instance the Procrustes shape

space for 152 landmarks and semilandmarks in two dimensions, but the distribution I am

simulating for these 300 dimensions is the most uninformative possible: 300 independent

Gaussian (normal) variables of the same mean (here, zero) and the same variance (here,

1.0) for each of the thirty simulated cases, which have been grouped entirely arbitrarily

(the first ten specimens, the second ten, the third ten). The scatterplot on the right is the

usual display from a Partial Least Squares (PLS) analysis of group against the 300-variable

observation vector; that on the left is the similarly conventional display from a “between-

group principal components analysis” (bgPCA) of the derived sample of three group means

in the same 300-dimensional space. In either panel, the printed symbol corresponds to the

imputed group index, which is 1, 2, or 3. Keep in mind that these groups are arbitrary

subsamples of simulated specimens that were in fact identically distributed independent

of group.
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Figure 1. A typical manifestation of the pathology that is the topic of this note: the com-

pletely fictitious production of group separations when either of two equivalent techniques

— bgPCA or PLS against a group dummy array — is applied to the same completely

uninformative data set of 300 identically distributed Gaussian variables on 30 simulated

“specimens.” Plotting characters 1, 2, 3 correspond to the (entirely arbitrary) group index

assigned to the thirty “specimens” in three sets of ten. The group separation is indeed

startling and would be assessed as hugely significant by any statistical maneuver that was

unaware of the ordination’s actual origin in a data set of 300 variables identically dis-

tributed over 30 specimens. Thus to infer a group separation from this shared scatterplot

is clearly a mistake.

These are evidently the same scatterplot. Furthermore, they are described by equiva-

lent figures of merit — the quantities listed in their subtitles. For bgPCA, on the left, these

are the eigenvalues (net variance explained) of the only two principal components of those

three group means; each is a component of the total sum of squares over all the variables,

which is about 300. For PLS, on the right, these are the total “squared covariances ex-

plained” between the same vector of 300 simulated measurements and a 3-by-30 matrix of
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group dummy variables each of mean 1

3
and variance 2

9
. The two pairs of entries have the

same ratio, about 1.12 to 1, and their ratio of 2.803 from right to left is precisely 3×
(

29

30

)2
,

the count of groups times the undoing of the factor that my statistical software package

applies when it computes variances. That bgPCA and PLS against a group dummy are

algebraically the same has been known for a while (see, e.g., Boulesteix, 2005). The figures

to follow will invoke whichever one offers the simpler explanation of the pathology that is

my main topic in this section.

That pathology, already evident in Figure 1, can be quantified by an application to this

small-group setting of the celebrated Marchenko-Pastur theorem (MPT) that I reviewed

in a previous publication in this Journal (Bookstein, 2017). The MPT sets out a formula

for the limiting distribution of all the eigenvalues of a data set of p identically distributed

standard Gaussian variables (mean 0, variance 1) on n specimens as both numbers tend

to infinity in a fixed ratio y = p/n. The theorem states a limit for the maximum of these

eigenvalues, (
√
y + 1)2, and a similar-looking limit (

√
y − 1)2 for their minimum. These

formulas apply “asymptotically,” as the statisticians say. The analysis in Section 2 will

show that to apply the formula to the scenario in Figure 1 we substitute the value 300

30
= 10

for y and multiply by 2

3
(for the case of just three groups), resulting in a value of 11.55,

quite close to the observed eigenvalue of 11.28 printed in the left panel of the figure. The

sum of the two numbers there is 21.35, whereas the total variance of the three group mean

300-vectors is expected to be 20 (see, again, Section 2), likewise a good match.

Then the essence of this first pathology leaps to the eye here. While the variances

of the group means themselves total about 20, the variance of any direction within a

group remains near the value of 1.0 that characterizes almost every projection of this

300-dimensional scatter onto a line. So the group means must be separated by about four

times their within-group standard deviation; in other words, the scatters must be perfectly

separated by group. But there is no such separation in the model we are simulating — the

groups were drawn from identical high-dimensional distributions. The separations were

produced solely by the bgPCA machinery itself. This seems like a serious, indeed fatal,

mathematical error for any technique that is ever employed in a context of ordination.

Some hints in this figure will concern us in the sequel. For instance, the triangle of

the centroids of the three groups in the figure appears to be oddly close to equilateral.

We can check this hunch by repeating the simulation a dozen times. As Figure 2 shows,

we always get precisely the same “answer”: three groups cleanly separated with centroids
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forming a nearly equilateral triangle, larger eigenvalue usually 10.0 or a bit above, the pair

of them always totalling about 20, and the within-group variances still hovering around

1.0. The equilateral triangle of centroids appears to spin on the page because inasmuch

as the eigenvalues of such a shape are always nearly equal, the computed principal axes

will be uniformly distributed with respect to the centroids that were their data. And the

triangle’s orientation (clockwise or counterclockwise) is unstable because PCA does not

constrain the signs of the extracted components.
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Figure 2. Twelve replications of the simulation in Figure 1. The result is always a

separation of the “groups” with eigenvalues of the bgPCA analysis nearly equal, their

total always about 20, and within-group variances always about 1.0; hence, always, the

fiction of perfect separation.
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Let us explore a little further. Figure 3 presents the same analysis as in Figure 1 but

for four groups of ten specimens each, instead of three, and a total of count of variables

likewise multiplied by 4

3
, to 400, so that the value y = p/n remains at 10. Now we see a

large-scale quadrilateral of group-specific scatters, still with within-group variances around

1 and still perfectly separated but now no longer quite so symmetrically placed on the plot.

But that is because we have projected down onto only two dimensions. When there are four

groups the space of the bgPC’s is actually three-dimensional, as in Figure 4, and the third

eigenvalue is not negligible with respect to the first two. When we plot all three of these

dimensions, we see that indeed the group centroids fall at the vertices of an equilateral

tetrahedron, and the eigenvalues remain very nearly equal and total approximately 30,

which is the trace of the expected variance-covariance matrix of the corresponding quartet

of group means.
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Figure 3. Analogous simulation for four groups of ten specimens each and likewise ten

times as many variables as specimens, now a total of 400. The techniques of bgPCA and

PLS are still identical, and likewise the fictitious “finding” of perfect separation, but the

symmetry of the plots in Figures 1 and 2 appears to be broken.
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Figure 4. Completion of Figure 3 by including bgPC3, the final between-group principal

component. The symmetry of the configuration of four group centroids is restored by

a display in three dimensions instead of two — we are looking at three orthogonal but

otherwise arbitrary projections of an almost-equilateral tetrahedron.

Similarly we can explore the dependence of this pathology on the ratio y = p/n of

variables to cases. Raising this ratio to 40, for instance, while remaining with four groups

of ten specimens each, results in the three-dimensional scatter of Figure 5, which continues

to be the display of an equilateral tetrahedron. The three eigenvalues remain nearly equal

but now their total is very nearly 120, four times what it was for Figure 4, as there

are four times as many simulated variables of unit variance. Back in the setting of just

three groups, Figure 6 repeats the analysis of Figure 2 for twice the count of variables,

noticing, again, that the equilateral triangle has twice the eigenvalue total and therefore

higher group separations (since the within-group variances remain around unity), while

the configuration itself continues to appear just to spin (with reflection).
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Figure 5. Analogue of Figure 4 with four times as many variables. The group cen-

troids still lie at the vertices of an equilateral tetrahedron, around which variances are still

about 1.0 in every direction, while the eigenvalues (always nearly equal) summarizing the

separation of the fictitious “group centroids” now total 120 instead of 30.
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Figure 6. Analogue of Figure 2 for twice as many variables, 600 instead of 300, hence

y = p/n = 20. The configuration of group centroids remains equilateral even as the visual

separation of the groups increases in proportion to the square-root of the eigenvalues (here

reported as PLS totals of explained squared covariance).

A brief history. In view of these persistent, potentially devastating problems, I admit

with some embarrassment that of the two analytic dialects here, the PLS version seems

apparently to be mine, published originally without any citations to precursors in a paper

with Randy McIntosh (McIntosh et al., 1996) for which the domain of application was

positron emission tomography (PET) imaging. But priority goes to an earlier presenta-

tion in the language of bgPCA, Yendle and MacFie (1989),1 who named their technique

1 I am ignoring an intercalated algebraic step of theirs, a standardization of each mea-
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“discriminant principal components analysis” (DPCA) and recommended it when “the

number of variables exceeds the number of samples” (i.e., when p/n > 1). Section 9.1

of Jolliffe (2002), a standard textbook of PCA, situates the bgPCA approach (via this

Yendle–MacFie citation) within a spectrum of variously “prewhitened” versions of canon-

ical variates analysis (CVA). Ironically, even though Yendle and MacFie note that “under

certain conditions the discrimination achieved by CVA may be totally spurious,” they do

not even hint at the MPT-related problems that are my topic here, which render some

discriminations potentially achieved by their DPCA likewise “totally spurious.”

The logic of either presentation, bgPCA or PLS by group, is straightforward: to

circumvent the pathologies of a much earlier approach, linear discriminant analysis, in

settings where the predictors (for PET, the positron emission densities voxel by voxel; for

GMM, the Procrustes coordinates of an arbitrarily long list of landmarks and semiland-

marks) are too numerous for their covariance matrix to be invertible, are subject to exact

linear constraints that likewise render the covariance matrix noninvertible, or are too in-

tercorrelated for that inverse to be stable over sampling. For a good didactic review of this

technique in the context of the difficulties it was intended to circumvent, see Mitteroecker

and Bookstein, 2011.

In the days before we biometricians stumbled across the MPT, the error embraced

by this biometrical approach was forgivable. It seemed like a good idea to maximize the

strength of a grouping signal over linear combinations of measurements, and so we needed

a quick, easily programmed, preferably linear fix that permitted interpretation via prior

knowledge of within-group factors or selection gradients. None of us carried out simulations

extensive enough to recognize either of the fatal flaws examined in this paper. But with the

passage of time the conditions conducive to these pathologies have become more common.

For instance, the first of these pathologies is the huge instability of PCA and related

techniques whenever the ratio y of variables to specimens is much larger than 1 and there

sured variable by its within-group standard deviation. In GMM applications, standardiza-

tion is instead by the Procrustes metric that all the shape coordinates share. Incidentally,

Yendle and MacFie might also be cited as the first to notice the identity of the PLS and

PCA approaches to this computation when, in a closing comment, they noted how their

analysis can be implemented using “an algorithm such as NIPALS.” That acronym stands

for “nonlinear iterative partial least squares,” the original name put forward by Herman

Wold and his son Svante Wold for what was soon to be given a shorter moniker, PLS.
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is substantial commensurate measurement error or other independent variation in most

variables separately. But the commensurability of nearly independent measurement errors

over variables characterizes the isotropic Mardia–Dryden distribution that lies at the core

of many approaches to landmark data analysis in GMM, and with the widespread adoption

of the R programming language it is now possible to apply the usual tools of multivariate

analysis to hundreds or even thousands of shape coordinates at once. (See Section 4.5 for

a workaround.) In many of the fields accustomed to high-p/n data sets, wide variation

of subgroup sample sizes has become a commonplace, as in recent studies of species of

Homo, partially bgPCA-driven, by Chen et al. (2019) and Détroit et al. (2019), two

papers explicitly critiqued below. Variability of subgroup size when the p/n ratio is high is

the requisite for this paper’s second main pathology, the automatic alignment of the first

one or two bgPCA axes with contrasts of the grand mean against the smallest one or two

subgroups only.

For these and other reasons, the frequency with which bgPCA analyses appear in

peer-reviewed articles has been increasing even as its underlying flaws remained unknown.

A scholar.google.com retrieval finds the counts of recent articles that mention bgPCA

to be as follows: 2 articles published in 2013, 8; in 2014, 13; in 2015, 21; in 2016, 14;

in 2017, 21; in 2018, 24; in 2019, through May 10, 14. The present note is a companion

piece to Cardini, Rohlf, and O’Higgins (2019), which arrives at the same diagnosis as

mine of the first pathology, that of fictitious clustering, somewhat less formally, without

invoking the MPT but with several more realistic simulations and simpler algebra. The two

approaches, one more biomathematical and one less so, end up offering the same advice:

the technique of bgPCA should never be used with good GMM data, meaning,

data with sufficiently many shape coordinates to represent the form evocatively. That is,

bgPCA should never be applied to data sets where the count of shape coordinates is more

than a small fraction of the count of specimens. (The recommendation in Mitteroecker

and Bookstein 2011 that ignored this restriction of applicability is hereby countermanded

by the second of its two authors.) And there is an even deeper flaw, one no longer specific

2 I strongly urge all the authors of all 115 of these articles to revisit their multivariate

inferences by more thoroughly tested methods capable of checking for the pathologies

of the bgPCA approach that their publications originally exploited. The upward trend

of these counts makes that advice ever more urgent. Regarding the scientometrics of

misinformation in general, see O’Connor and Weatherall, 2018.
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to GMM: the illusion that maximizing variance or covariance over linear combinations of

huge numbers of shape coordinates is a reliable source of biological insight.

The purpose of this article is to discuss both of these newly uncovered pathologies of

the bgPCA technique, some potential diagnostics, and a range of appropriate responses by

any interested disciplinary community. Section 1 has already demonstrated the first of the

pathologies, the misrepresentation by unambiguously distinct clusters of high-dimensional

Gaussian data that are actually independent of group. Section 2 reviews the underlying

pathologies of this paper’s many examples in terms of the governing theorem, the MPT,

that accounts for them in quantitative detail. Section 3 shows how these pathologies per-

sist through an enrichment of the null model of totally noninformative Gaussians here to

incorporate the factor structures that render the statistical models in organismal applica-

tions far more realistic. Section 4 is concerned with tools that permit the evaluation of

bgPCA models from the point of view of a principled skeptic or manuscript reviewer. Two

standard classes of diagnostic tools, permutation tests and crossvalidation approaches, are

rejected; in the course of this second rejection, that second pathology of the bgPCA method

is uncovered, the pathology induced by varying subsample counts, which in many pale-

oanthropological applications is even more catastrophic than the hallucination of clusters.

The final Section 5 summarizes the critique by a list of seven pointed recommendations

that every user of bgPCA should consider before drawing any scientific inferences from its

computations.

2. Why are we seeing this?

Where, then, do these formulas come from that the simulations in Section 1 exemplify?

The argument in this article and its companion piece is not merely an authoritative collabo-

rative critique of an inadequately tested, insufficiently theorem-driven method prematurely

adopted by a few applied communities. Instead it is meant to convey an important new

fact about “megavariate data analysis” that is fundamental to the geometry of these data

spaces and so might be of interest more generally to evolutionary and developmental biol-

ogists who deal with huge data sets like these. The MPT itself is too deep for biologists to

apprehend without a struggle, but its application to the bgPCA method is straightforward.

Here is how that goes.

Let me standardize notation for this application of the theorem as follows. Set down
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the bgPCA algorithm in five steps:

1. Collect a data set of p variables over n specimens divided a priori into g subgroups.

Assume for simplicity that each of the g subgroups has the same count m of

specimens. (I return to this assumption in Section 4.3.)

2. Compute the mean p-vector for each of the subgroups. This gives you g new

p-vectors.

3. Extract the principal components of that set of g p-vectors.

4. Impute principal component scores for all n of the original specimens using the

formulas for the principal components of those g p-vectors.

5. Plot the resulting principal component scores, imaginatively interpret the pat-

terns of the first two or three principal component loading vectors or the con-

trasts implied by the phylogenetics or the experimental design of the groups, and

publish or paste onto a poster.

The MPT (Marchenko and Pastur, 1967) is a theorem fundamental to the probability

theory of random processes. For an intermittently accessible exposition, see Bookstein,

2017. The theorem states that if X is a data matrix of p standard Gaussians (mean 0,

variance 1) over n cases, then in the limit of p and n both tending to infinity at fixed ratio

y = p/n, the distribution of the nonzero singular values of the p× p matrix X ′X/n — the

list of the conventional “explained variances” of the full set of all p uncentered principal

components of X — approaches one specific family of distributions that are a function only

of y: probability is nonzero only between a = (1−√
y)2 and b = (1 +

√
y)2 (the notation

for y < 1), or equivalently between a = (
√
y − 1)2 and b = (

√
y + 1)2 (for other y’s),

with probability density p(x) = 1

2πxy

√

(x− a)(b− x) over that interval. The problems I

highlighted in Bookstein (2017) arise from the unbounded nature of the ratio of maximum

to minimum over this range when y is near 1. The present note is concerned only with

the higher end of the range, the values (
√
y + 1)2 and their transformation into expected

bgPCA eigenvalues, for diverse values of y mostly much greater than 1.

Even before we examine the way this theorem implied the catastrophic per-

formance of bgPCA as sketched in my first six figures, it is worth sketching its

effect on ordinary PCA of null-model simulations similar to those there. As Fig-
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ure 7 demonstrates, the behavior of PCA under high-p/n conditions is not at all

what one has been taught to expect. The example is now of 600 cases on 60 inde-

pendent and identically distributed standard Gaussian variables, hence y = p/n

is still equal to 10. The example no longer concerns any grouping variable; nev-

ertheless the same theorem applies. The upper left panel shows a random sample

of 25 pairwise scatters. If the data set were usefully described by explanatory

factors, at least some of these distributions would appear to be noncircular el-

lipses, but here their visual diameter is quite homogeneous and their circularity

apparent. (The median absolute correlation among all 600 × 599/2 = 179700

possibilities is only 0.0887.)

At upper right is the conventional scree plot of the eigenvalues from a stan-

dard principal component analysis — the explained variances of the 59 nonzero

centered principal components here. On the conventional null model for infinites-

imal p/n, the directions of a “random” rotation should have the same variance

as any of the 600 variables involved. But in the high-p/n setting the PCA is

far from a random rotation, as each PC is limited to the (n − 1)-dimensional

span of the centered specimens themselves, not the full space of directions among

the p variables involved. In this example, then, the PC’s are restricted to a 59-

dimensional subspace, avoiding all 541 dimensions of precisely zero variance, and

yet they must “explain” the total variance of all 600 measurements, which will

be about 600. So the PC’s must average variance just over 10, which matches

their median in the scree plot. The Marchenko-Pastur distribution is evident in

the transposed-ogive form of this scree plot, steeper at both extremes than in its

central region. Scree plots of this general form, having nonzero values far above

the average variance of the contributory variables throughout their whole length,

cannot arise in textbook examples with small p/n ratios. The nonzero eigenvalues

in this specific simulation range between 5.07 and 17.18, comfortably close to the

limits from the theorem’s formula of (
√
10± 1)2 = 17.32 and 4.68.

Then the problem induced by the Marchenko-Pastur phenomenon for large

y is plain from the panels in the lower row, which scatter the first two and last

two PC scores, respectively. Over each panel I have superimposed a circle of

radius 2, which one expects to cover most of the variation in any of the scatters

at upper left. Instead the spread of the PCA scores is enormously inflated with
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respect to the underlying variability of these projections, which, recall, were in

fact completely arbitrary (because the dimensions of the model that they purport

to summarize are actually uncorrelated). The gap between the first and second

eigenvalues here is not significant by the stepdown test of Bookstein (2014:324),

but the visual separation in the upper right panel would nevertheless tempt us

to interpret the formula for PC1 anyway; and the segregation of the smallest

eigenvalues far away from zero is not part of any of the standard protocols for

checking on the realism of PC extractions in the course of GMM analyses or

anywhere else in biometry. Hence the meaninglessness of this particular PCA

is not accessible to the typical user of PCA software unless that user is fully

informed of the consequences of its huge p/n ratio. (In fact, for p/n ratios near 1,

the minimum eigenvalue in the theorem’s distribution formula approaches zero,

disabling the separation critique I have touched on here. That infinitesimality

leads to a wide range of problems of its own, the central point in my earlier

discussion of the MPT, Bookstein 2017.)
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Figure 7. Illustration of the effect of the MPT on an ordinary (not between-group) PCA

of too many spherically distributed variables. The simulation here is of 600 independent

Gaussians on 60 cases, so p/n = 10. (upper left) A random sample of 25 scatterplots of pairs

of variables shows homogeneity of these pairwise relationships. The almost unreadable

labels simply state the pairing. (upper right) Conventional scree plot of the 59 nonzero

eigenvalues. (lower left) Scatter of the two PC’s of greatest variance. (lower right) The

same for the last two PC’s. The circle in either panel of the lower row has radius 2; it

approximates the covering circle of any of the scatters in the panel at upper left.

Although the MPT is exact only in the limit of very large values of both p and n,

nevertheless I’m invoking it in the small-sample case, indeed the smallest possible sample:

just two dimensions being eigenanalyzed. This is what you get if you take g = 3 in the

notation above. Consider, then, g = 3 groups of, say, m = 10 specimens each, thus a total
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sample size of n = 30, and a collection of p = 300 “shape coordinates” that are independent

identically distributed standard Gaussians (mean 0, variance 1). I also need a grouping

variable, which I take simply to be the first ten, second ten, and last ten of the thirty

cases (except for Figure 14, where this ordering is systematically permuted before being

cut into thirds). It will be important in the sequel that the count of these combinations is

30!/(3! · (10!)3) = 925166131890 — call it a trillion. 3 So step 1 above is done.

For this random subgrouping, compute the g 300-vector group means, and assemble

them in a “data” matrix, 3 rows by 300 columns. That completes step 2.

Proceed with step 3, the principal component analysis of the three group means as

if they were three ordinary single specimens. This is the usual “mean-centered” PCA,

meaning that there are actually two dimensions of variation around the grand mean 300-

vector. In the general case, this is g − 1 dimensions.

Then compute step 4, the imputed scores for each of the original m = 30 cases, and

step 5, their scatterplots. In those plots, I have numbered the groups, but there is no point

yet in numbering the individual cases. (We will need those individual specimen numbers

in connection with some of the later figures.)

To ease the application of the MTP’s asymptotic formulas in this setting of only

g − 1 = 2 dimensions, replace the range (1±√
y)2 from the MPT by its midrange, which

is 1 + y, where in this application y is huge — 300

2
= 150 in the example in Figure 1, for

instance. The interquartile width of that range is less than 2
√
150, only about one-sixth of

its median; I will ignore it. Further, when y is this large it is reasonable to omit the “1+”

term so as to arrive at a simpler approximation, that ratio y = p/(g − 1) itself. But this

was the formula for the PC’s of the theorem’s set of variables of unit variance, while our

means are of groups of m, so we have to multiply the MPT expectation y by the variance

of those means, which is 1/m. So the expectation of our PC variances is now p/m(g − 1).

Now for one final adjustment. The PCA that I’m applying the MPT to is of the

centered group means. That reduces the variance of each of the p incorporated dimensions

by a further factor of (g − 1)/g. Multiplying, we finally arrive at our expectation of how

the bgPCA method should work for this class of simulations: the eigenvalues should be

distributed tightly around

3 Current usage, 1012, not the former British usage, which meant 1018.
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p

m(g − 1)

g − 1

g
=

p

gm
=

p

n
.

What a simple formula! The expected value of those bgPCA variances is approximately

y = p/n, a new value of y that is the ratio of the count of variables to the count of

specimens (instead of the count of groups, minus 1). In the simulations of Figure 2, then,

the eigenvalues of the PCA’s inside the bgPCA should run about p/n = 300/30 = 10. And

in the panels of Figures 1 through 4 that is what they do. Note that group size m no

longer appears in this formula.

Now the origin of the pathology of the bgPCA method in these null models at high

p/n has become explicit: the unexpected similarity of the scaling of the axes in Figures

1 and 2 to their scaling in the lower left panel of Figure 7. Eigenvalues of the first g − 1

principal components of the simulated data will be approximately bounded above by the

function (1 +
√
y)2 of the design parameter y = p/n specified by the MPT as modified

for this bgPCA setting, while all g − 1 of the nonzero eigenvalues of the bgPCA will be

approximately equal to this same y. The ratio of these is (1 +
√
y)2/y = (1 + 1/

√
y)2,

independent of the group sample size. For y = 10, the value in these simulations, that

ratio is 1.3162 = 1.73, which closely matches the ratio of 1.718 between the first eigenvalue

in Figure 7 and the typical bgPCA eigenvalue of 10 in Figure 2. For the example in Figure

5, with y = 40, the match is even closer: 40 for the average bgPCA eigenvalue of group

averages, versus an expected maximum eigenvalue of (1+
√
40)2 ∼ 53.6 for the underlying

data set in extenso, for a ratio of 1.34.

This near-equality is unexpected. In ordinary univariate statistics, the variance of a

group mean is reduced from the variance of any single observation by a factor of m, the

group’s sample size. But on our high-p/n null model, the variance of the nonzero principal

components of the group means is commensurate with the variance of the corresponding

first g − 1 PC’s of the original data, without any division by m. Even when y is as low

as 1.0, this factor (1 + 1/
√
y)−2 is reduced only to 0.25, more than double the “expected”

sample size correction 1/m whenever group sizes average 10 or more. The counterintuitive

surprise here can be expressed in words instead of algebra this way: the variance within

groups (which, keep in mind, remain completely independent of the “measurements” in

this class of null models) has dropped drastically from Figure 7 to Figure 1 even as the

variance of the group centroids has dropped by a much smaller factor — this paradox lies

at the core of the pathology of the bgPCA method. As far as we know, the present paper,
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along with the companion piece by Cardini et al., is the first acknowledgement of this

counterintuitive and extremely inconvenient mathematical fact in any printed scientific

communication.

The other main pathology highlighted in this paper follows as well from considerations

of sample size when it varies across the groups of a single analysis. When all specimens

have the same mean, the averages of smaller subsamples have a higher variance than the

averages of larger subsamples on every measured (or simulated) variable. The mean vectors

of smaller subsamples are thus thrown farther from the grand mean than the mean vectors

of the larger samples — the variance of the subsample averages is, after all, proportional

to the reciprocal of subgroup sample size. Because bgPCA is an unweighted analysis of

those mean vectors, the principal commponents it produces are much likelier to be aligned

with the outlying subsample averages, which are those arising from the smaller samples. In

other words, the smaller groups are far likelier to be the end-members of the between-group

principal components. Such a bias of reportage is, of course, inappropriate in any context

of ordination, whether evolutionary or not — it confounds the biometric signal with the

human difficulty of finding group members as they vary in terms of geography, taphonomy,

or geological epoch. As far as I know, this paper is likewise the first acknowledgement of

this additional most inconvenient mathematical fact, which is of particular salience to

studies of human evolution.

3. Factor models

The pathology I am reviewing is not limited to the completely null case, the completely

patternless setting, that has characterized the simulations to this point. It also applies to

severely distort ordinations in settings where there is a valid dimension or two combined

with unstructured noise among a count p− 1 or p− 2 of residual variables that continues

to greatly exceed the sample size n. This section considers three such settings, the first

two characterized by a single a-priori factor and the third by two factors.

3.1. Simulated data with a single factor, possibly with a real example

A data set can have a group structure superimposed over a single biological factor

that may, in turn, either be constant within groups or else show some sort of graded
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phenomenon (such as allometry) there. To say there is only a single factor implies that the

residuals from this factor are structureless noise. Then the MPT should apply with its full

weight to the multivariate analysis of these residuals. Figure 8 shows how unfortunately

persistent this implication is: twelve different simulations correctly detecting a true factor

(modeled here as constant within groups and with the factor score for group 2 midway

between those for group 1 and group 3). The variation of this true factor is precisely as

shown along the horizontal axis of these bgPCA plots. The variance of the fictitious second

factor (which is indeed uncorrelated with values of the true factor) is exactly what one

would expect from the analysis in Figure 1, since reducing p from 300 to 299 will not affect

the implications of the MPT.

Figure 9 shows a somewhat different geometrical setting for this same pathology. Now

each group has variability on this factor — variability that is correctly modeled here —

but also two of the groups have the same average factor score. Nevertheless, as in Figures

1 and 2, bgPCA analysis imputes a wholly fictitious second factor in order to separate

groups 2 and 3 while “explaining” the same extent of variance as it did in Figure 8.
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Figure 8. Twelve replicate simulations agreeing on the implications of the bgPCA pathol-

ogy for a situation with a real (biologically meaningful) factor. The theorem applies never-

theless to the residuals from this factor, pulling out a fictitious second factor with exactly

the variance predicted by the MPT, over and over again.
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Figure 9. Twelve runs of a modification of the preceding model with two different group

means of the true factor score instead of three, along with within-group variance of this

score. In every panel the vertical axis is completely fictitious.

The panels of this figure reminded me of a diagram from a paper published in this

Journal several years ago: Figure 4 of Mitteroecker and Bookstein (2011). Figure 10 here

shows the match after the bgPCA model is tuned to match the p/n ratio and the within-

group bgPC1 variance of the earlier computation. It thus serves as a realistic example

exemplifying this second version of the pathology for an example involving three taxonomic

components of the genus Pan. In that example, group 3 was separated from groups 1 and

2 but the latter two groups overlapped. The 2011 text near that figure emphasized how

much more appropriate an ordination this was than one afforded by CVA, in which groups

1 and 2 separated perfectly. But today the comparison would probably replace the phrase
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“more appropriate” by a double negative like “less inappropriate.” Back then we did not

consider the possibility that the displacement between the means of these two subspecies

of Pan troglodytes might itself have been an artifact of the bgPCA method just as their

perfect separation (shown in another panel of the same original figure) was an artifact of

CVA. In this example, p was 86, a little less than the total sample size of 104, meaning

that the crucial parameter y is only 0.83 — the MPT does not yet apply with full force.

5 10 15

0
5

1
0

 
 

 
 

 
 

 
 

 

 

 

 

 

 

 

 

 

  

 
 

 

 

 

 

 

 

  
   

  

 

 

 

  
 

 

 
 

  
  

 

 

 
 

 

 

 

 

 

 

 
 

 

 

  
 

 

 

   

 

 

  

 

 

 

 

 

 

 

 

  
 

 
  

 

 

 

 
 

 

  

 
   

 
 

 
 

 

 

1
1

1
1

1
1

1
1

1

1

1

1

1

1

1

1

1

11

1
1

1

1

1

1

1

1

11
111

1 1

1

2

2

22
2

2

2
2

2 2
2 2

2

2

2
2

2

2

2

2

2

2

2
2

2

2

2 2
2

2

2

22 2

2

3

33

3

3

3

3

3

3

3

3

3 3
3

3
3 3

3

3

3

3
3

3

33

3
33 3

3
3

3
3

3

3

105 cases, 3 groups,  86 vars, 1 factor
 PLS d2’s 3.495 , 0.335

Figure 10. A one-factor model with p/n = 0.83 (above) that nicely matches the published

two-dimensional analysis (below) of Mitteroecker and Bookstein (2011). The explanatory

power of the second decimal quantity in the header is less than that in Figure 1 because the

value of p/n is only 0.86, much less than the values of 10 or more in my earlier examples.

Key to the lower panel: gray circles, Pan paniscus; black circles, Pan troglodytes verus;

open circles, Pan troglodytes troglodytes. (Permission to be requested.)
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Figure 11 extends this single-factor design to a configuration of four groups of ten

specimens characterized by factor scores set at four equally spaced values (a reasonable

data design for an allometry study in insects, for instance) in a simulation involving 400

variables (so the value of p/n continues to be 10). Now bgPCA imagines there to be two

fictitious factors in addition to the “true” ordination dimension reconstituted as bgPC1.

The resulting growth trajectory is parodied as a space cubic over the true (horizontal)

axis. The curving cubic trajectory of this factor’s manifestation in morphospace is entirely

artifact. Yet the amplitude of its implied polynomial dependence is far from trivial —

were it not for our prior knowledge that the p/n ratio is so large, we would certainly be

tempted to interpret it as a true nonlinearity of allometry. In the rightmost panel of the

figure you see a projection of the same regular tetrahedron that was forced by the MPT

in Figure 2 (note that the second and third eigenvalues here are nearly equal).
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Figure 11. A variant of the single-factor model in Figure 8 results in the completely

misleading appearance of a cubic dependence of form on factor score in this 400-dimensional

morphospace. Now there are two fictitious factors instead of one.
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3.2. Simulated data with two factors

Figure 12 extends the preceding example to incorporate two true factors distributed

over 400 variables in four groups in a balanced 2×2 design. The value of y driving the MPT

remains at 10. Again the bgPCA reports three dimensions (one fewer than the count of

groups), but instead of the cubic curve in Figure 11 we see a twisted band in morphospace

where there should have been a flat rectangle instead. The twist, as you see, is a complete

90◦ rotation, from bgPC2 to bgPC3.

In my travels I once encountered a perfectly ordinary object having precisely this form

(but in three dimensions instead of 400): a KLM coffee stirrer given to my wife and me

on an anniversary trip to Vienna some years ago. See Figure 13.
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Figure 12. Analogously, a data set with two true factors in a 2 × 2 design is distorted

by bgPCA into three dimensions. Note the inversion of the vertical positioning of group

2 vis-á-vis group 4 between the left and central panels — this is the “twist” giving rise to

the Möbius strip analogy (next figure).
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Figure 13. The KLM coffee stirrer, given to me with the compliments of the purser. It is a

straightened version of half a Möbius band: the three-dimensional realization of the factor

model in Figure 12. The twisting, which here serves a mixed hydrodynamic/aesthetic

purpose, is meaningless in the biological context. (Photo by the author.)

4. Tools for the skeptic

Nothing in the standard textbooks trains biometricians to recognize these pathologies

as pathologies instead of as publishable empirical pattern analyses. The formal statistical

literature of multivariate analysis (e.g. Mardia, Kent, & Bibby, 1979) considers only the

context of fixed p as n tends to infinity, and likewise all the morphometric textbooks prior

to 2018 (e.g., Reyment et al., 1984; Bookstein, 1991) deal only with this same conventional

large-sample limit. (Reyment’s work elsewhere deals with a great many problems of covari-

ance interpretation, including outliers, but not with this issue of huge counts of variables.)

The first mention in the morphometrics literature of PCA’s potentially catastrophic mis-

representations of multivariate reality in the high-p/n context is apparently my warning of

2017, and the combination of the present note with its companion piece by Cardini et al.

is intended to focus our community’s attention on the single worst case of this pathology,
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the bgPCA algorithm. The time is appropriate, then, to explicitly review tools that might

protect a suitably skeptical quantitative biologist from claiming a separation to be real or

a projection of an unclassified specimen to be informative that actually might have arisen

from a null data set purely by virtue of its huge variable count. The ordinary machines

of significance testing — Wilks’s Lambda, the Hotelling’s Trace statistic, and the like —

are inapplicable to the evaluation of multivariate ordinations like these, where misleading

claims of separation are built into the very foundations of the ordination machinery. The

first two subsections to follow consider and reject some standard approaches — permu-

tation tests of group separation and the standard crossvalidation tools of jackknifing and

bootstrapping — while the third explores the dependence of bgPCA results on subgroup

sizes in more detail. The fourth and fifth subsections briefly sketch two new approaches,

one leveraging ideas of factor analysis and the other the technique of shape coordinate

deflation, that might show promise.

4.1. Permutation distributions: the clusters, or the axes?

Remember that each simulation in Figure 2 is of a random subdivision of the n = 30

cases into three groups of ten. So, leaving the 30 points in 300-space unchanged, produce

new random subdivisions, over and over, as in Figure 14. From these unrelated subdivisions

you always get the same apparent bgPCA scatter (the same bgPCA eigenvalues, the same

separations), albeit variously situated within their square plotting frame. But the axes of

these plots are unrelated — there is nothing stable about the plane they span.

You can repeat this randomization as many times as you like — the result is always the

same. I mean, repeating the subgrouping: there is no reason ever to bother repeating the

simulation of those 300 standard Gaussians. You always get a projection of the original

300-dimensional space onto a Euclidean plane for which the projected points coalesce

into three grossly separated nearly circular clusters of radius about 1.0 each at unvarying

separation. Think of each one of these as the footprint in sand of some equilateral tripod

beach stool. A permutation test of the “significance of axis 1,” for instance, would show an

enormous significance level for the axis-by-axis ordination actually encountered, in view

of the nearly unconstrained tumbling of the bgPCA directions themselves. And this is

certainly the wrong answer, as for virtually every change of grouping the cosines of the

angles the two axes of the new bgPCA makes with the plane of the data-based “bgPC1”
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and “bgPC2” are nearly as far as they can be from unity. (For the simulation with three

groups of ten cases over 300 variables, the median absolute value of these cosines appears

to be about 0.17, just a little bit less than
√

1/30.) Then no matter what interpretation

a biologist might propound for the axes of the “true” (unpermuted) bgPCA computation,

the permutation distribution of the same data set will appear to fail to replicate it, even

though the only salient feature (the equilaterality of that triangle of group centers) is

replicated almost perfectly.

To circumvent this paradox — that every permutation gives an equally strong signal

in an entirely unrelated two-dimensional subspace — would require a specially designed

permutation test for uniformity of tumbling as inspected via equilateral separation along

with unvarying group concentration per se. No permutation test protocol unaware of the

pathologies of the bgPCA method would be capable of assessing the “fit” of this three-

group “separation” correctly. Of course there could also be intermediate situations. For

instance, a test of the bgPC directions for the analysis in Figure 8 or Figure 9 would

need to be subdivided: the direction of bgPC1 should be stable, whereas that of bgPC2

should not be. Analogously, in Figure 11, bgPC1 should be stable, whereas the plane of

bgPC2–bgPC3 should be tumbling as wildly as the corresponding plane of bgPC1–bgPC2

in Figure 3 (since in fact they are distributions of almost exactly the same form, random

planes tumbling in some 28- or 29-dimensional subspace).
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Figure 14. A permutation test of the group code per se for our usual simulation of

30 specimens on 300 uninformative Gaussians leaves the geometry of the usual bgPCA

scatterplot unchanged except for rotation and/or reflection, whereas the parameter that

has actually been randomized, the plane of the scatter itself, goes unrepresented in the

graphic. The random reassignment of specimens to groups is clear in the scrambling of

their sequence numbers (1 through 30) in all these replicate plots.

But let me back away a bit from the context of statistical testing to consider the actual

algebra of those permutations we are using for purposes of “testing.” Recall that there

were a trillion of these (10,10,10) subgroupings! So there must be a trillion such

tripod footprints for the single simulation of 30 300-vectors. (Figure 14 showed twelve

out of the trillion.) Evidently these are all the same scatterplot, randomly rotated and

with the case numbers jumping totally patternlessly between the clusters. In effect there
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are two ways to manage this permutation test, depending on whether one examines the

plane spanned by the two bgPCA’s or instead the pattern of the group centroids, and

only when the null model is understood correctly do they yield consistent inferences: the

geometry of the centroids is a fixed artifact of the algorithm, whereas the plane of the

bgPCA’s is effectively unrestricted in distribution over the appropriate high-dimensional

manifold. Such a construction goes completely unmentioned in the standard textbooks of

permutation analysis, e.g. Good, 2000.

The argument extends in the obvious way to studies with more than three groups.

There are 40!/(4! · (10!)4) = 1.96× 1020 (200 million trillion) different permutations of the

assignment of 40 cases to four groups of 10 in Figure 5, and they all will result, likewise,

in the same three-dimensional scatter, up to orientation and reflection. So this four-group

permutation test could concern itself either with the three-dimensional subspace spanned

by the bgPCA’s jointly or with the location of the group centroids within this volume, and

again both these approaches, when interpreted correctly, affirm the same null distribution.

This is a spectacularly counterintuitive fact about 300-dimensional or 400-dimensional

Euclidean geometry, comparable in its import to Gavrilets’s (2004) insights into the dy-

namic effects of the geometry of edges on high-dimensional surfaces of selection. Indeed it

should shock the intuition of any trained biometrician however competent, a shock com-

mensurate with the analogous comment that opens Chapter 3, the chapter on variability

of random walks, from Feller’s great undergraduate probability text (it was mine back in

1963 — I still have my copy from then, still bearing its original list price of $9.75). Feller

noted that his readers might

encounter theoretical conclusions which not only are unexpected but actually

come as a shock to intuition and common sense. They will reveal that commonly

accepted notions concerning chance fluctuations are without foundation and that

the implications of the law of large numbers are widely misconstrued.

The situation here is shocking along many of the same lines. The existence of nearly a

trillion equivalent tripod-footprint projections, all yielding scientific nonsense, for a wholly

signal-free distribution of 30 cases in 300 spherically symmetric Gaussian dimensions is

outrageously unexpected, not to mention inconvenient, especially nowadays when it is so

easy for the näıve user to produce such megavariate data sets from off-the-shelf imaging
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software. With respect to this setting the ranges of validity of all the classical exact

formulas or approximations to significance levels (Hotelling, Bartlett, Wilks) are simply

inaccessible — there are no asymptotics to guide us beyond the MPT as it applies to our

familiar canons of multivariate data analysis. One can only conclude that for purposes

of inference in this context of GMM with high p/n ratios (in fact, I would argue, in any

multivariate context) permutation tests should be used only to accept hypotheses, not to

reject them. 4

4.2. Crossvalidation

The preceding argument, while phrased in a way specific to permutation testing, serves

more generally as a critique of the standard logic of crossvalidation by a variety of resam-

pling techniques (regarding which in general see Efron 1987). Before we can apply it to

“test” findings in this domain of high-p/n morphometrics, we need to decide what specific

aspect of the arithmetic it is our concern to validate. Is it the exploitation of the classifi-

cation arithmetic that is our central purpose, or the furthering of our understanding of the

ordination by its conversion into an explanatory scheme of empirically stable dimensions

that will eventually be interpreted as factors? In other words, is the scientific deliverable

of the analysis that led to figures like Figure 1 the production of the scores or instead

the production of the scientific explanations, whatever they might be, suggested by the

alignment of the bgPCA axes? (The problem is not specific to the bgPCA context, but

arises whenever a biplot or the singular-value decomposition driving it is invoked in the

course of any empirical data analysis.) The literature of bgPCA is silent on this question.

Yendle and MacFie (1989:589), for instance, set their discussion of what they call DPCA

4 I am arguing that high-p/n divisions of organismal biology like GMM should restrict

statistical significance testing to what Paul Meehl (1967) called its “strong version”: tests

expected not to contradict but instead to support the inference that your null distribution

model is at least approximately true. Stated as an aphorism: in the highly multivariate

context of good GMM, statistical significance testing should be applied only when the null

model is likely to suit your data, exactly or closely enough. Meehl argues that physics

exploits the strong version of significance testing, psychology, alas, the weak version only.

In its logic of inference, organismal biology ought to resemble physics more than psychology.

See in general Bookstein 2014.
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as a tool for performing “a supervised pattern recognition,” the production of “factors

that describe the between-group variation most effectively.” It is left unclear whether that

most effective pattern description deals with the scores or instead with the axes.

In my view, our concern as users of GMM must be with the axes, not the scores.

To note that group 1’s scores in Figure 1 average 3.9 on axis 1 would not be a helpful

observation. This is because we are working in a context of megavariate analysis, where

there is no theory governing the scientific meaning of the specific selection of variables —

there is no answer to the question, “3.9 on what scale?” No, the individual and average

scores, arising as they do from a theory-free list of shape coordinates, have no numerical

meaning in and of themselves. As I have argued in some detail in Bookstein (2019),

intellectual progress under such circumstances mandates an analytic rhetoric taking the

form of some sort of explanation. The foundational literature of PLS was occasionally

quite explicit on the topic, under the rubric of the “reality of latent variables” (see, e.g.,

Bookstein, 1982). The PLS analyst’s attention focuses on the interpretation of the axes

in Figure 1 not as principal components of anything (even though that is how they are

usually computed) but as “latent variables,” quantities that should be interpreted as if

someday they would be capable of explicit measurement.

Here in 2019 the battle between these two thrusts in contention, exploitation of scores

versus interpretation of axes, is over, thanks to the enormously successful new discipline of

machine learning (see, e.g., Hastie et al., 2009). The huge range of current silicon-intensive

approaches — kernel smoothing, support vectors, neural nets, and many others — has

jointly rendered linear classification methods wholly obsolete as a component of competent

contemporary empirical natural science. (In particular, canonical variates analysis and its

special case, linear discriminant analysis, are no longer worth teaching except as historical

curiosities.) Then the claims that need crossvalidation are those related to interpretation

of the axes in the figures here, not to quantifications of the group assignments entailed,

and the versions of crossvalidation that apply would be search algorithms through data

sets near the instant data set in a variety of respects, not any single formula.

I think the first example of such an application to the present analytic setting (this

one a bootstrap, as the context was not one of subgroup analysis) may have been one of

mine of three decades ago, Sampson et al. 1989. Briefly, jackknifing is the recomputation

of analyses n times, leaving out each one of the n specimens in turn, while bootstrapping

is the indefinite reanalysis of subsamples of the same total count n made up by resampling
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n items from the original data set “with replacement,” meaning that individual specimens

can appear more than once. The purpose of either is the estimation of the standard error

of a parameter from the true model: for further background consult Efron 1987. In either

context, while typically a permutation test is aimed at showing a range of reanalyses that

fail to agree with the “true” computation, a crossvalidation approach is intended to show

a range of reanalyses, or even a complete census of them, that instead agree — that result

in almost the same pattern claim.

Thus to apply any crossvalidation technique to an investigation to which the null

hypothesis of sphericity is relevant we must decide on a criterion for when two or more

analyses are “almost the same.” When equality of eigenvalues is a possibility, two eigen-

analyses can be said to “match” if either set of eigenvectors can be rotated (with or without

reflection) onto the other. (This was actually the application for which the psychologists

invented Procrustes analysis in the first place, as in discussions of the invariance of the

pentadimensionality of personality scales. See Hurley and Cattell, 1962.) When modified

by invocation of the Procrustes procedure in this charming non-GMM context, the ficti-

tious production of an equilateral structure of cluster centers in Figures 1 through 6 proves

most unfortunately robust. The pathology explicit in Figure 2, in other words, would be

misinterpreted as a confirmation of the original ordination.

Figure 15 is a typical example of jackknifing on our megavariate null model. The

thirty frames here arise from thirty separate analyses of the same simulated data set, each

one omitting one of the original thirty specimens of the usual 300-vectors of independent

Gaussians but then, in order to control the spinning so apparent in Figure 2, rotating

each of the resulting configurations to the original bgPCA of all thirty specimens using the

rotational part only of the standard Procrustes algorithm (e.g., no centering, no rescaling,

thus only one degree of freedom exploited instead of the usual four). You see how stable

the fiction is against this type of challenge. The jackknife formula for the standard error

of a parametric summary of this type declares it to be the standard deviation of the pa-

rameters over the jackknifed resampling. In terms of the axes of the diagram these derived

standard errors are 0.124, 0.040, 0.057, 0.164, 0.071, 0.184. So these cluster locations,

and presumably the corresponding organismal interpretations of whatever contrasts the

underlying plane of dimensions invokes, would be inferred to be stable against accidents

of specimen sampling. Ironically, that inference is correct — the computed geometry of

the group centers is that of an equilateral triangle, tetrahedron, etc. — but this is a prop-
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erty of the algorithm per se rather than an empirical finding saying anything about actual

biological data.
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Figure 15. Applying the classical “jackknife” technique to the scenario in Figure 1 or

Figure 2. Each panel is the analysis of one of the 29-specimen subsets from the usual

simulation of totally uniformative Gaussian noise on 300 measurements over 30 specimens.

Printed numbers are specimen numbers matching from panel to panel.

Applying an alternative standard resampling approach, bootstrapping, to bgPCA

analyses in this null setting proves interesting. The example in Figure 16 concerns a

scheme of 60 specimens over 600 Gaussian variables completely uninformative about the

grouping of the data into three groups of 20. The standard bgPCA (left panel) shows

precisely the usual fictitious group separations expected when p/n = 10.
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In the center panel is an inappropriate analysis, a standard bootstrap (resampling

specimens with replacement): inappropriate because the bootstrapped version has intrin-

sically different symmetries. The clusters that had been circular are now strongly stretched

in a radial direction, and the stretching seems entirely due to the specimens that have ap-

peared more than once in the resampling (here, printed with jitter so they appear to be

in heavier type). In a PCA-like context like this one, sampling with replacement is inap-

propriate, as any specimen appearing twice in the resample has twice the weight of the

nonduplicated specimens in the analysis, three times the weight if it is tripled, four times

if it is quadrupled. All such reweightings diminish the variance reduction of the group av-

erage and thus increase the leverage the specimen in question has upon the variance of the

bgPC’s (as represented in these scatters by distance from the centroid, hence the elongation

of the clusters that were circular in earlier figures). This accidental entanglement of the

logic of bgPCA with the logic of bootstrapping does not affect the fictitiousness of the in-

ferences here even as it proceeds to destroy one of the symmetries of the MPT-constrained

plot in the left panel.

In the right-hand panel of Figure 16 is a more appropriate resampling method that

suppresses the overweighting of those repeated specimens: a decimation analysis that

randomly deletes a substantial fraction of the sample. I’ve realized it here simply by

deleting duplicates from the bootstrapped samples; for groups of 20, this is very nearly the

same maneuver as analysis using half the original sample. Unexpectedly, up to rotation and

reflection this does not seem to blur the quantitative structure of the resulting geometry of

group centers at all — in a high-p/n application like this, the effect on apparent precision

of proportionately reducing sample size on an unchanging variable count p is less than

the “improvement” dictated by a corresponding increase in the p/n ratio. This stochastic

invariance leads to even more strongly misleading equilateral expected circular separations

spinning in exactly the same meaningless way. Notice that in both Figure 15 and Figure

16 the role of the crossvalidation, whether jackknifed or bootstrapped, is to support the

hypothesis embodied in the simulation model, not to reject it.
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Figure 16. Bootstrapping destroys one of the symmetries of a high-p/n null bgPCA, but

sample decimation does not. (left panel) bpPCA of a simulated data set of 60 specimens

on 600 variables. (middle panel) bpPCA of a bootstrapped resampling, with duplicates

randomly jittered to increase visual weight. Notice the change of scale from the first

panel. Duplicates in the course of resampling are printed with jitter. The inappropriate

weighting assigned to the duplicated specimens is clear here. (right panel) Replacement of

the bootstrap by a simple decimation (here, by half) yields not the customary reduction of

precision but instead a modest intensification (note the scale change of these axes) of the

original cluster center separations at left owing to the concomitant doubling in the value

of p/n from 10 to 20.

4.3. A pathology arising from inconstancy of group specimen counts

When Section 2 introduced the formulas that account for the simulations of this

paper, it noted that “for simplicity” I would set all groups to the same sample size. It is

convenient here to return to that assumption, because the effect of varying group size is
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identical to the effect of varying individual specimen weight in the bootstrapping approach

that was just highlighted in Figure 16. Consider one such example in which sample size

varies realistically: a total of 130 specimens of which 10 are from group 1, 30 from group

2, and 90 from group 3, “measured” on 650 standard Gaussians independent of group, so

that y = p/n = 5. As you can see from the usual bgPCA scatterplot, Figure 17 (left), the

smaller the group, the farther its projected bgPCA average score from the grand mean, just

as in the central panel of Figure 16. The most obvious symmetry of the bgPCA analysis

for a null model has been broken merely by accident of sampling design.

One might attempt to fix this problem by resampling each of the larger groups down to

the sample size of the smallest, much as was done (approximately) in the right-hand panel of

Figure 16. (The resampling would need to be done repeatedly if there is some possibility of

heterogeneity within the larger groups.) But such a jury-rigged adjustment to bgPCA fails

in the presence of the even more severe inequality of group sizes that are typical of studies

combining extant and extinct species, or Homo with other extant primate genera, or human

populations sorted geographically from samples of burials or from museum collections. At

the right in Figure 17 is the bgPCA analysis of a simulation of four imbalanced groups of

sizes 40, 10, 7, and 3 on 300 wholly uninformative “measurements” (so the p/n ratio is still

5). In paleoanthropology, for instance, such a range of group sizes is typical for studies

that combine samples of H. sapiens with other species of Homo or with genera of extinct

anthropoids. In this setting, under the usual null model the smaller groups will typically

dominate every reported between-group principal component, in order of group size —

here the (fictitious) contrast of group 1 with the smallest group, group 4, drives bgPC1,

while that of group 1 with the next smallest group, group 3, drives bgPC2. It would be

fallacious to argue that group 4 embodies some sort of apomorphy based on its position

here when that position is explicitly a function of our failure to locate more than three

specimens of that group beforehand. Surely no such analysis deserves to be described as

an ordination at all. Compare the count and the position of the H. erectus specimens in

bgPCA scatterplot Figure 4c of Détroit et al. 2019.

Recall the formula from Section 2 that the factor by which bgPCA inflates the variance

of a bgPCA component over its expected attenuated value is roughly (1 + 1/
√
y)2. For

y = 1, this is 4.0. Then for there to be any degree of validity in subsequent inferences, the

size of the groups whose positions are the topic of inference in bgPCA scatters from such

data designs should be more than double this correction factor, or about 10, whenever
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the p/n ratio is 1.0. For higher p/n this stricture will be even more severe. For instance,

for group 4 to lose its misleading dominance in the right-hand panel of Figure 17, the

eigenvalue of bgPC1 would need to drop below that of bgPC2 here, which approximates

the design parameter y = p/n = 10 of the simulation. To shift the mean of group 4 so that

its contribution to the variance in this direction no longer swamps that basic effect of high

p/n, it would have to move left to a position of roughly 4 on the abscissa instead of 10.

This requires an increase of sample size by a factor of about
(

10

4

)2
. But somewhere along

this path of increase in sampling frequency it will cease to be the smallest group, and axis

bgPC1 will jump to some other alignment instead.
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Figure 17. The effect of variations in group size is exactly analogous to the effect of

multiple appearance in a bootstrapped analysis. (left) A bgPCA of 650 standard Gaussians

for a sample of 130 specimens in three arbitrary groups of sizes 10, 30, and 90 throws each

group average to a distance from the grand mean (the large filled disk) proportional to

the inverse square root of its group size, thereby breaking one diagnostic symmetry of the

bgPCA critique here. (right) Even more extreme disproportions lead to further pathologies

of a bgPCA report, here, from samples of size 40, 10, 7, and 3, respectively. See text.

Figure 18 explores such an evolution in more detail by extending the preceding sim-

ulation in order to systematically vary the ordering of subgroup sizes. Here the three

largest subgroup sizes from the right-hand panel of Figure 17 are preserved, but the count

of group 4 is modified in five steps, one that actually reduces it from 3 specimens to 2 and

four others that increase it to 5, 10, 15, or 30 specimens, respectively. Each simulation is

of the appropriate total count of specimens (from 59 to 87) on five times as many totally
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uninformative standard Gaussian measurements. At size 2 (upper left) the alignment of

bgPC1 with group 4 is even more unequivocal than in Figure 17, while bgPC2 continues to

be closely aligned with the second-smallest group, which here is group 3. Note also that the

distance of group 4 from the grand mean is roughly twice that of group 3, corresponding

to the square-root of the ratio of subgroup counts. At upper center, the size of group 4 is

nearly the same as that of group 3, and so the distances of the subgroups from the center of

the bgPC1–bgPC2 scatter are nearly equal, and likewise their leverage on the first bgPCA

axis pair. In the simulation at upper right, the size of subgroup 4 has been set to 10, which

is no longer the smallest, and so bgPC1 has jumped to an alignment with group 3 instead.

But as now all of the subgroups except for group 1 have roughly the same specimen count,

the bgPCA becomes the projection of a tetrahedron onto the face opposite group 1, with

the largest group at the center (actually, it’s an end-member on bgPC3, not shown) and

all three of the other groups as vertices of the projection. At lower left the count of group

4 is now 15, breaking the symmetry with group 2, so the bgPC1–bgPC2 axes are now a

rotation of the displacements from group 1 to group 2 and to group 3 at roughly 90◦; in

comparison with the panel above, the role of group 4 has been supplanted by that of group

2. Finally, at lower center is a simulation with group 4 set to 30 specimens. Groups 3

and 2 continue to determine bgPC1 and bgPC2, respectively, and groups 1 and 4, the two

largest, project on top of one another here because their contrast determines precisely the

direction of bgPC3, which is scattered against bgPC1 in the lower right panel.

Hence the bgPCA scatterplot of a high-p/n simulation of the null model over groups

that differ widely in sample count can be predicted almost exactly from those group counts

alone, independent of every bit of information in the simulated “measurements” except for

the value of the ratio y = p/n. No such scatterplot could possibly contribute to any valid

inference unless and until this null model, or, more likely, its combination with within-

group factors, is unequivocally rejected.
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Figure 18. The pathological effect of subgroup sample size variability as demonstrated

by a systematic manipulation of one group size out of the four. Large filled dot: grand

mean of the bgPC1–bgPC2 scatter. Every ordination in this set of panels is fictitious, in

particular the apparent separations of the clusters in every panel. See text.

4.4. Some aspects of truth persist in spite of the pathologies

When applied to a high-dimensional null distribution, the fictitious group clusters

that bgPCA creates resemble Gaussian disks or balls. Scatters in which the group clusters

are elongated, then, are unlikely to be expressing solely the bgPCA fiction; the elongation

would instead correspond to factors in some true model other than the model of purely

spherical Gaussian variation of very high dimension. Figure 10 already showed an example

where these Gaussians were shifted by a single factor whose scores varied both within and
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between groups. In Figure 19 we explore two variants of this approach, in both of which

there continues to be at least one true within-group factor, but now without any group

differences in distribution. When the signal from the true factor(s) is strong enough, the

bgPCA algorithm produces scatters consistent with the existence of such a factor or factors

and with the overlap of true scores by group. Unfortunately it also produces fictitious

factors of group separation as well.

The upper row of the figure shows the bgPCA analyses for two single-factor simulations

that modify our standard p = 300, n = 30 simulation by a single additional factor with

loadings Gaussian of variance 0.25 around 0.0. Component bgPC1 of the simulation at

upper left correlates 0.95 with the actual simulated factor score here, and (correctly) fails

to separate the groups, while as usual there is a completely fictional bgPC2 suggesting a

separation. Similarly, the score on bgPC1 from the simulation at upper center correlates

0.83 with the actual simulated factor score, and likewise correctly fails to separate the

groups, whereas once again component bgPC2 is wholly fictional.

The lower row of the figure reports a single simulation of four groups, now in a

p = 400, n = 40 design driven by two factors, the first with loadings Gaussian with

variance 1.0 around zero (i.e., four times as powerful as it was in the simulations of the

upper row), the second with the same variance as the single factor simulated in the upper

row. The first bgPCA component again correctly reflects the lack of separation of the

groups on this pair of dimensions, correlating 0.96 with the simulated factor score. The

corresponding first eigenvalue is too large to have arisen from the null distribution discussed

in Section 2.

But the bgPC2–bgPC3 scatter (lower right panel in the figure) once again succumbs

to the bgPCA algorithm’s relentless confabulation of group separations. The first of these

directions seems roughly aligned with a real factor, but not the second; the separation

concocted by the bgPCA algorithm in this panel confounds the two in a fictitious ordination

that rotates the direction of bgPC2 away from the actual factor direction as modeled.

Because this bgPC2 evidently was computed to accommodate the (fictitious) separation of

group 2 from group 4, it correlates only 0.73 with the actual modeled factor score, thereby

invalidating the device of projecting an unknown specimen onto the left-hand panel, the

bgPC1– bgPC2 panel, as any sort of valid inference of affinity. Inasmuch as the lower

left panel of Figure 19 generally resembles Extended Data Figure 6 of Chen et al. (2019)

except for a squaring of the plot, it would have been appropriate for that paper to have
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displayed the scatters of all pair of bgPC’s, not just the first pair, in order that readers

might check for this possible hidden confound induced by bgPCA’s tendency to generate

fictitious separations.
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Figure 19. True factor models can coexist with the pathological separations implied by

a high-p/n bgPCA. (upper row) Two different bgPCA simulations of three 10-specimen

groups on 300 Gaussian variables that also reflect a single underlying factor, everything

independent of group. In either, bgPCA tries but fails to pull apart the groups on bgPC1,

the valid ordination dimension, but succeeds with the fictitious bgPC2. (lower row) The

same for a single simulation of four ten-specimen groups over 400 variables, now with two

valid factors, likewise everything independent of group. Now bgPC1 and

(bgPC2–0.5×bgPC3) are both valid factors, while (bgPC3+0.5×bgPC2) is a 2D projection

of the usual 3D fiction. The equality of the model’s group means notwithstanding, the
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bgPC2–bgPC3 panel separates these (identically distributed) groups distressingly well.

A comparison of these panels to those in Figure 10 suggests the following two simple,

if crude, generalizations: bgPCA clusters aligned with apparent within-group factors, and

thereby less likely to show group separations, are more reliable than those orthogonal to

such within-group dimensions; and bgPCA dimensions showing high within-group vari-

ance are likelier to be aligned with true within-group factors. This is, of course, exactly

the opposite of the reason for adopting approaches like bgPCA in the first place — the

suppression of “bias” deriving from that within-group factor structure — and likewise dis-

respects the logic driving classical approaches such as Mahalanobis distance, the formula

for which downweights the dimensions of largest within-group variance instead of paying

special attention to them in this way. One might say, again risking overgeneralization,

that analyses of group average differences that fail to attend to within-group variability

are not likely to sustain sound biological inferences in high-p/n settings such as GMM.

It would follow, likewise, that the tests for stability of any “real” factors, like those that

show directional enhancement of variance in Figure 19, would need to be separate from

the tests for stability of the dimensions in which the clusters by group appear not to be

stretched (I have already mentioned this ramification in the comment preceding Figure

14). This further supports the claim in footnote 4 that statistical significance testing is

appropriate in high-p/n biological sciences only in the vicinity of a true model, that is,

after you know nearly everything about how your hypothesis relates to your data except

possibly the values of a few decimal parameters.

4.5. A potential defensive resource: integration analysis

In addition to low-dimensional factor models, there are other promising approaches

that exploit practical experience to constrain the nature of the GMM variability being

summarized. Some replace the null model of spherical Gaussian symmetries by an alter-

native in which the structure of empirical shape variation, whether or not the groups are

real, is represented by a range of patterns at one or more distinct spatial scales. There is

a taxonomy of these scaled approaches in Bookstein (2019).

One of these, the approach via loglinear rescaling of the BE–PwV (bending energy

– partial warp variance) plot, is illustrated here in Figure 20. The figure is based on
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a single simulation of 30 specimens in the usual 10-10-10 subgrouping from an isotropic

Mardia–Dryden distribution of 150 landmarks in two dimensions (hence our usual count

of 300 shape coordinates) based on a template that is a perfect 15× 10 grid. Each of four

different bgPC1–bgPC2 scatters is presented next to the grid for its bgPC1 as graphed

by its effect on the template at Procrustes length 1. At upper left is the result of the

standard bgPCA dataflow from Section 2: the same fictitious equilateral triangle we have

seen many times already. The group separation is perfect, as always, but the corresponding

bgPC1 grid is clearly biological nonsense. (Mitteroecker and Bookstein 2011 used this same

graphical strategy to mock the analogous vector output from a CVA.) The pair at upper

right presents the same bgPCA scatter and bgPC1 grid interpretation after the simulated

data set has been deflated by a slope of −0.5, as defined in Bookstein 2015 — this might

be the equivalent of mis-analyzing a data set comprised mainly of semilandmarks as if they

were landmarks instead, as discussed by Cardini (2019).

The pair of panels at lower left represents the situation after deflation at slope −1.0,

the case of self-similarity (the null model in Bookstein 2015). For these self-similar data

the bgPCA algorithm continues to pull the group means apart, but the clusters now fail

to separate, and after smoothing to this degree of realism the grid seems reminiscent of

phylogenetic applications in its offering of diverse potential characters at a diversity of

geometric scales. The figure’s final pair of panels, lower right, corresponds to deflation

at slope −2, the maximum degree of integration seen in real growth data. Now the basic

bgPCA pathology on which this paper centers is almost gone — the degrees of freedom

are no longer close enough to spherical for the MPT to have much effect (but you can

still see it trying) — and the bgPC1 grid now resembles actual published grids for growth

gradients such as were exemplified in Bookstein 2019. In summary, the more integrated

the shape variation, the lower the effective number of variables contributing to the MPT

formula, the lower the fictitious group separation in bgPCA scatterplots, and the smoother

and more realistic the corresponding transformation “factors.”
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Figure 20. Effect of changing an integration dimension on the fictitious bgPCA plot

and the corresponding transformation grid for bgPC1 in a simulated data set of the usual

design (30 specimens in three meaningless groups, 300 variables). See text.

In another approach, the low-rank scenario (linear or quadratic terms dominant), the

dimensionality of the valid factors present is low enough, and the sum of the variances

of the potentially spherical-Gaussian residuals diminutive enough, that the count of true

factors contributing to a bgPCA scatterplot is only 1 or 2 regardless of the number of

additional dimensions of noise. This variant is illustrated via an evolutionary example

(the variation of mammalian skulls) in Figures 7 through 10 of Bookstein (2019).

In terms of the typology of integration laid out in Bookstein (2019), comparisons along

a series of deflations with increasingly negative slopes would leave a bgPCA essentially

invariant if its effect were at very large scale — a growth-gradient, for example, would be

analogous to the single-factor models illustrated in the top row of Figure 19 — but would

efface group separations at small scale should they have been fictional after the manner

simulated in this isotropic Mardia–Dryden distribution. (Thus the deflation technique

suggests itself as an explicit analytic tool for exploring a hypothesis of heterochrony in a

high-p/n data set.) Deflation greatly attenuates the signal strength of small-scale findings,
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but so does any other version of PCA; so a search for discriminating “characters” at small

scale would not proceed well by any version of today’s GMM, but requires functional or

evo-devo arguments instead, followed by the explicit construction of both the loadings and

the scores of any hypothesized factors.

The critique of this section can be tersely summarized as follows: the technique of

bgPCA is far from ready for general adoption, even by disciplinary communities

that have been taught tools from the early twentieth century such as principal components

analysis that are mathematically welll-characterized already in applications to studies in-

volving far fewer variables than specimens. The bgPCA method has never been subjected

to close examination of its remarkably unfortunate tendency to exaggerate or simply invent

apparent distinctions under conditions of high variable count, high variation of group size,

confounding with within-group factors, and the like. This will be the first in the series of

summary mantras that are the gist of the concluding section of this article.

5. Concluding observations

Readers should consider Figure 10 very thoughtfully. That second dimension in the

upper panel is not part of the model — it is wholly an artifact of the bgPCA method. Then

the second dimension of the published example below it could itself have been entirely a

methodological artifact as well, a software-hallucinated pattern claim unrelated to any

evolutionary-biological truth about the genus Pan. If a single-factor model on 86 variables

for 104 cases can match so closely and saliently a bgPCA of the same structure claiming the

existence of two real factors, a bgPCA that I myself co-published as recently as eight years

ago, clearly something is drastically wrong with our toolkit for inferences from multivariate

analysis of data sets of even higher p/n ratio — after all, this was a p/n ratio of only 0.83.

Likewise the ANOVA model in Figure 12, or its realization as a real object in Figure

13, should be consternating. We should be very chary of analyses that, when applied

to classically meaningful explanatory structures, give rise to graphics as ludicrous as this

match of an interaction-free analysis of variance to an airborne coffee stirrer.

I offer several weapons (or, in what might prove a better metaphor, prophylactics) for

our community to wield in defending against this class of problems.
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1. The bgPCA method can no longer be regarded as just another “standard

tool” that can be used routinely by nonexperts and justified merely by

a rote citation to earlier publications by me or any other tool developer.

There are simply not enough deep theorems about how it operates in today’s typically

high-p/n settings. Associated with its many pathologies are too many requirements

for confirming plots, resampling strategies (including deflation), and appropriate chal-

lenges to the inappropriately attractive explanations it routinely proffers without ad-

equate justification. Papers should no longer appear that, like Détroit et al. 2019

or Chen et al. 2019, simply cite Mitteroecker and Bookstein 2011 or some other

single earlier article as authority for presentation of one or more standard bgPCA

scatterplots without any of the quantitative challenges or alternative interpretations

just reviewed in Section 4. No further bgPCA analyses should be published anywhere

without being subject to the challenges reviewed in this article, followed by the im-

primatur of an appropriate multivariate expert, and the technique should not be used

in dissertations or other student work. It is not like the other multivariate techniques

that our graduate curricula teach — even most experts do not yet understand what

it gets predictably, disastrously wrong.

2. Every published example of a PCA on a data set characterized by more variables

than cases must include explicit declarations of the values of p and n and their ratio.

This requirement should be enforced by reviewers and journal editors alike. When a

previously published example is cited as an empirically factual supporting argument,

the citing sentence should extract the p/n ratio from the text being cited and print it

alongside the actual citation.

3. Every published example of a bgPCA or the equivalent PLS in a high-p/n settingmust

include challenges to the claimed findings that acknowledge a-priori these MPT-related

pathologies. Such challenges must supersede the ordinary casewise crossvalidations or

permutations of group assignment, instead extending to the constructions in Sections

4.4 and 4.5.

4. Analyses that find near-equality of the first two or three eigenvalues of a high-p/n PCA

or bgPCA should be regarded not as evidence for biologically meaningful structure of

the corresponding ordinations, but contrariwise as hints of an underlying sphericity

(patternlessness) in the data driving the multivariate analysis. This advice is especially

important should group centroids (if grouping is the topic) prove to be suspiciously
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close to equilateral in their ordination space. Conversely, if within-group factors are

apparent in the bgPCA output the analysis should be repeated and fictitious sphericity

and separations of clusters checked again after these factors have been identified,

estimated, and then partialled out of the data.

5. As demonstrated in Figure 17, bgPCA should never be used, even by experts, when

the range of group sizes is wide or when any of the groups are truly tiny. I would

suggest requiring a count of at least 10 for the smallest group before a bgPCA can

even be contemplated, let alone published.

6. Generally speaking, ordinations by linear models like PCA, bgPCA, and PLS should

be trusted only to the extent that the dimensions they highlight prove to be factors,

meaning, biological causes or effects of which the relevant branches of the biosciences

were previously aware. Such factors can be expected to persist into the bgPCA plots

even though the algorithm was designed to ignore them. Group separations in high-

p/n settings that emerge only after factors emerge, after the manner of Figure 20,

should be viewed with particular suspicion. In particular, claims that axes of separa-

tion of group averages in GMM analyses are good factors or biological explanations

require far stronger, geometrically more specific prior hypotheses than have been ex-

emplified hitherto in our textbooks and our peer-reviewed citation classics, and need

to be visualized as thin-plate splines after they have been computed and sample scores

scattered.

7. (This comment is specific to the context of GMM.) Any PCA-based technique of mixed

landmark/semilandmark analysis needs to be recomputed after restriction to only the

Cartesian coordinates perpendicular to the sliding constraints — the coordinates that

have not been relaxed by the sliding algorithm. Also, any analysis of an anatomical

configuration that combines semilandmarks with a reasonable number of reasonably

distributed landmarks needs to be confronted by the parallel analysis that involves

only the landmarks, as in Figure 5.73 (page 447) of my 2018 textbook. When the two

analyses generate substantially similar ordinations, then the higher the ratio of the

larger count of variables to the smaller count, the greater the additional confidence in

the inferences that follow from the pair.

I am aware of the consequences that would ensue if this critique of the bgPCA method

ends up widely accepted. The trend of increasing evocation of bgPCA in applied papers
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from whatever disciplinary context would need to be reversed and then drop to nearly zero.

A substantial number of peer-reviewed empirical claims that invoke bgPCA as one of their

analytic tools, such as two recent well-publicized announcements about human evolution

(Détroit et al. 2019 and Chen et al. 2019), may need to be reargued or weakened,

and some dissertation chapters abandoned, and also there might need to be a substantial

extent of “unlearning” by colleagues who have relied on methods such as permutation

testing to assert “statistical significance” for claims of biological significance based in high-

dimensional pattern analyses like those pilloried here. But such costs must be paid, because

our disciplinary community is responsible for having accepted bgPCA into its toolkit of

routine methods without a proper vetting.

We must not continue to be so näıve about the limits of our intuition regarding

these high-dimensional “data reduction” techniques. Let me put this as bluntly as I can:

covariance structures on a mere 30 cases in 300 dimensions, or any other high-p/n data

design, do not resemble scatter ellipses on paper in any manner relevant to empirically

valid explanations of organismal form. In these high-dimensional spaces the desideratum of

maximizing “explained variance” makes no biological sense, not when we can’t even explain

the list of variables with which we’re working, and likewise the notion of valuing more highly

the pairs of linear combinations that happen to be uncorrelated; and likewise, too, the

strategy of analyzing group means without attending to the structure of multidimensional

within-group variability, including the standard error of the mean vector that is the link

to the bgPCA arithmetic.

To my knowledge, prior to my textbook of 2018 no vademecum of applied multivariate

statistics for biologists, however sophisticated, ever warned its readers about the pitfalls of

high-p/n PCA as reviewed in Bookstein (2017), of which the bgPCA technique dissected

here is a particularly blatant case. It is not unthinkable that PCA itself no longer makes

sense in organismal applications now that our data sets can comprise such huge numbers

of variables. After all, as Ian Jolliffe (2002:297) wisely noted,

PCA has very clear objectives, namely finding uncorrelated derived variables

that in succession maximize variance. If the [phenomena to be explained] are not

expected to maximize variance and/or to be uncorrelated, PCA should not be

used to look for them in the first place.

5/12/2019 6:52 49

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 13, 2019. ; https://doi.org/10.1101/627448doi: bioRxiv preprint 

https://doi.org/10.1101/627448
http://creativecommons.org/licenses/by-nc-nd/4.0/


The sciences of organismal form are among those for which neither maximizing variance

nor enforcing noncorrelation makes much sense in any megavariate context, whether GMM

or another. And Jolliffe’s statement applies as well to bgPCA as to any other application

of PCA in the course of analyzing organismal form.5

The scenario in Figure 1 is an artifice, but those in Figures 8, 10, 11, and 20 are

realistic. In the light of examples like these, why would any applied biometrician of or-

ganismal form spend time constructing projections optimizing unrealistically symmetric

figures of merit like “explained variance” or “explained covariance,” instead of postulating

factor models a-priori, based on established biological theories or replicated experimental

findings, and then testing them against data that were newly accumulated for the spe-

cific purpose of testing those theories? The symmetries of multivariate statistical method

are no match for the subtleties of organismal form as we currently understand its struc-

tured variability, its vicissitudes, and its genetic and epigenetic control mechanisms. For a

much deeper discussion of these matters, including deconstruction of numerous historical

precursors, see my extended commentary in Bookstein (2019). If the examples in Figure

10 or Figure 20 are representative, the only reliable dimensions of a bgPCA analysis are

those showing the largest within-group variances, even though that is the information that

the bgPCA method was explicitly designed to ignore. Then quite possibly the explicit

purpose of bgPCA analysis, the study of group average differences without referring to

within-group variability, is self-contradictory in GMM and similar high-p/n settings.
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5 As Yendle and MacFie (1989) noted in the earliest announcement of the bgPCA

method, the factors it produces are uncorrelated in the original data space. Such a claim
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