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Abstract (actual: 152 words) 

The recent explosion of biomedical knowledge presents both a major opportunity and 

challenge for scientists tackling complex problems in healthcare. Here we present an approach 

for synthesizing biomedical knowledge based on a combination of word-embeddings and select 

cooccurrences. We evaluated our ability to recapitulate and retrospectively predict disease-gene 

associations from the Online Mendelian Inheritance in Man (OMIM) resource. Our metrics 

achieved an area under the curve (AUC) value of 0.981 at the recapitulation task for 2,400 

disease-gene associations. At the most stringent cutoff, our metrics predicted 13.89% of these 

associations before their first cooccurrence in the literature, with a median time of 4 years 

between prediction and first cooccurrence. Finally, our literature metrics can be combined with 

human genetics data to retrospectively predict disease-gene associations, IL-6 and Giant Cell 

Arteritis provided as an example. We believe this framework can provide robust biomedical 

hypotheses at a much faster pace than current standard practices. 
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Main Text  

Introduction (691 words) 

 Biomedical knowledge, particularly in the form of literature text, has been growing at an 

increasing rate in recent years. For example, as of May 1st, 2019, PubMed contains 29,658,612 

records, with 1,333,492 records from 2018 alone. While the explosion of biomedical knowledge 

has great potential in enabling new insights and discoveries, this same explosion of knowledge 

also makes it more difficult for scientists to read and process this wealth of information. 

 

 Databases such as ClinVar1 and BioGRID2 represent manually-curated efforts to 

summarize and store specific facets of biomedical knowledge (e.g. variation-phenotype 

associations and protein-protein interactions). Other tools parse the literature directly and utilize 

structured databases to extract important biomedical relationships in an automated manner. 

These tools include FACTA3 and PolySearch4. Finally, text-mining tools such as PubTator5 

enable users to perform document triage, entity annotation, and relationship annotation in a 

PubMed-like interface. 

 

 In the last decade, substantial advances have been made in the field of natural language 

processing (NLP) that enable the rapid mining and extraction of relationships from biomedical 

literature. One such technique – word embeddings – leverages neural networks to capture the 

various semantic properties and relationships of words in a specified corpus of text. In 2013, 

Mikolov et al.6 introduced the word2vec model to produce distributed representations of words 

and phrases. In addition to word2vec, other word embedding models include GloVe7 and 

fastText8,9.  
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 Pyysalo et al.10 were among the first to apply word2vec to biomedical literature, training 

their word2vec model on PubMed abstracts and PubMed Central full text papers. Minarro-

Gimenez et al.11 subsequently trained a word2vec model on a corpus of biomedical literature that 

included PubMed, Merck Manuals, Medscape, and Wikipedia, and compared the model outputs 

to disease-drug relationships in the manually curated National Drug File – Reference 

Terminology (NDF-RT). In a follow-up work, Minarro-Gimenez et al.12 observed that the skip-

gram model was more accurate than the continuous bag-of-words model, and that a window size 

of 10 and vector dimensionality of 300 produced the best results among all tested 

hyperparameter combinations. Bhasuran and Natarajan13 trained word2vec on a query-driven 

dataset of gene-disease associations from PubMed, in addition to gene-disease associations from 

four “gold standard corpora”. By combining word2vec output with other syntactic and semantic 

features, Bhasuran and Natarajan automatically extracted gene-disease associations from 

literature.  

 

 While the above models show the potential of word2vec for synthesizing biomedical 

knowledge, they also lack several important features: (1) the models lack a temporal dimension 

that reflects the movement of word vectors in semantic space over time as more knowledge is 

published; (2) the models do not address the existence of synonyms associated with biomedical 

entities (e.g. genes and diseases); (3) the standard metric for measuring the similarity of word 

vectors, the cosine distance, gives no indication if the association between the word vectors is 

statistically significant; (4) the models do not address the fact that knowledge is frequently 

siloed, so that associations found in one corpus of knowledge (e.g. scientific publications) are not 
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necessarily found in other corpora (e.g. patents and SEC filings); (5) the models rely solely on 

word2vec and ignore traditional NLP techniques that could be used concurrently with word2vec; 

and (6) the models only incorporate unstructured knowledge (e.g. literature text) and do not 

incorporate structured knowledge such as human genetics datasets or RNA-Seq datasets. 

 

 Here we present a unified set of metrics to address the aforementioned shortcomings of 

current word2vec applications to biomedical literature. We report three distinct use cases for our 

metrics: (1) recapitulation of well-known disease-gene relationships using literature text; (2) 

retrospective prediction of well-known disease-gene relationships using literature text; and (3) 

retrospective prediction of disease targets using literature text and human genetics data from 

Ensembl14,15. For the first two use cases, we evaluated our approach against a positive set of 

disease-gene pairs from the Online Mendelian Inheritance in Man (OMIM) database16-18, and 15 

similarly-sized negative sets of random disease-gene pairs. For the third use case, we evaluated 

our approach against the disease-target relationship between giant cell arteritis (GCA) and 

interleukin-6 (IL6) or the interleukin-6 receptor (IL6R). Our results indicate that our approach is 

able to recapitulate and retrospectively predict important biomedical associations using a 

combination of unstructured and structured data. 
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Results (1,288 words) 

Extracting biomedical associations from literature text  

 The approach we present is based on word embedding models trained on biomedical 

literature in various corpora and supplemented with named entity recognition, synonyms 

handling, and temporal slicing. Our approach uses two key metrics – the Local Score (𝐿𝑆) and 

Global Score (𝐺𝑆) – to quantify the strength of literature association between two concepts 

across various corpora. While 𝐿𝑆 measures how frequently two tokens are found within each 

other’s local context (the five tokens immediately preceding and following every occurrence of 

that token), 𝐺𝑆 measures how similar two tokens are when represented as word vectors in a high-

dimensional semantic space. Each metric has its merits and drawbacks – for example, 𝐿𝑆 is 

useful for recapitulating well-known associations but is unable to identify novel associations. 𝐺𝑆, 

on the other hand, is useful for identifying novel associations – particularly for concepts that 

have not cooccurred in the same document – but is unable to address synonyms for biomedical 

entities. 𝐺𝑆 is additionally unable to address polysemy (the coexistence of many possible 

meanings for a word or phrase) due to the context-independent nature of word2vec. In addition 

to incorporating unstructured knowledge such as literature text from various corpora, our 

approach can also incorporate structured knowledge such as human genetics, RNA-Seq, 

proteomics, and adverse event report datasets. 

 

Recapitulation of well-known disease-gene associations using literature text  

 We evaluated our ability to recapitulate well-known disease-gene associations using 

literature text against a positive set of 2,400 disease-gene pairs from OMIM and 15 negative sets. 

The disease-gene pairs in each negative set were generated by pairing the diseases from the 
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positive set with random genes. We then calculated the percentage of disease-gene pairs in the 

positive and negative sets that satisfied either of the following conditions: (1) 𝐿𝑆 based on all 

knowledge produced up until today (𝐿𝑆$%&'() was greater than or equal to a certain 𝐿𝑆 percentile 

cutoff or (2) 𝐺𝑆 based on all knowledge produced up until today (𝐺𝑆$%&'() was greater than or 

equal to a certain 𝐺𝑆 percentile cutoff and had a nonzero 𝐿𝑆$%&'(  (Figure 1a).  Satisfying the 

former condition indicates that the disease and gene are frequently found within each other’s 

local context. Satisfying the latter condition, on the other hand, indicates that the word vectors 

corresponding to the disease and gene tokens are similar in a high-dimensional semantic space. 

 

 We calculated the true positive rate (TPR), mean false positive rate (FPR), and F1 score at 

various 𝐿𝑆 and 𝐺𝑆 percentile cutoffs between 0 and 100 (Table 1 and Supplementary Table 2). 

We plotted the receiver operating characteristic (ROC) curve using the 𝐿𝑆 and 𝐺𝑆 percentile 

cutoff as the classification parameter, and found that our approach achieved an area under the 

curve (AUC) value of 0.981 (Figure 1b). 96.98% of disease-gene pairs in the positive set have 

nonzero 𝐿𝑆$%&'(  or 𝐺𝑆$%&'( , in contrast to 4.32% of disease-gene pairs in the negative sets 

(Table 1). It is important to note that we took the disease-gene associations from OMIM as 

ground truth. Because OMIM is extensively curated by scientific experts, the disease-gene 

associations reported by OMIM are most likely real. The absence of a disease-gene association 

in OMIM, however, does not exclude the possibility that the association is real. Nevertheless, our 

results indicate that our approach substantially recapitulates well-known disease-gene 

associations from literature text alone. 
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Table 1. Recapitulation of well-known disease-gene associations using literature. The true 

positive rate (TPR) is calculated from positive set of disease-gene pairs (n=2,249), and the 

number of predicted positive pairs is shown in parentheses. The mean and standard deviation of 

the false positive rate (FPR) are calculated from the FPRs of all 15 negative sets of disease-gene 

pairs (n=2,397 to 2,400). 

𝑳𝑺 /𝑮𝑺 
percentile 
cutoff 

TPR (n=2,249) Mean FPR 
(n=2,397 to 
2,400) 

Standard 
deviation FPR 
(n=2,397 to 
2,400) 

F1 score 

99% 73.01% (1,642) 0.39% 0.09% 0.84 

95% 90.66% (2,039) 1.27% 0.21% 0.94 

90% 94.53% (2,126) 2.01% 0.29% 0.96 

85% 95.86% (2,156) 2.59% 0.32% 0.97 

80% 96.44% (2,169) 3.07% 0.39% 0.97 

75% 96.71% (2,175) 3.38% 0.39% 0.97 

50% 96.98% (2,181) 4.19% 0.43% 0.96 

25% 96.98% (2,181) 4.32% 0.43% 0.96 
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Figure 1. Recapitulation of well-known disease-gene associations using literature text.  

(a) 𝐿𝑆 and 𝐺𝑆 based on all knowledge produced up until today were calculated to evaluate our 

ability to recapitulate well-known disease-gene associations using literature text. 

(b) The receiver operating characteristic (ROC) curve, using the 𝐿𝑆 and 𝐺𝑆 percentile cutoff as 

the classification parameter. The true positive rate (TPR) is calculated from positive set of 

disease-gene pairs (n=2,249). The mean false positive rate (FPR) was calculated from the FPRs 

of all 15 negative sets of disease-gene pairs (n=2,397 to 2,400). The area under the curve (AUC) 

value was computed using the trapezoidal rule. 
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Retrospective prediction of well-known disease-gene associations using literature text 

 We next evaluated our ability to predict well-known disease-gene associations 

retrospectively using literature text against the same positive and negative sets of disease-gene 

pairs used above. For every disease-gene pair in the positive and negative sets, we computed a 

set of 𝐺𝑆 based on knowledge produced exclusively in each year between 1990 and 2017 

(Figure 2b). We identified the first year where 𝐺𝑆 for a given disease-gene pair was nonzero, 

which we termed the first year of signal, and the first year where that disease and gene 

cooccurred in the PubMed corpus, which we termed the first year of cooccurrence (Figure 2a). 

Finally, we calculated the percentage of disease-gene pairs in the positive and negative sets 

where the signal consistency – the percentage of 𝐺𝑆 between the first year of signal and the first 

year of cooccurrence that were greater than or equal to 1.3 – was greater than or equal to a 

certain percentage cutoff (Figure 2a).  

 

 We calculated the TPR, mean FPR, TPR/FPR ratio, and F1 score at various signal 

consistency cutoffs between 0% and 100% (Table 2). As expected, we found that increasing the 

signal consistency cutoff decreased both the true positive rate (TPR) and the mean false positive 

rate (FPR) (Figure 3a). The mean FPR, however, decreased at a faster rate than the TPR when 

the signal consistency cutoff increased, as evidenced by the corresponding increase in the 

TPR/FPR ratio (Figure 3b). At our most stringent signal consistency cutoff (99%), our approach 

achieved a TPR of 13.63%, mean FPR of 0.48%, TPR/FPR ratio of 28.34, and F1 score of 0.24 

(Table 2). 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 7, 2019. ; https://doi.org/10.1101/627513doi: bioRxiv preprint 

https://doi.org/10.1101/627513
http://creativecommons.org/licenses/by-nc-nd/4.0/


 11 

 For each disease-gene pair in the positive set, we also identified the first year where 𝐺𝑆 

for a given disease-gene pair was greater than 1.3, which we termed the first year of significant 

signal. We then calculated the lead time – the number of years between the first year of 

significant signal and the first year of cooccurrence (Figure 2a) – at various signal consistency 

cutoffs between 0% and 100% (Table 3). We found that the increasing the signal consistency 

cutoff decreased the median and mean lead times (Figure 3c). At our most stringent signal 

consistency cutoff (99%), our approach achieved a median lead time of 4.00 years and mean lead 

time of 4.58 years (Table 3).  
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Table 2. Retrospective prediction of well-known disease-gene associations using literature. 

The true positive rate (TPR) is calculated from positive set of disease-gene pairs (n=1,820), and 

the number of predicted positive pairs is shown in parentheses. The mean and standard deviation 

of the false positive rate (FPR) are calculated from the FPRs of all 15 negative sets of disease-

gene pairs (n=2,397 to 2,400).  The TPR and FPRs were computed using only the disease-gene 

pairs where the first year of cooccurrence happened after 1990, and the first year of cooccurrence 

happened after the first year of signal. 

 

Signal 
consistency 
cutoff 

TPR/FPR 
ratio 

TPR 
(n=1,820) 

Mean FPR 
(n=2,397 to 
2,400) 

Standard 
deviation 
FPR 
(n=2,397 to 
2,400) 

F1 score 

1% 1.43 74.95% 
(1,364) 

52.29% 1.02% 0.61 

10% 1.94 71.37% 
(1,299) 

36.72% 1.05% 0.65 

20% 2.60 61.70% 
(1,123) 

23.74% 0.89% 0.64 

30% 3.29 50.00% (910) 15.22% 0.62% 0.59 

40% 4.16 42.47% (773) 10.20% 0.57% 0.54 

50% 5.11 35.49% (646) 6.95% 0.44% 0.49 

60% 6.69 27.75% (505) 4.15% 0.30% 0.42 

70% 8.74 22.31% (406) 2.55% 0.19% 0.36 

80% 12.25 18.90% (344) 1.54% 0.16% 0.31 

90% 18.98 14.51% (264) 0.76% 0.12% 0.25 

99% 28.34 13.63% (248) 0.48% 0.11% 0.24 
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Table 3. Retrospective prediction of well-known disease-gene associations using literature. 

The lead times were calculated from positive set of disease-gene pairs (n=1,820), and were 

computed using only the disease-gene pairs where the first year of cooccurrence happened after 

1990, and the first year of cooccurrence happened after the first year of signal. 

 

Signal 
consistency 
cutoff 

Median lead 
time (years) 

Mean lead time 
(years) 

Standard 
deviation of 
lead time 
(years) 

TPR/FPR ratio 

1% 7.00 7.49 4.91 1.43 

10% 7.00 7.48 4.93 1.94 

20% 7.00 7.57 4.95 2.60 

30% 7.00 7.58 4.90 3.29 

40% 7.00 7.55 4.90 4.16 

50% 6.00 7.21 4.90 5.11 

60% 6.00 6.93 4.82 6.69 

70% 5.00 6.53 4.70 8.74 

80% 5.00 6.02 4.52 12.25 

90% 4.00 5.12 4.19 18.98 

99% 4.00 4.58 3.68 28.34 
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Figure 2. Retrospective prediction of well-known disease-gene associations using literature 

text. 

(a) Temporal evolution of 𝐺𝑆 and number of documents for the association between tumor-

infiltrating lymphocytes and PD-L1 using the biomolecules collection as the control collection. 

The first year of signal is 1992, the first year of significant signal (𝐺𝑆 ≥ 1.3) is 1994, and the first 

year of cooccurrence is 2002. Consequently, the lead time is 8 years and the signal consistency is 

80%. 

(b) 𝐺𝑆 based on knowledge produced exclusively in each year between 1990 and 2017 were 

calculated to evaluate our ability to predict disease-gene associations retrospectively using 

literature text. 
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Figure 3. Retrospective prediction of well-known disease-gene associations using literature 

text.  

(a) Plot of the TPR (green) and mean FPR (red) as a function of the signal consistency cutoff. 

The TPR is calculated from positive set of disease-gene pairs (n=1,820). The mean and standard 

deviation of the FPR are calculated from the FPRs of all 15 negative sets of disease-gene pairs 

(n=2,397 to 2,400). The TPR and FPRs were computed using only the disease-gene pairs where 

the first year of cooccurrence happened after 1990, and the first year of cooccurrence happened 

after the first year of signal. 

(b) Plot of the TPR/FPR ratio as a function of the signal consistency cutoff. 

(c) Plot of the median (red), mean (blue), and 1-sigma range (light blue filled region) of the lead 

time as a function of the signal consistency cutoff. Lead times were calculated for the positive set 

of disease-gene pairs (n=1,820). 
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Retrospective prediction of disease targets using literature text and human genetics data 

 Lastly, we evaluated our ability to predict disease targets retrospectively using literature 

text and human genetics data against the disease-target relationship between Giant Cell Arteritis 

(GCA) and IL6 or IL6R. We analyzed the temporal evolution of each target’s 𝐿𝑆 or 𝐺𝑆 rank to 

GCA relative to all genes, which represented our “literature-only approach” that did not 

incorporate any human genetics insights. We concurrently analyzed the temporal evolution of 

each target’s 𝐿𝑆 or 𝐺𝑆 rank to GCA relative to a set of genes with an indirect genetic association 

to GCA that changed every year, which represented our “literature plus genetics approach”. For 

the latter approach, we defined genes with an “indirect” genetic association to GCA as those with 

SNP evidence to phenotypes with 𝐿𝑆 ≥ 3.0 and 𝐺𝑆 ≥ 1.3 to GCA in that year. 

 

 We found that IL6’s 𝐺𝑆 rank from our literature-only approach first reached the 99th 

percentile in 2017, while IL6’s 𝐺𝑆 rank from our literature plus genetics approach first reached 

the 99th percentile in 2003 (Figure 4a). In addition, IL6’s 𝐿𝑆 rank from both approaches first 

reached the 99th percentile in 2006 (Figure 4b). Accordingly, the time of significance – defined 

as the number of years between the 𝐺𝑆 rank from our literature plus genetics approach first 

reaching the 99th percentile and the 𝐿𝑆 rank from our literature-only approach first reaching the 

99th percentile – was 3 years (Table 4). 

 

 We found that while IL6R’s 𝐺𝑆 rank from our literature-only approach first reached the 

99th percentile in 2000, the rank did not consistently exceed the 99th percentile until 2013 

onwards (Figure 4c). IL6R’s 𝐺𝑆 rank from our literature plus genetics approach, on the other 

hand, first reached the 99th percentile in 2003 (Figure 4c). In addition, IL6R’s 𝐿𝑆 rank from 
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both approaches first reached the 99th percentile in 2016 (Figure 4d). Accordingly, the time of 

significance between the	𝐺𝑆 rank from the literature plus genetics approach reaching the 99th 

percentile and the 𝐿𝑆 rank from the literature-only approach reaching the 99th percentile was 13 

years (Table 5). 
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Figure 4. Temporal evolution of IL6 and IL6R’s 𝑳𝑺 and 𝑮𝑺 ranks to GCA using the 

literature text and human genetics data. 

(a) Plot of the temporal evolution of IL6’s 𝐿𝑆 rank to GCA using the literature-only (blue) and 

literature plus genetics (red) approaches. 

(b) Plot of the temporal evolution of IL6’s 𝐺𝑆 rank to GCA using the literature-only (blue) and 

literature plus genetics (red) approaches. 

(c) Plot of the temporal evolution of IL6R’s 𝐿𝑆 rank to GCA using the literature-only (blue) and 

literature plus genetics (red) approaches. 

(d) Plot of the temporal evolution of IL6R’s 𝐺𝑆 rank to GCA using the literature-only (blue) and 

literature plus genetics (red) approaches. 

 

 
  

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 7, 2019. ; https://doi.org/10.1101/627513doi: bioRxiv preprint 

https://doi.org/10.1101/627513
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20 

Table 4. Temporal evolution of IL6’s 𝑳𝑺 and 𝑮𝑺 ranks to GCA using the literature-only 

and literature plus genetics approaches. 

 

Year 𝑳𝑺 only 𝑳𝑺 and 
genetics 

𝑮𝑺 only 𝑮𝑺 and 
genetics 

1990 13,839 13,839 13,839 13,839 

1991 13,839 13,839 1,668 13,839 

1992 13,839 13,839 13,839 13,839 

1993 13,839 13,839 442 13,839 

1994 13,839 13,839 2,489 13,839 

1995 13,839 13,839 13,839 13,839 

1996 13,839 13,839 2,127 13,839 

1997 13,839 13,839 1,896 13,839 

1998 13,839 13,839 923 13,839 

1999 13,839 13,839 1,370 13,839 

2000 13,839 13,839 2,587 13,839 

2001 13,839 13,839 317 13,839 

2002 13,839 13,839 1,222 13,839 

2003 13,839 360 1,888 64 

2004 13,839 506 1.472 74 

2005 13,839 721 209 24 
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2006 14 4 857 115 

2007 8 2 1,166 112 

2008 9 2 555 58 

2009 12 2 1,538 187 

2010 7 1 292 68 

2011 10 3 330 68 

2012 6 3 257 49 

2013 4 2 259 46 

2014 4 2 452 87 

2015 4 2 637 123 

2016 4 2 208 43 

2017 4 2 63 20 

Today 4 2 100 29 
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Table 5. Temporal evolution of IL6R’s 𝑳𝑺 and 𝑮𝑺 ranks to GCA using the literature-only 

and literature plus genetics approaches. 

 

Year 𝑳𝑺 only 𝑳𝑺 and 
genetics 

𝑮𝑺 only 𝑮𝑺 and 
genetics 

1990 13,839 13,839 13,839 13,839 

1991 13,839 13,839 13,839 13,839 

1992 13,839 13,839 13,839 13,839 

1993 13,839 13,839 3,396 13,839 

1994 13,839 13,839 13,839 13,839 

1995 13,839 13,839 13,839 13,839 

1996 13,839 13,839 13,839 13,839 

1997 13,839 13,839 253 13,839 

1998 13,839 13,839 1,650 13,839 

1999 13,839 13,839 361 13,839 

2000 13,839 13,839 66 13,839 

2001 13,839 13,839 3,305 13,839 

2002 13,839 13,839 1,407 13,839 

2003 13,839 360 827 36 

2004 13,839 506 597 28 

2005 13,839 721 2,426 205 
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2006 13,839 1,163 620 88 

2007 13,839 886 928 91 

2008 13,839 956 782 87 

2009 13,839 1,022 1,230 150 

2010 13,839 1,457 434 98 

2011 13,839 1,641 182 34 

2012 13,839 1,459 332 66 

2013 13,839 1,437 113 25 

2014 13,839 1,391 26 7 

2015 13,839 1,588 57 16 

2016 74 19 8 3 

2017 77 21 10 4 

Today 77 19 146 44 
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Discussion (1,145 words) 

 The unified approach we present incorporates both unstructured and structured data to 

synthesize large amounts of biomedical knowledge. The 𝐿𝑆 and 𝐺𝑆 metrics based on all 

knowledge produced up until today substantially recapitulate disease-gene relationships from 

OMIM and complement each other in various aspects. In addition, the 𝐺𝑆 metric based on 

knowledge produced exclusively in each year between 1990 and 2017 can be strongly predictive 

of disease-gene relationships, even before the first cooccurrence of the disease and gene in the 

PubMed corpus, a power we believe could extend to scores obtained today. These two results 

demonstrate our approach’s utility to users who are interested in (1) well-known biomedical 

associations in unfamiliar subject areas, or (2) novel biomedical associations in familiar subject 

areas. Importantly, word embedding models such as word2vec can identify semantic associations 

between two concepts that cooccur only a few times or never cooccur at all in a given corpus of 

text. The cosine distance metric most frequently used in word embedding models, however, is 

not indicative of the statistical significance of any given semantic association. Our approach 

addresses this limitation of the cosine distance by introducing a control collection – a group of 

tokens belonging to a shared entity type (e.g. diseases) – and computing 𝐺𝑆 to indicate the 

statistical significance of a semantic association between two concepts. 𝐿𝑆, on the other hand, is 

a modified variant of the pointwise mutual information metric that only considers tokens that are 

in each other’s local context – the five tokens immediately preceding and following every 

occurrence of that token. 

 

 As noted previously, context-independent word embedding models such as word2vec are 

unable to address polysemy. For example, word2vec is unable to discern that the biomedical 
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term “EGFR” could refer to either the gene known as “epidermal growth factor receptor” or the 

clinical measurement known as “estimated glomerular filtration rate”. Newer context-sensitive 

models such as ELMo19 and transformed-based models such as BERT20 and GPT-221 are able to 

address polysemy. We are actively working on the implementation of these models for future 

versions of our approach, and accordingly updating the 𝐺𝑆 metric to incorporate polysemy. 

 

 While evaluating our ability to predict well-known disease-gene associations 

retrospectively using literature text, we observed that both the TPR/FPR ratio increases and 

median/mean lead time decreases with increasing signal consistency cutoffs. The TPR/FPR ratio 

reflects the enrichment of actual disease-gene associations compared to random disease-gene 

associations. The lead time, on the other hand, reflects how many years in advance our approach 

detected a significant 𝐺𝑆 for an actual disease-gene association before that disease and gene 

cooccurred in the same document. Concurrently, the TPR – which reflects the fraction of actual 

disease-gene associations that are correctly identified by our approach – decreases with 

increasing signal consistency cutoffs. A user interested in using our approach for a hypothesis 

generation project (e.g. target identification) consequently must balance two opposing trends 

when picking an appropriate signal consistency cutoff. Increasing the enrichment of actual 

disease-gene associations compared to random disease-gene associations comes at the expense of 

not only incorrectly throwing out a greater proportion of actual disease-gene associations, but 

also decreasing the median/mean lead time. An appropriate signal consistency cutoff is therefore 

determined by a combination of the user’s end goals and risk tolerance. 
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 Our signal consistency and lead time calculations both depended on the first year the 

disease and gene cooccurred in the PubMed corpus (“first year of cooccurrence”), rather than the 

first year the disease and gene were definitively linked in a publication (“first year of 

discovery”). Since the first year of cooccurrence is usually earlier than the first year of discovery, 

our decision to use the former to evaluate our approach’s performance at the retrospective 

prediction task represents a more conservative approach. From the user’s perspective, the first 

year of discovery might be more relevant than the first year of cooccurrence when calculating the 

signal consistency and lead time metrics, since a disease-gene association most likely would 

become actionable only after a definitive link has been published. Nevertheless, our results using 

the first year of cooccurrence demonstrate that our approach can retrospectively predict disease-

gene relationships well before the first year of cooccurrence and the first year of discovery. 

 

 We generated our positive set of 2,400 disease-gene pairs by taking disease-gene 

associations from OMIM as ground truth for two main reasons. First, OMIM is comprehensive 

and extensively curated by scientific experts. Second, the diseases represented in OMIM are 

mainly monogenic and/or Mendelian. We consequently generated negative sets of diseases 

paired with random genes in order to evaluate our ability to discriminate between signal – actual 

disease-gene associations – and noise – random disease-gene associations. Because most genes 

are related to one another via a complex network of biological pathways, it is difficult to define a 

“true negative” in the context of disease-gene associations. For example, while mutations in a 

single gene might be responsible for a disease (e.g. HEXA mutations in Tay-Sachs disease), the 

disease usually manifests itself via disruptions in the numerous biological pathways that the 

mutated gene is involved in (e.g. ganglioside metabolism). Nevertheless, we believe that pairing 
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a set of mainly monogenic and/or Mendelian diseases with random genes represents the best way 

of generating “true negatives” without introducing additional complexities. 

 

 We additionally demonstrated that our approach can combine literature text with 

knowledge from structured datasets such as human genetics data. While insights generated by 

our approach based solely on literature text are useful for hypothesis generation projects, insights 

generated by our approach based on literature text and other structured data are useful for 

hypothesis prioritization projects. In the case of the disease-target relationship between GCA and 

IL6 or IL6R, introducing human genetics data winnowed out genes that were genetically 

unrelated to GCA, enabling both IL6 and IL6R to emerge as relevant hits. In addition, we 

introduced the concept of “indirect” genetic relationships based on semantically related 

phenotypes to GCA, which allowed us to gain significant lead time in the association. 

Introducing additional knowledge siloes, whether structured or unstructured, enable the user to 

triangulate concordant signals that exist across all siloes and accordingly prioritize hypotheses 

that have strongest concordance. 

 

 In summary, we have described an approach for synthesizing biomedical knowledge and 

report three distinct use cases. Importantly we have incorporated a temporal dimension that we 

have used to demonstrate that our metrics can retrospectively predict well-known disease-gene 

relationships. Moreover, we can additionally incorporate structured data such as human genetic 

associations (i.e. GWAS) to triangulate insights from literature text, which we have used to 

demonstrate that our approach can predict the disease-target relationship between GCA and IL6 

or IL6R before it became known in the literature. In the future we intend to adapt our metrics to 
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include context-sensitive word-embeddings, and to apply our methods to other biomedical 

corpora outside of the main scientific literature, most importantly Electronic Health Records 

(EHR), and to triangulate insights with larger amounts of structured data (e.g. next-generation 

sequencing). 
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Methods (actual: 2,367 words) 

Data ingestion and knowledge extraction pipeline 

 Data was ingested via web crawlers or downloaded directly from sources. The text was 

extracted from the ingested data, and phrase generation was performed to extract multi-word 

tokens (e.g. “non-small-cell lung cancer”) that occur frequently enough to warrant their own 

embedding. A “token” refers to each individual concept (word or phrase) that is part of our 

knowledge graph. The phrase generation approach was based on a neural network model for 

part-of-speech tagging22,23. Embeddings were generated from the extracted text using word2vec 

(https://github.com/tmikolov/word2vec) and the skip-gram model with negative sampling and 

the following hyperparameters: negative sample size of 5, sub-sampling of 1e-5, minimum count 

of 7, learning rate of 0.025, vector dimensionality of 300, and window size of 5. Separate 

embeddings were generated for the various corpora consumed by our approach, and for various 

time slices (every year from 1990 to 2017). Each embedding was generated from randomly 

initialized vectors, such that embeddings from one time slice (e.g. 2010) were independent of all 

other time slices (e.g. 1990 to 2009, 2011 to 2017). 

 

Sources consumed 

 Our knowledge graph supports embeddings for various corpora. Supplementary Table 1 

details the different corpora we have currently consumed, including the number of documents, 

words, and vectors within each corpus. 
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Key metrics: Local Score (𝑳𝑺) 

 The Local Score (𝐿𝑆) measures how frequently two tokens are found within each other’s 

local context in a corpus, normalized by the occurrences of those tokens in that corpus. We 

define the local context of a token as the five tokens immediately preceding and following every 

occurrence of that token. We additionally define the adjacency adj01 between tokens A and B as 

the number of times token A is found token B’s local context, or vice-versa. We calculate the 

pointwise mutual information pmi01 between tokens A and B as the following: 

 

𝑝𝑚𝑖89 	= 	 𝑙𝑜𝑔>? @
𝑃(𝐴,𝐵)

𝑃(𝐴) ∙ 𝑃(𝐵)H					
(1)					 

 

𝑝𝑚𝑖89 	= 	 𝑙𝑜𝑔>? J

𝑎𝑑𝑗89
𝑁O

𝑁8
𝑁O

∙ 𝑁9𝑁O

P					(2)		 

 
 

𝑝𝑚𝑖89 	= 	 𝑙𝑜𝑔>? @
𝑎𝑑𝑗89 ∙ 𝑁O
𝑁8 ∙ 𝑁9

H					 (3) 

 

 Where 𝑃(𝐴,𝐵) is the probability of observing tokens A and B in each other’s local 

context,	𝑃(𝐴) is the probability of observing token A,	𝑃(𝐵) is the probability of observing token 

B, N0 is the occurrences of token A, N1 is the occurrences of token B, and NT is the summed 

occurrences of all tokens in the corpus of interest. We then calculate LS01, the 𝐿𝑆 between 

tokens A and B as the following: 

 

LS01 = ln(a𝑑𝑗01 + 1) ∙
1

1 +	e[(\]^_`[>.b)
					(4) 
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 One disadvantage we observed of using pmi01 on its own is that rarely occurring tokens 

tend to dominate the measure. For example, let token A with N0 = 1 have its only occurrence be 

in the local context of token B with N1 = 1.0 × 10f. If NT = 1.0 × 10>>, then pmi01 = 5.0. 

Our formula for LS01 passes pmi01 through a shifted sigmoid function (with an arbitrary 

midpoint of 1.5 chosen based on performance) to dampen large values of pmi01. The 

ln(a𝑑𝑗01 + 1) term additionally down-weights rarely occurring tokens relative to more 

commonly occurring tokens. Therefore, LS01 for tokens A and B in our hypothetical scenario 

would be 0.67. We have empirically observed that 𝐿𝑆 is approximately distributed according to 

an exponential distribution with rate parameter λ = 1.0 (Supplementary Figure 1), and the 

percentile rank conversion table for 𝐿𝑆 in our approach is shown in Supplementary Table 2. 

We define significant associations as those having a 𝐿𝑆 ≥ 3.0, representing the top 5% of 

associations in this exponential distribution. 

 

Key metrics: Composite Local Score (Composite 𝑳𝑺) 

 While 𝐿𝑆 measures how frequently two tokens are found within each other’s local 

context, the Composite Local Score (Composite 𝐿𝑆) measures how frequently two groups of 

tokens are found within each other’s local context. Consequently, the composite 𝐿𝑆 is 

particularly useful for handling token synonyms. We calculate the composite pointwise mutual 

information 𝑝𝑚𝑖89∗  as the following: 

 

𝑝𝑚𝑖89∗ = 	 𝑙𝑜𝑔>? j
∑𝑎𝑑𝑗89 ∙ 𝑁O
∑ 𝑛8,mm ∙ ∑ 𝑛9,nn

o					(5)	 
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 Where ∑ 𝑛8,mm  is the summed occurrences of token A and its synonyms, and ∑ 𝑛9,nn  is the 

summed occurrences of token B and its synonyms, and ∑𝑎𝑑𝑗89  is the summed adjacency 

between tokens A and B and their respective synonyms. We then calculate 𝐿𝑆89∗ , the Composite 

𝐿𝑆 between tokens A and B and their respective synonyms as the following: 

 

𝐿𝑆89∗ = 𝑙𝑛 pq𝑎𝑑𝑗89 + 1r ∙
1

1 +	𝑒[tuvmwx∗ [>.by
						 (6) 

 

Key metrics: Global Score (𝑮𝑺) 

 The Global Score (𝐺𝑆) measures the similarity between the word vectors – or numerical 

representations in a high-dimensional semantic space – corresponding to two tokens, normalized 

by a control token collection – or group of tokens belonging to a shared category (e.g. diseases). 

We calculate the cosine distance 𝐷89 between tokens A and B, which are members of token 

collections 𝐶8 and 𝐶9 respectively, as the following: 

 

𝐷89 = 	
𝑣8~~~~⃗ ∙ 𝑣9~~~~⃗

‖𝑣8~~~~⃗ ‖ ∙ ‖𝑣9~~~~⃗ ‖
						(7) 

  

 Where 𝑣8~~~~⃗  is the word vector corresponding to token A and 𝑣9~~~~⃗  is the word vector 

corresponding to token B. Because the cosine distance 𝐷89 in isolation does not indicate if the 

association between tokens A and B is statistically significant, we must consider how the cosine 

distances between token A and all tokens in token collection 𝐶9 are distributed, or how the 

cosine distances between token B and all tokens in token collection 𝐶8 are distributed. We 
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calculate 𝐺𝑆89,	Ox  , the 𝐺𝑆 between tokens A and B with control token collection 𝐶9 as the 

following: 

 

𝐺𝑆89,	Ox = 	−𝑙𝑜𝑔>? j
𝑟89,	Ox
𝑅Ox

o					(8) 

  

 Where 𝑟89,	Ox  is the rank of 𝐷89 relative to all cosine distances between token A and all 

tokens in 𝐶9, and 𝑅Ox  is the size of 𝐶9. Because 𝐺𝑆 depends on the control token collection, it is 

important to note that: 

 

𝐺𝑆89,	Ox ≠ 𝐺𝑆89,	Ow					(9) 

 

 Unless 𝐶8 and 𝐶9 are the same token collection. 𝐷89 is approximately distributed 

according to a normal distribution (Supplementary Figure 2), and the percentile conversion 

table for 𝐺𝑆 in our approach is shown in Supplementary Table 2. We define significant 

associations as those having a 𝐺𝑆 ≥ 1.3, representing the top 5% of associations in the normal 

distribution for all cosine distances between 𝑣8~~~~⃗  and all tokens in 𝐶9. 

 

Extracting disease-gene pairs from the Online Mendelian Inheritance in Man (OMIM) 

resource 

 We used the Online Mendelian Inheritance in Man (OMIM) Gene Map to extract a list of 

validated disease-gene associations. The OMIM Gene Map describes associated genes and 

phenotypes for 16,839 unique cytogenetic locations described in OMIM and previously 
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published in cited references. For every gene represented in the OMIM Gene Map, we extracted 

all its associated phenotypes. We then removed any phenotypes that were flagged by OMIM as a 

non-disease (e.g. “lean body mass”) or susceptibility phenotype (e.g. “resistance to malaria”), in 

addition to phenotypes deemed by OMIM as having a provisional relationship with that gene. 

Consequently, we extracted a total of 4,996 disease-gene pairs – which we termed “OMIM 

disease-gene pairs” – comprising 4,653 unique diseases and 3,608 unique genes. 

 

Mapping disease and gene names to relevant tokens 

 For every disease represented in the OMIM disease-gene pairs, we mapped the full 

disease name provided by OMIM to the relevant preferred name token for that disease. Mapping 

to the relevant preferred name token was necessary since tokens serve as the input to queries in 

our approach, and the preferred name token was required for extracting synonym tokens.  When 

we were unable to map the full disease name, we attempted to map part of the full disease name 

to the relevant preferred name token (e.g. we mapped “rhabdomyosarcoma, embryonal, 1” to 

“embryonal rhabdomyosarcoma”). After identifying the preferred name token, we extracted all 

synonym tokens that were associated to that disease. We then removed any synonym tokens with 

a fewer than 1,000 occurrences in the core corpus, since we have observed that 𝐺𝑆 for tokens 

with fewer than 1,000 occurrences are insufficiently robust. We additionally removed synonym 

tokens that were shared with other diseases or genes, or were otherwise ambiguous. In total, we 

identified the disease preferred name token for 3,487 disease-gene pairs comprising 3,187 unique 

diseases and 2,618 unique genes. 
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 For every gene represented in the OMIM disease-gene pairs, we similarly identified the 

preferred name token for that gene and all synonym tokens that were associated to that gene, 

including the HGNC symbol. We removed all synonym tokens with fewer than 1,000 

occurrences in the core corpus, and all ambiguous synonym tokens. In total, we identified the 

gene preferred name token for 4,986 disease-gene pairs, comprising 4,643 unique diseases and 

3,601 unique genes. 

 

Identifying the first year of cooccurrence for disease-gene pairs 

 For every OMIM disease-gene pair, we additionally identified the first year where the 

disease (or any of its synonyms) cooccurred with the gene (or any of its synonyms) in the 

PubMed corpus, which we termed the “first year of cooccurrence”. We identified the first year of 

cooccurrence for 3,395 disease-gene pairs comprising 3,097 unique diseases and 2,541 unique 

genes.  

 

Defining a positive set of disease-gene pairs 

 We defined a positive set of disease-gene pairs by taking all OMIM disease-gene pairs 

where the disease and gene preferred name tokens both had greater than 1,000 occurrences in the 

core corpus. In total, there were 2,400 disease-gene pairs that met these criteria, which comprised 

2,138 unique diseases, 683 unique disease preferred name tokens, and 1,799 unique genes. Since 

multiple diseases could map onto the same disease preferred name token (e.g. we mapped both 

“spinal muscular atrophy, type I” and “spinal muscular atrophy, type II” to “spinal muscular 

atrophy”), there were 2,249 unique pairs of disease and gene preferred name tokens. 
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Defining a negative set of disease-gene pairs 

 We defined a negative set of disease-gene pairs by fixing the diseases in our positive set 

and pairing them with genes that were randomly drawn from a set of 11,544 genes whose gene 

HGNC tokens had greater than 1,000 occurrences in the core corpus. We generated 15 negative 

sets comprising 2,400 disease-gene pairs. 

 

Computing composite 𝑳𝑺 for disease-gene pairs 

 We computed the composite 𝐿𝑆 for each disease-gene pair using the disease preferred 

name token and the gene synonym tokens based on all knowledge produced up until today in the 

core corpus. 

 

Computing 𝑮𝑺 for disease-gene pairs 

      We computed 𝐺𝑆 for each disease-gene pair for multiple time slices using the disease 

preferred name token and gene synonym tokens. First, we computed 𝐺𝑆 based on all knowledge 

produced up until today in the core corpus. Second, we computed 𝐺𝑆 based on knowledge 

produced exclusively in each year between 1990 (the earliest year for which 𝐺𝑆 is available) and 

2017 (the most recent year for which 𝐺𝑆 is available).  

 

 Because the 𝐺𝑆 calculation depends on the control collection, we computed each 𝐺𝑆 

using the diseases and genes collections as controls and took the maximum of the two values. In 

addition, when there were multiple synonym tokens for a gene, we computed 𝐺𝑆 for each 

disease-gene synonym pair and took the maximum value. 
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 The 𝐺𝑆 for a disease-gene pair is not available for years in which either token does not 

exceed a minimum number of occurrences. In these cases, we used the 𝐺𝑆 from the most recent 

year for which 𝐺𝑆 was available. 

 

Evaluating recapitulation of well-known disease-gene associations using literature text 

 To evaluate our ability to recapitulate well-known disease-gene associations using 

literature text, we considered two metrics for each disease-gene pair – (1) 𝐺𝑆$%&'( , the 𝐺𝑆 based 

on all knowledge produced up until today and (2) 𝐿𝑆$%&'( , the composite 𝐿𝑆 based on all 

knowledge produced up until today. We deemed a disease-gene pair to have a positive signal if it 

satisfied one of the two following conditions: (1) 𝐿𝑆$%&'(  was greater than or equal to a certain 

percentile cutoff (e.g. 3.0 for the 95th percentile) or (2) 𝐺𝑆$%&'(  was greater than or equal to a 

certain percentile cutoff (e.g. 1.3 for the 95th percentile) and had a nonzero 𝐿𝑆$%&'( . 

 

Evaluating retrospective prediction of well-known disease-gene associations using 

literature text 

 To evaluate our ability to predict well-known disease-gene associations retrospectively 

using literature text, we first computed the signal consistency, defined as the percentage of 𝐺𝑆 

between the first year of signal and the first year of cooccurrence that were greater than or equal 

to 1.3. For disease-gene pairs in the negative set that did not have a first year of cooccurrence, 

the signal consistency was defined as the percentage of 𝐺𝑆 between the first year of signal and 

2017 (the latest year for which 𝐺𝑆 is available) that were greater than or equal to 1.3. We deemed 

a disease-gene pair to have a positive signal if the signal consistency a certain percentage cutoff. 

Because the earliest year for which 𝐺𝑆 is available was 1990, we computed the signal 
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consistency only for disease-gene pairs where the first year of cooccurrence happened after 1990, 

and the first year of cooccurrence happened after the first year of signal. 

 

 We additionally computed the lead time – defined as the number of years between the 

first year 𝐺𝑆 was greater than or equal to 1.3 and the first year of cooccurrence – for the disease-

gene pairs in our positive set. We similarly computed the lead time only for disease-gene pairs 

where the first year of cooccurrence happened after 1990, and the first year of cooccurrence 

happened after the first year of signal. 

 

Evaluating retrospective prediction of disease targets using literature text and human 

genetics data 

 To evaluate our ability to predict disease targets retrospectively using literature text and 

human genetics data, we computed the 𝐿𝑆 between GCA and a set of 13,839 genes that had at 

least one synonym token with greater than 1,000 occurrences in the core corpus based on 

knowledge produced up until every year between 1990 and 2017. We additionally computed the 

𝐺𝑆 between GCA and the same set of 13,839 genes based on knowledge produced exclusively in 

each year between 1990 and 2017. We performed similar 𝐿𝑆 and 𝐺𝑆 computations between GCA 

and a set of 20,893 human disease phenotypes. 

 

 We then computed IL6’s or IL6R’s 𝐿𝑆 or 𝐺𝑆 rank to GCA relative to two different gene 

sets. First, we computed the 𝐿𝑆 or 𝐺𝑆 rank relative to all 13,839 genes, which represented a 

“literature-only approach”. Second, we computed the 𝐿𝑆 or 𝐺𝑆 rank relative to genes that had an 

indirect genetic association to GCA in each year before 1990 and 2017, which represented a 
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“literature plus genetics approach”. We defined genes with an indirect genetic association to 

GCA as genes with human SNP evidence (according to Ensembl) to phenotypes with 𝐿𝑆 ≥ 3.0 

and 𝐺𝑆 ≥ 1.3 to GCA.  
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Supplementary Information 

Supplementary Figure 1. Distribution of local scores. Local scores were calculated from 

50,000 pairs of tokens from the diseases and genes collections with greater than 1,000 

occurrences in the core corpus.  
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Supplementary Figure 2. Distribution of cosine distances. Cosine distances were calculated 

from 50,000 pairs of tokens from the diseases and genes collections with greater than 1,000 

occurrences in the core corpus. 
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Supplementary Table 1. Overview of the different corpora consumed for our approach, 

including corpora sources, and the number of documents, words, and vectors. Numbers are 

current as of February 27th, 2019. 

Corpus Example 
Sources 

Documents Words Vectors Temporal 
Support 

Core Corpus 
 

87,196,339 286,882,069,
630 

64,943,478 Yes* 

PubMed -BioAssay 
-GARD 
-PubMed 
-PubMed 
Central 
-OMIM 

34,982,036 45,493,733,4
96 

50,903,193 Yes 

Grants and 
Preprints 

-arXiv 
-bioRxiv 
-ExPORTER 
-Grants.gov 
-NIH Grants 

3,235,834 1,478,493,94
7 

3,648,362 Yes 

Clinical 
Trials and 
SEC 

 
1,077,020 13,848,226,5

51 
9,636,935 Yes 

Clinical 
Trials 

-
ClinicalTrials
.gov 
-EU Clinical 
Trials 
Register 
-Keynote 
Oncology 
Clinical 
Trials 
-Novartis 
Clinical 
Trials 
-YODA 
Project 

299,874 544,247,332 2,235,882 Yes 

SEC -SEC 777,146 13,302,714,3
55 

8,003,482 Yes 
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Patents and 
Applications 

 
10,963,950 158,615,007,

383 
95,814,123 Yes 

Patents 
Granted 

-USPTO  5,602,299 74,074,988,3
00 

69,337,337 Yes 

Patent 
Applications 

-USPTO  5,361,651 81,263,779,1
69 

84,970,621 Yes 

Media 
Corpus 

 
6,913,289 8,068,531,40

4 
16,968,134 Yes 

Media 
Corpus 
Update 

 
6,913,289 10,617,245,0

65 
19,130,863 Yes 

Lawsuits 
 

78,186 163,280,405 372,221 Yes 

Devices and 
Diagnostics 

 
8,634,787 3,714,427,37

2 
5,601,960 No 

FDA and 
CDC 

 
1,791,401 6,081,923,06

0 
6,589,551 No 

Wikipedia -WikiDoc 
-Wikipedia 

5,806,028 5,538,234,67
9 

13,522,108 No 

Blogs and 
Conferences 

 
86,961 5,061,109 98,630 No 

BMIS 
 

1,723,317 4,438,521,13
6 

7,486,777 No 

Patient Blogs 
 

494,918 481,572,244 2,133,862 No 

PDB -PDB 144,024 6,421,179,89
6 

1,800,341 No 

DOAJ -DOAJ 3,277,935 903,640,377 5,232,759 No 

Companies 
 

899,289 1,749,120,64
7 

4,670,100 No 

Clinical Case 
Reports 

 
35,057,325 567,604,939 2,973,878 Yes 

Clinical Case 
Reports 
(PubMed) 

-PubMed 
-PubMed 
Central 

34,982,036 421,383,772 2,597,601 Yes 
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Clinical Case 
Reports 
(Others) 

 
75289 146,775,541 1,264,458 Yes 

Companies 
and Clinical 
Trials 

 
1,294,337 2,045,129,93

8 
6,220,201 Yes 

Bookshelf -dbGaP 
-NCBI 
Bookshelf 

104,431 566,811,454 3,102,885 No 
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Supplementary Table 2. Percentile conversion table for 𝑳𝑺 and 𝑮𝑺 in our approach. For the 

𝑋th percentile, the corresponding 𝐿𝑆 is calculated as −𝑙𝑛 p>??[�
�

r and the corresponding 𝐺𝑆 is 

calculated as −𝑙𝑜𝑔>? p
>??[�
�

r. 

Percentile 𝑳𝑺 𝑮𝑺 

99 4.61 2.00 

95 3.00 1.30 

90 2.30 1.00 

85 1.90 0.82 

80 1.61 0.70 

75 1.39 0.60 

50 0.69 0.30 

25 0.29 0.13 
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