1 Thermal hazards for queen honey bees

2	Alison McAfee ¹ , Abigail Chapman ² , Heather Higo ² , Robyn Underwood ³ , Joseph Milone ¹ , Leonard J
3	Foster ^{2*} , M Marta Guarna ^{4*} , David R Tarpy ^{1*} , and Jeffery S Pettis ^{5*}
4	1. Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North
5	Carolina, USA
6	2. Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver,
7	British Columbia, Canada
8	3. Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, USA
9	4. Agriculture and Agri-Food Canada, Beaverlodge, Alberta, Canada
10	5. Pettis and Associates LLC, Salisbury, Maryland, USA.
11	* Corresponding authors: <u>foster@msl.ubc.ca</u> , <u>marta.guarna@canada.ca</u> , <u>drtarpy@ncsu.edu</u>
12	pettis.jeff@gmail.com,
13	Abstract
14	All species need to reproduce to maintain viable populations, but heat stress kills sperm cells across the
15	animal kingdom and rising frequencies of heatwaves are a threat to biodiversity. Honey bees (Apis
16	mellifera) are globally distributed micro-livestock; therefore, they could serve as environmental
17	biomonitors for heat-induced reductions in fertility. Here, we found that queens have two potential
18	routes of temperature-stress exposure: within colonies and during routine shipping. Our data suggest
19	that temperatures of 15 to 38°C are safe for queens at a tolerance threshold of 11.5% loss of sperm
20	viability, which is the viability difference between failed and healthy queens collected from beekeepers.

- 21 Heat shock activates expression of specific ATP-independent heat-shock proteins in the spermatheca,
- 22 which could serve as biomarkers for heat stress. This protein fingerprint may eventually enable surveys

23 for the prevalence of heat-induced loss of sperm viability in diverse landscapes as part of a

biomonitoring program.

25 Introduction

26 Climate change is threatening biodiversity around the globe¹⁻³, and one potential driver is through heat-27 induced reductions in fertility⁴⁻⁶. The impact of heat on fertility is far-reaching in the animal kingdom, affecting mammals⁷⁻¹¹, birds¹², fish¹³, nematodes¹⁴, and insects^{4,15-21}. At temperatures of 40-43 °C, 28 spermatogenesis is compromised²², sperm viability drops^{4,18,19}, sperm are less competitive⁴, and motility 29 is compromised^{15,23,24}. Extreme weather events such as heatwaves are increasing in frequency and 30 severity²⁵⁻²⁷, which could have widespread effects on populations via reduced reproductive output⁴⁻⁶. 31 32 Insects and other ectothermic animals are especially vulnerable to changes in local temperatures 33 because, unlike mammals, they are less able to thermoregulate. Insects and are critical components of 34 ecosystems and agriculture, with economic estimates placing the global value of insect pollination at approximately €153 billion annually²⁸. Worryingly, declines in insect populations²⁹ and pollinating 35 species³⁰⁻³⁴ have already been reported, with habitat destruction, range compression, pesticide residues, 36 diseases, and their interactions commonly reported as potential drivers^{28,35,36}. However, there has been 37 relatively little research on the effects of heat on pollinating insect reproduction^{18,19}. 38 Young honey bee queens have one brief mating period early in life, and store the sperm they acquire for 39 the rest of their lives (up to 5 years)³⁷. As the sole egg-layer, colony productivity directly depends on the 40

queen's reproductive output, which in turn depends on the viability and abundance of her stored
sperm^{18,38,39}.

Like other insects, individual honey bees are ectothermic, but colonies can thermoregulate and maintain
stable core temperatures of around 35°C in the brood nest⁴⁰. Although colonies can persist in regions
with extreme heat, evidence suggests that extreme ambient temperatures (38 - 46°C) are associated

46	with colony losses ⁴¹ . Furthermore, internal hive temperatures positively correlate with ambient
47	temperatures above 18°C, and brood nest temperatures can rise upwards of 37°C, both under natural
48	conditions ⁴² and during simulated heatwaves ⁴³ . Hives occasionally experience spikes of > 40°C ⁴⁴ ,
49	suggesting that queens could be vulnerable to temperature extremes even inside the hive.
50	Honey bees have excellent potential for being temperature stress biomonitors. They are a globally
51	distributed, managed species, so they are readily available in almost any geographic region, and they are
52	already accepted as effective biomonitors for pollution ⁴⁵ . If we begin to observe signs of heat stress in
53	honey bees colonies, that would signal a worrisome risk of reduced reproductive output for ectothermic
54	species.
55	Here, we begin to explore honey bees' utility as temperature stress biomonitors. We monitored
56	temperature fluctuations in colonies under extreme weather conditions, establishing that damaging
57	intra-hive temperatures can occur. Next, we tested a range of temperatures and exposure durations to
58	determine thresholds above which queen quality is likely to be compromised. We then investigated the
59	biochemical basis of heat-induced sperm viability reduction in queens and drones using quantitative
60	proteomics, which showed how heat stress alters protein expression of reproductive tissues. The
61	specific set of upregulated proteins we identified may eventually serve as diagnostic tools to elucidate
62	causes of queen failure and eventually enable regional surveys of heat stress as part of an
63	environmental temperature biomonitoring program.
64	Results and Discussion

65 Stored sperm viability of failed and healthy queens

66 To establish how much of a reduction in sperm viability is associated with field-observable reduced

- 67 reproductive output (and associated economic losses for beekeepers), we collected queens rated as
- 68 'failing' (N = 58) and 'healthy' (N = 55) by beekeepers and measured the queens' stored sperm viability

(Fig 1a). We found that the failed and healthy viability data were normally distributed (Shapiro test, P =
0.18 and 0.11, respectively), and that failed queens had significantly lower sperm viability (Student's t
test, P = 5.8E-06, F = 28.16), with an average drop of 11.5%. We then set an 11.5% viability drop as the
tolerance threshold in subsequent experiments aimed at identifying critical temperatures beyond which
queens are at risk of substantial loss of stored sperm viability.

74 Temperature exposure thresholds

Previous research has shown that both cold $(4^{\circ}C)$ and hot $(42^{\circ}C)$ temperatures reduce stored sperm 75 viability in queens¹⁸. To determine critical temperature and duration thresholds, we compared stored 76 77 sperm viability across a temperature and duration gradient (5, 10, 15, 25, 38, 40 and 42°C, exposed for 1, 2 or 4 h followed by a 2 d recovery period) (Fig 2a). Not all experimental groups' data were normally 78 79 distributed (Shapiro test, P < 0.05); therefore, we analyzed it with a Kruskal-Wallis test for non-80 parametric data. There was a significant effect of temperature for the 2 h (χ^2 = 15.6, P = 0.016) and 4 h 81 $(\chi^2 = 17.9, P = 0.0065)$ treatments, while not at 1 h ($\chi^2 = 9.12, P = 0.17$). A Dunnett's post hoc test 82 revealed that the only temperatures that were significantly different from the control (25°C) were the 2 83 h, 10°C treatment (P = 0.045) and the 4 h, 42°C treatment (P = 0.00057), at a family-wise error rate of α = 0.05. The 2 h and 4 h data were then pooled and optimally fit to a cubic polynomial regression (R^2 = 84 85 0.092, P = 0.012; Fig 2b) to find the temperature tolerance thresholds for queens, given a pre-defined 86 maximum acceptable drop in sperm viability (11.5%). This model suggests that 15.2 – 38.2°C is the 87 suggested "safe zone" with minimal loss of viability for 2 - 4 h exposures. To test effects of heat on ejaculated sperm viability, we exposed single-drone ejaculates to 42°C for 0, 2, 88 89 or 4 h, followed by a 2 d recovery period at 25°C (Fig 2c). These data were normally distributed (Shapiro 90 test, P = 0.18); therefore, we used a two-way ANOVA for analysis. We found that responses differed

91 depending on the colony source, but heat dramatically decreased viability by 35% after both 2 and 4 h

92 (factors: time and colony, $P_{(time)} = 1.2E-07$, $F_{(time)} = 24 df_{(time)} = 2$; $P_{(colony)} = 0.00015$, $F_{(colony)} = 11$, $df_{(colony)} = 11$ 93 2). Heat-shock therefore affects stored and ejaculated sperm viability at similar magnitudes. Drones 94 could also be appropriate biomonitors of heat-stress, as their sperm is also sensitive to changes in temperature. However, drones are not as long-lived as queens and are only seasonally available. 95 96 Shipment and hive temperature fluctuations 97 To document if routine shipping poses a threat of adverse temperature exposure to queens, we tracked 98 the temperatures of eight domestic queen shipments (seven via ground transportation, one via air; Fig 99 **1b**). We found that even in these shipments, which were not deliberately timed to occur during extreme 100 weather events, one package experienced a temperature spike to 38°C and one dropped to 4°C. Since 101 honey bees cannot adequately thermoregulate in queen cages, extreme ambient temperatures are a 102 hazard for shipping. However, little is known about a whole colony's ability to thermoregulate in the 103 face of extreme heat. 104 To gain a more complete picture of temperature fluctuations within colonies, we recorded temperatures throughout the brood nest (loggers placed between each frame of three 10-frame hives) during extreme 105 106 heat in August in El Centro, California. The ambient temperatures, measured in the shade beneath each

107 hive, reached up to 45°C (**Fig 1c**). In all three hives, the temperature at the two outer-most frames

spiked to upwards of 40°C for 2 - 5 h, and in two of the hives, temperatures exceeded 38°C even one or

109 two frames closer to the core. Therefore, the colony's ability to thermoregulate begins to break down in

110 extreme heat, and queens can be vulnerable to temperature stress inside the hive.

111 Queen survival through heat stress

112 Sturup *et al.* previously reported that drones are mortally sensitive to heat¹⁹; however, queens are

113 typically tolerant of stressful conditions. As a biomonitor, a favourable feature would be to survive

114 through heat stress while accumulating a physiological and molecular record of the stress event(s). We

compared drone, gueen, and worker survival over time at 25°C, 38°C, and 42°C, confirming that drones, 115 116 but not queens, are indeed mortally sensitive to heat (Log-rank test, P < 0.00001; Fig 3a, FigS1). Fifty-117 four percent of drones died over the course of 6 h at 42°C, whereas every queen survived. We also 118 found that drones are more sensitive to heat than workers, which have a similar lifespan to drones but 119 are non-reproductive females. 120 In this experiment, drones and workers were from local colonies, while gueens were either from a local 121 origin or imported from Hawaii and Australia. If bees are to be used as a global biomonitor for 122 temperature stress, an important experiment will be to determine if there are differences in survival, 123 physiological response, or biochemical response to heat between genetic stocks that may be adapted to 124 hotter or cooler climates. 125 Honey bees' sex-biased heat sensitivity is puzzling because drones and queens spend most of their lives 126 inside the hive and can avoid participating in mating flights during hot weather. Therefore, they are 127 exposed to similar environmental conditions, and based on this, one might expect them to have similar 128 physiological tolerance thresholds. However, the ability of a colony to survive and produce reproductive 129 individuals directly depends on the survival of individual queens (there is only one per colony), and not 130 individual drones (hundreds per colony). Natural selection may have favoured high survivorship of 131 queens, as evidenced by not only their long lifespan (up to 5 y) but also their high tolerance to heat 132 stress, despite the death of their stored sperm. To our knowledge, sex biases in thermal tolerance for 133 other social insects has not yet been investigated, as critical thermal tolerance studies have focused on 134 workers or on male fertility alone.46-55 135 Next, we investigated sex biases in heat tolerance for two solitary insect species—fruit flies (Drosophila

136 *melanogaster*) and brown marmorated stink bugs (*Halyomorpha halys*). The stink bugs have a similar

137 body size and thermal tolerance range as honey bees⁵⁶ and their global distribution has expanded to

cover four continents, making them a potential candidate biomonitor. Fruit flies have a much smaller 138 139 body size but are also distributed in laboratories around the world, so they could be candidate 140 biomonitors too. We found that both male and female stink bugs and fruit flies readily die with heat (Fig 141 3b and c), meaning that they cannot accumulate a physiological or molecular record of a heat stress 142 event and have limited utility for observing impacts of heat on fertility through time. However, these 143 data do indicate another worrying trend: that exceptionally extreme temperatures may reduce insect 144 populations through direct kills, in addition to reducing reproductive output if they survive. We found no 145 difference between males' and females' heat sensitivities for fruit flies and a slight opposite (female) biased heat sensitivity in stink bugs. In contrast, the high survivorship of honey bee queens makes them 146 147 a good candidate biomonitor, should they possess molecular signatures indicative of heat stress when it 148 occurs.

149 ATP-independent sHSPs are upregulated in heat-shocked queen spermathecae

150 Sperm longevity is enabled by molecular processes that reduce oxidative damage and maintain sperm in 151 a quiescent metabolic state. For example, the spermatheca is a highly anaerobic environment, which helps prevent reactive oxygen species (ROS) formation⁵⁷. Enzymes that further limit damage from ROS 152 are also upregulated in mated queens compared to virgins^{58,59}, and ROS damage leads to infertility in 153 mammals^{60,61}. Heat is well known to lead to oxidative stress⁶²; therefore, we hypothesized that gueens 154 155 may combat heat-stress by upregulating enzymes that mitigate oxidative damage. Additionally, 156 glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has been previously implicated in stored sperm 157 longevity, since metabolic activity measurements of stored sperm supplemented with its substrate 158 (glyceraldehyde-3-phosphate) improved viability and produced the highest molar ratio of ATP via 159 anaerobic catabolism⁵⁷. Heat-induced changes in GAPDH expression could therefore also impact sperm 160 viability.

161	To test these hypotheses, we compared expression of ROS mitigating enzymes (superoxide dismutases
162	(SOD1, 2, and 3) and catalase) as well as GAPDH in heat-shocked and non-heat-shocked virgin
163	spermathecae, mated spermathecae, and ejaculated semen. Stored sperm are reportedly
164	transcriptionally active in queens to some degree ⁵⁷ , although whether this is true in general has been a
165	matter of debate across species ⁶³ . It is not known with certainty whether ejaculated sperm are
166	transcriptionally active; nevertheless, analyzing ejaculates, virgin spermathecae and mated
167	spermathecae helped us to disentangle the male versus female origins of expression in sperm-filled,
168	mated spermathecae. We found that heat-shock did not upregulate expression of ROS-mitigating
169	enzymes, nor GAPDH (Fig S2); rather, all enzymes were consistently (but not significantly)
170	downregulated with heat (by 10-30%). Queens must therefore employ other strategies, if any, to
171	combat heat stress.
172	A multitude of other proteins could also be responsible for mitigating damage from heat—most
173	obviously, members of the heat-shock protein (HSP) family ^{24,64-66} . HSPs generally function as molecular
174	chaperones that stabilize proteins, refold damaged proteins, and prevent protein aggregation, but they
175	can have diverse functions in specific contexts and their precise role in the honey bee spermatheca is
176	unknown. Some HSPs contain an ATPase domain and require ATP to function (<i>e.g.</i> , HSP70s, HSP90s,
177	HSP110s), while others operate independently of ATP (<i>e.g.</i> , HSP10s, HSP20s, HSP60s). In addition, since
178	glyceraldehyde-3-phosphate yields the most ATP per unit via anaerobic catabolism of any tested
179	substrate and significantly increased sperm longevity ⁵⁷ , this implies that ATP usage economy is a critical
180	factor for maintaining viable sperm. Therefore, we expect that ATP-independent HSPs should be
181	upregulated with heat stress in spermathecae, and ATP-dependent HSPs (or a mix of ATP-dependent
182	and ATP-independent HSPs) should be upregulated as a result of heat stress in other tissues. In addition,
183	some ATP-independent short HSPs (sHSPs, typically 20-28 kDa) suppress ROS generation while
184	preventing protein aggregates and apoptosis ^{62,67} . Since molecular processes that reduce oxidative

damage favour sperm longevity, we hypothesized that heat should induce expression of sHSPs in thespermatheca.

187	To determine which HSPs were upregulated with heat-shock, we compared global protein expression
188	profiles in heat-shocked and non-heat-shocked mated and virgin spermathecae, ejaculates, and ovaries
189	(Fig 4a, Fig S3). We hypothesized that the heat-shock response should both mitigate ROS production
190	and conserve ATP in the spermatheca, but this ATP-conservation may not be as critical in the ovaries
191	where the ATP economy is not expected to be as tightly controlled. Of the 2,778 protein groups
192	identified in the spermathecae and ejaculates, only five were significantly up-regulated with heat (5%
193	FDR), all of which were identified in the mated and virgin spermathecae. All five of the proteins were
194	unique, ATP-independent sHSPs (accessions: XP_001120194.1, XP_001119884.1, XP_395659.1,
195	XP_001120006.2, and XP_026294937.1) (Fig 4b). In heat-shocked virgin spermathecae, two of the same
196	sHSPs (XP_395659.1 and XP_001120006.2) were also significantly upregulated, and all mirrored the
197	expression patterns in the spermathecae of heat-shocked mated queen (even if not significant),
198	indicating that this is a queen-derived, and not a sperm-derived, response (Fig 4c and d). By contrast,
199	the most strongly upregulated protein in heat-shocked ovaries was HSP70—an ATP-dependent HSP—
200	and no sHSPs were upregulated in this tissue, supporting our initial hypotheses (Fig 4e).
201	As expected, the significantly enriched Gene Ontology (GO) terms were all related to responses to heat
202	and stress in the spermathecae (Fig 5a and b). However, the only significantly enriched GO term in the
203	semen analysis was related to the electron transfer activity (Fig 5c), driven by a heat-induced down-
204	regulation of the proteins linked to this GO term (Fig 5d), suggesting that the sperm may be less able to
205	produce the large amounts of ATP necessary for flagellar beating. This is consistent with the findings of
206	Gong <i>et al.</i> , who found that heat stress at 42°C impaired mitochondrial function, reduced electron
207	transport chain complexes' activities, and lowered total cellular ATP ²³ . Numerous proteins (none of
208	which were HSPs) were downregulated in heat-shocked spermathecae, but based on the GO term

209 enrichment analysis and manual inspection of their functions, it is unclear what their biological 210 significance is. It is possible that they are degradation products of heat-killed sperm, but since these 211 proteins were largely absent in the semen samples, we cannot confirm this hypothesis. 212 Twenty HSPs were identified in spermathecae overall and 13 were identified in the semen (Fig 6); 213 however, the precise functions of specific honey bee HSPs are largely unknown. To gain insight into 214 potential roles of the five differentially expressed HSPs we identified, we compared their sequences to 215 annotated sequences in other species and identified putative protein domains using NCBI's basic local alignment search tool (BLAST)⁶⁸. All five of the HSPs contain one or more alpha crystallin domains, which 216 217 is characteristic of small HSPs (sHSPs). Four of these HSPs are within the expected molecular weight range, and one of the proteins (XP_026294937.1) is predicted to be 56.7 kDa (and contains two alpha 218 219 crystallin domains instead of one), highlighting that HSPs should not necessarily be categorized based on 220 molecular weight alone. All five of the honey bee sHSPs are orthologous to the *D. melanogaster* gene 221 *l(2)efl* (also known as CRYAB). In *Drosophila*, upregulation of this gene causes increased lifespan of 222 individual flies⁶⁹. CRYAB and other sHSPs are highly conserved in both vertebrates and invertebrates,⁷⁰ 223 but is by far the best studied in human. In humans, sHSP upregulation is associated with anti-apoptotic properties, as well as mitigating ROS production^{62,66,71,72}. Their up-regulation in heat-shocked testes is 224 225 thought to help compensate for the damaging effects of heat⁷¹, and we speculate that they are playing a 226 similar role in the spermathecae. Queens with strongly up-regulated sHSPs may therefore be better able 227 to counter-act ROS production, sperm death, and ultimately maintain longevity. 228 Other researchers have suggested that in mammals, some ATP-dependent HSPs (e.g., HSP70s and 229 HSP90s) may be important for maintaining male fertility via quality control of sperm^{66,73}. Unlike sHSPs, 230 these HSPs appear to be pro-apoptotic factors and could theoretically help prevent damaged sperm 231 from being able to fertilize an egg. Neither queen spermathecae nor drone ejaculates provide evidence

supporting this strategy of quality control in honey bees; in this experiment, none of the HSPs that were

233 up-regulated with heat in spermathecae or semen contained an ATP-binding nor ATPase domain, which are characteristics of HSP70s and HSP90s but not the sHSPs (Figure 5 and 6)⁶⁶. Rather, HSP70 was only 234 235 upregulated in the ovaries, which does not directly participate in sperm maintenance. 236 In mammals, sHSPs are upregulated in testes after heating, but so are ATP-consuming proteins like HSP105, HSP70-1, HSP70-2, and HSP90⁷⁴⁻⁷⁶. We speculate that the energetic cost associated with 237 238 ensuring high sperm quality is advantageous in mammals because it helps reduce the risk of an egg 239 going unfertilized, which would produce no progeny. However, the honey bee's differing strategy of 240 upregulating only the ATP-independent sHSPs in the spermatheca is consistent with a tightly controlled 241 ATP usage economy, as well as their haplodiploid sex determination system: for honey bees, an 242 unfertilized egg develops as a drone, rather than being non-viable. Therefore, honey bees may have 243 experienced little selection for an ATP-consuming guality control measure, and instead combat heat 244 damage to sperm in an ATP-conservative manner. The ATP-independent sHSPs have the dual purpose of 245 also limiting oxidative damage and conserving ATP. The significant enrichment for differentially 246 expressed proteins involved in multiple nucleotide metabolic processes, including ATP, in the transition 247 from virgin to mated spermathecae (Fig S3) supports the notion that regulating ATP production and 248 consumption is critical for maintaining stored sperm viability. 249 Moreover, analyzing heat-shocked mated queen ovaries revealed that HSP70—an ATP-dependent HSP— 250 was uniquely upregulated in this tissue (Fig 5 and 6). This observation is consistent with selection for 251 ATP-consuming quality control mechanisms when a failed fertilization event fails to produce offspring (in this case, when a non-viable egg meets a viable sperm). Overall, these data indicate that upregulation of 252 253 specific sHSPs is not a general indicator of cellular stress, since it was not observed in the ovaries.

254 Indeed, the ovaries appear not to express most sHSPs at all, whereas they were abundantly expressed

even in non-heat-shocked spermathecae.

256	Finally, we compared protein expression in spermathecae, fat bodies, and ovaries between 11 queens
257	that failed due to unknown causes and 11 age-matched, apiary-matched healthy queens. We identified
258	1,219, 1,640, and 1,782 proteins, respectively, but did not find any significant expression differences at
259	10% FDR, indicating that there is not one universal signature of failure (Fig S4). Rather, we suspect that
260	different stressors alter protein expression in these tissues in different ways, and that no significant
261	differences were found because it is highly unlikely that the queens all failed from the same cause.
262	We propose that the sHSP response of the spermathecae may serve as a post-queen-failure biomarker
262 263	We propose that the sHSP response of the spermathecae may serve as a post-queen-failure biomarker of heat stress which could help diagnose causes of colony failure in the field. Future experiments should
263	of heat stress which could help diagnose causes of colony failure in the field. Future experiments should
263 264	of heat stress which could help diagnose causes of colony failure in the field. Future experiments should include a blind heat-shock trial to determine a) if previously heat-shocked queens can be reliably

268

269 Conclusion

270 Our experiments show that temperature stress deeply damages both stored and ejaculated honey bee 271 sperm viability, that queens are vulnerable to temperature changes both in colonies and during 272 transport, and that temperatures ranging between 15°C and 38°C for 2 - 4 h are generally safe for 273 queens. Honey bees have a strong sex bias in heat tolerance, with females being highly tolerant—a bias 274 which does not exist in the two solitary insect species we tested (H. halys and D. melanogaster). Future 275 research should investigate if this sex-biased heat tolerance is also present in other Hymenopterans in 276 order to better understand the evolutionary origin. Upon heat-shock, queens upregulate ATP-277 independent HSPs in their spermathecae, which both minimizes ATP consumption and could provide 278 beneficial anti-apoptotic properties. In contrast, HSP70 (an ATP-consuming HSP) is upregulated in

- 279 ovaries. Once validated in field trials, these protein signatures could serve as biomarkers for heat stress
- 280 enabling longitudinal surveys for the prevalence of heat-induced loss of sperm viability in diverse
- 281 landscapes as part of a biomonitoring program.

282 Methods

283 Sperm viability assays

Honey bee queens (Kona Queens supplied in a single shipment) were treated at one of five different

- 285 temperatures (5, 10, 15, 25, 38, 40, and 42°C) for 1, 2, or 4 hours, then held at 25°C for 2 d. The
- temperature range was chosen because previous research showed that 4°C and 8°C were sufficiently

287 cold to reduce sperm viability, and that 40 - 42°C was sufficiently hot.¹⁸ Therefore, more temperatures

were chosen at the cold (5, 10, and 15°C) and hot (38, 40, and 42°C) extremes to try to capture the

- critical point at which the viability begins to drop. We chose 25°C as the control temperature, rather
- than 35°C, because these queens were obtained from a commercial supplier and queens are not held at
- 291 hive temperature during transport. While a 35°C treatment group would be an appropriate control, it
- 292 would not be meaningful in these circumstances.

293 Fourteen queens (replicates) were included in the 25°C treatment (negative control), whereas 8 or 9

294 queens were included in all other temperatures and exposure durations (see Table 1 for specific

295 replication information). Following this, queens were beheaded, and their spermathecae were dissected

with fine forceps. The spermathecae were gently agitated with a pipet tip in 100 μl Buffer D (17 mM D-

glucose, 54 mM KCl, 25 mM NaHCO₃, 83 mM Na₃C₆H₅O₇) to break them open and release the sperm.

298 Sperm viability was determined using a live/dead sperm viability kit (Thermo) following the protocols of

- 299 Collins and Donoghue⁷⁷. Briefly, the SYBR14 dye was diluted 1:9 in DMSO. Two microlitres of the diluted
- 300 SYBR14 dye and 4 μ l of propidium iodide were gently mixed with the sperm and incubated for 15
- 301 minutes in the dark. Two microlitres of the mixture was then added to a glass microscope slide and

302	viewed under a fluorescent microscope. Live (green) and red (dead) sperm were counted until 100 cells
303	were observed, covering multiple fields of view. Unless otherwise reported, all statistical analyses were
304	performed in R (v3.5.1). First, the data were tested for normality using a Shapiro test. The data was not
305	normally distributed, we used a non-parametric test (Kruskal Wallis) to investigate the effects of
306	temperature on viability for each duration separately. When a significant effect of temperature was
307	identified, we performed a post-hoc Dunnett's test to identify significant contrasts to the 25°C control.
308	To identify the best-fitting linear model, we pooled the 2 h and 4 h data and performed linear
309	regressions using temperature as a continuous variable, testing exponents 1 - 4 to identify the optimal
310	fit (highest R ²).
311	Drones were harvested from three different colonies headed by Kona queens with unknown
312	relatedness. The colonies were kept in Beaverlodge, Alberta. Semen was collected with glass capillaries
313	according to the methods of Collins and Donoghue ⁷⁷ . Briefly, we pinched drone abdomens with a rolling
314	motion from the anterior to posterior end to expel the endophallus and semen. The semen was
315	collected by first filling glass capillaries with 1 μ l Buffer D, then drawing up the semen via capillary action
316	(avoiding the white mucus secretions). Capillaries were then filled with a further 1 μl of Buffer D to
317	prevent the sample from drying out, and both ends were wrapped with parafilm. This technique
318	typically yielded 0.5-1.0 μ l of semen per sample. Semen samples were then heat-shocked at 42°C for 0,
319	2, or 4 h, then allowed to recover at 25°C for 2 d (see Table 2 for replication information). We chose a
320	lower temperature for semen recovery because ejaculated drone semen can be maintained at room
321	temperature for several weeks while retaining high viability ⁷⁸ . Viability assays for these semen samples
322	was performed following the same methods as for spermathecae. Data were analyzed by a Shapiro test
323	and Levene's median test to confirm normal distribution and evaluate the validity of the assumption of
324	equal variance, respectively. The data passed both tests, so a two-way ANOVA (factors: time, colony)
325	was performed, followed by a Tukey HSD test.

2	2	C
-3	Z	σ

327 *Recording temperatures during shipments*

328	We arranged seven shipments of locally produced (BC) queens via ground transportation from Kettle
329	Valley Queens, Nicola Valley Honey, Wild Antho, Campells Gold Honey, Heather Meadows Honey Farm,
330	Six Legs Good Apiaries, and Wildwood Queens (located in Grand Forks, Merrit, Armstrong, Abbotsford,
331	Telka, Surrey, and Powell River, respectively) to the University of British Columbia, Vancouver, in the
332	summer of 2019. These queens (7-8 queens per shipment) were all considered to be "good" queens by
333	the donating bee breeders based on their laying pattern. These queens cumulatively make up the
334	"healthy" queen cohort (N = 55 queens total). An additional shipment travelled from Edmonton to UBC
335	Vancouver via air freight. All shipments were accompanied by two temperature data loggers (B-series
336	WatchDog loggers, Spectrum Technologies) set to record the temperature every 10 minutes for the
337	duration of the shipment.
338 339 340	Failed queen viability survey
	Failed queen viability survey We solicited samples of failed queens, as rated by beekeepers, from throughout BC in the summer of
339 340	
339 340 341	We solicited samples of failed queens, as rated by beekeepers, from throughout BC in the summer of
339 340 341 342	We solicited samples of failed queens, as rated by beekeepers, from throughout BC in the summer of 2019. Reported reasons for designating the queens as 'failed' included poor brood pattern, drone laying,
339 340 341 342 343	We solicited samples of failed queens, as rated by beekeepers, from throughout BC in the summer of 2019. Reported reasons for designating the queens as 'failed' included poor brood pattern, drone laying, poor population build-up, disease symptoms, injury, small size, and worker rejection. These queens (N =
339 340 341 342 343 344	We solicited samples of failed queens, as rated by beekeepers, from throughout BC in the summer of 2019. Reported reasons for designating the queens as 'failed' included poor brood pattern, drone laying, poor population build-up, disease symptoms, injury, small size, and worker rejection. These queens (N = 58) make up the "failed" queen cohort. We measured the sperm viability of all failed and healthy queens
339 340 341 342 343 344 345 346 347	We solicited samples of failed queens, as rated by beekeepers, from throughout BC in the summer of 2019. Reported reasons for designating the queens as 'failed' included poor brood pattern, drone laying, poor population build-up, disease symptoms, injury, small size, and worker rejection. These queens (N = 58) make up the "failed" queen cohort. We measured the sperm viability of all failed and healthy queens using the same live/dead sperm staining kit as described under "Sperm Viability Assays."
 339 340 341 342 343 344 345 346 347 348 	We solicited samples of failed queens, as rated by beekeepers, from throughout BC in the summer of 2019. Reported reasons for designating the queens as 'failed' included poor brood pattern, drone laying, poor population build-up, disease symptoms, injury, small size, and worker rejection. These queens (N = 58) make up the "failed" queen cohort. We measured the sperm viability of all failed and healthy queens using the same live/dead sperm staining kit as described under "Sperm Viability Assays." <i>Hive temperature recording</i>

- hottest day (the data shown) was August 26th. Loggers were set to record the temperature every 10
- 352 minutes and were placed between each frame of the hive. Hives consisted of 10 deep frames in a single

wooden Langstroth brood box with a medium depth box on top of the brood chamber and a migratory
wooden cover. The ambient temperatures were recorded with a temperature logger placed in the shade
beneath each hive.

356

357 Heat-shock survival

358 For honey bee heat-shock tests, drones and workers were collected by retrieving a frame of capped 359 brood from a hive and allowing the bees to emerge in an incubator. Newly emerged bees were marked 360 with a paint pen and returned to the colony to age for one week, at which time they were recaptured 361 and caged in California mini cages. For drone heat-shock tests, one drone was added per cage along with 362 malleable candy (icing sugar-based) and five worker attendants. A total of 199 drones were caged in the 363 following experimental groups: 42°C heat (50), 38°C heat (50), and 25°C (99) for six hours (all at 60% 364 relative humidity). Every hour, the number of drones that perished was recorded. Worker heat stress 365 tests were conducted independently with six workers per cage (54 workers per group) held at 42°C and

366 25°C.

367 Queens were from a variety of sources (local, Hawaii, and Australia) and their ages ranged from

368 approximately 3 - 5 weeks. They were kept in California mini-cages with five worker attendants each and

held at 42°C, 38°C, or 25°C for either 1, 2, or 4 h as part of other experiments (for viability

370 measurements and proteomics). Relative humidity varied between 40 and 80%, but this did not have an

effect of survival (100% of queens survived in both cases). Eight queens were held at 42°C for 6 h at a

372 constant 60% relative humidity specifically for survival analysis. See **Fig S1** for sample sizes and risk

tables for each treatment group. No queens died in these tests; therefore it was not necessary to

account for geographic origin in statistical analyses.

375 Male and female 3- to 10-day-old Canton S wild type fruit flies were held at 38°C and 25°C for six hours
376 in *Drosophila* vials with media (50 males and 50 females). Loss of motility was recorded every hour. We

377	used this as the endpoint because fruit flies will become paralyzed with heat, but recover motility after
378	several hours (in some cases, overnight) at cooler temperatures. Control female flies were maintained
379	for a further week after the experiment to confirm that the majority of them had successfully mated
380	prior to the heat stress tests.
381	Male and female stink bugs were reared in the laboratory according to standard protocols ⁷⁹ . Stink bugs
382	which transitioned from nymphs to adults 3 - 7 d prior were transferred to ventilated 500 ml volume
383	plastic cages with a piece of moist paper towel (3 - 6 stink bugs per cage). They were heat stressed at
384	42°C (55 females and 41 males) or held at 25°C (36 females and 24 males) for 6 h. Only mated females
385	carrying eggs were included in the experiment, as determined by post-stress dissection.
386	In all cases, Kaplan-Meier survival curves were generated in R and compared using log-rank tests. See Fig
387	S1 for risk tables and sample size information for survival tests for all species.
200	llest shack for protoomies

388 Heat-shock for proteomics

389 Our experimental design for the proteomics experiments was to compare heat-shocked and non heat-

390 shocked treatments of three tissues: virgin spermathecae, mated spermathecae, and ejaculated semen

391 (N = 10 each for all but the semen, which was N = 5 where each N was a pooled sample of five drones

392 from one colony). For the mated spermathecae, expression differences induced by heat-shock would be

393 the sum of any expression differences that may have occurred in the queen's cells and in the sperm

cells. The virgin spermathecae, however, do not contain sperm so that response to heat-shock is purely

395 from the queen.

Honey bee colonies were maintained in an apiary at the University of British Columbia. During the

397 summer of 2018, 40 queens were reared from a single colony of local origin and half were allowed to

398 open mate, while the other half were kept as virgins in plastic queen cages. Two weeks after emergence,

399 the virgin queens were given two, eight-minute carbon dioxide treatments on sequential days, then re-

introduced to their nucleus colonies. This process stimulates virgin queens to begin laying⁸⁰, and we
 conducted these treatments in order to minimize the physiological differences between virgin and
 mated queens.

403 Virgin and mated queens were retrieved from their nucleus colonies and half of each (10) were

404 subjected to heat-shock (42°C, 2 h), and then maintained at 30°C for 2 d. The other half were held only

405 at 30°C for 2 d. Four to six weeks after mating, the queens were anesthetized with carbon dioxide,

406 beheaded, then their spermathecae were removed with fine forceps. Both ovaries were also removed

407 and weighed.

408 During the same summer, 200 drones from a different colony in the same apiary were collected and

409 maintained in the laboratory overnight at ambient temperature with excess syrup (50% sucrose). The

410 next day, semen was harvested with glass capillaries according to the methods described above.

411 Because many drones were not sexually mature, 60 semen samples (out of the 200 drones) were

412 collected. Capillaries were placed in petri dishes and half (30) were heat-shocked as described above,

413 then kept at 25°C for 2 d. The other half were only kept at 25°C for 2 d. Ten samples from each

414 experimental group were used for sperm viability assays as described above.

415 Proteomics sample preparation

416 Semen and spermatheca samples were homogenized in 2 ml screw-cap tubes containing 100 μl of lysis

417 buffer (6 M guanidinium chloride, 100 mM Tris, pH 8.5) and four ceramic beads. The homogenizer

418 (Precellys 24, Bertin Instruments) was set to 6,500 s⁻¹ for 30 s, then samples were centrifuged (16,000

419 rcf, 10 min, 4°C) to remove debris. Supernatants were transferred to a new tube and diluted 1:1 with

420 dH₂O. Protein was precipitated by adding four volumes of ice-cold acetone and incubating overnight at -

421 20°C. The precipitated protein was pelleted and washed twice with 500 μl of 80% acetone, then the

pellet was allowed to air dry (ca. 5 min) prior to solubilization in 50 μl of digestion buffer (6 M urea, 2 M
thiourea).

424 Approximately 25 micrograms of protein were reduced (0.5 µg dithiothreitol, 20 min), alkylated (2.5 µg 425 iodoacetamide, 30 min, dark), and digested (0.5 µg Lys-C for 3 h, then 0.5 µg trypsin overnight). Digested 426 peptides were acidified with one volume of 1% trifluoroacetic acid and desalted with high-capacity 427 STAGE tips as previously described⁸¹. Eluted samples were dried (SpeedVac, Eppendorf, 45 min) and 428 resuspended in Buffer A (0.1% formic acid). Peptide concentrations were determined using a NanoDrop 429 (Thermo, 280 nm) and sample orders were randomized for liquid chromatography-tandem mass 430 spectrometry (LC-MS/MS) analysis. 431 LC-MS/MS data acquisition and analysis 432 Peptides (0.5 µg for each sample) were injected on an EASY-nLC 1000 liquid chromatography system 433 (Thermo) coupled to an Impact II Q-TOF mass spectrometer (Bruker), essentially as previously 434 described⁸². The LC system included a fused-silica (5 μ m Agua C18 particles (Phenomenex)) fritted 2 cm 435 trap column connected to a 50 cm analytical column packed with ReproSil C18 (3 µm C18 particles (Dr. 436 Maisch)). The separation gradient ran from 5% to 35% Buffer B (80% acetonitrile, 0.1% formic acid) over 437 90 min, followed by a 15 min wash at 95% Buffer B (flow rate: 250 µL/min). The instrument parameters 438 were: scan from 150 to 2200 m/z, 100 μ s transient time, 10 μ s prepulse storage, 7 eV collision energy, 439 1500 Vpp Collision RF, a +2 default charge state, 18 Hz spectral acquisition rate, 3.0 s cycle time, and the 440 intensity threshold was 250 counts. Mass spectrometry data were searched using MaxQuant (v1.5.3.30) using default parameters, except 441 "match between runs" was enabled. Peptide spectral matches, peptide identifications and protein 442

443 identifications were controlled at 1% false discovery rates (FDRs). The protein search database was the

444 NCBI Identical Protein Groups database for *Apis mellifera* (downloaded Nov. 1st, 2018; 21,425 entries)

445	plus all honey bee viral proteins contained within NCBI (a further 508 entries). Differential expression
446	analysis was performed in Perseus (v1.6.1.1) essentially as previously described ⁸² . Histograms of protein
447	counts across LFQ intensities were first inspected for normality. Then proteins differentially expressed
448	between heat-shocked and non-heat-shocked samples, as well as among tissues (semen, virgin
449	spermathecae, and mated spermathecae), were identified using two-tailed t-tests and an ANOVA,
450	respectively. Only P values surviving the 10% FDR threshold (permutation-based method) were
451	considered significant.
452	GO term enrichment analysis
453	Gene Ontology (GO) terms were retrieved using BLAST2GO (v4.1.9) and subsequent enrichment analyses
454	were conducted using ErmineJ ⁸³ . We used the gene score resampling (GSR) method (with P values as
455	scores). Unlike conventional over-representation analyses, this method does not depend on submitting
456	a 'hit list,' the composition of which is sensitive to arbitrary significance cut-offs. Rather, the GSR
457	method uses p-values as a continuous variable and looks for GO terms that are enriched in proteins with
458	low p-values along the continuum. More documentation about the GSR method and ErmineJ can be
459	found at https://erminej.msl.ubc.ca/help/tutorials/running-an-analysis-resampling/. Enrichment false
460	discovery rates were controlled to 10% using the Benjamini-Hochberg correction method. Protein
461	multifunctionality (MF) scores were also computed in ErmineJ based on the number of different GO
462	terms with which the protein is associated. This process generates an "MF-corrected P value" (also
463	limited to 10% FDR), which is the enrichment P value after correcting for multifunctionality.
464	Field-failed queens
465	Age-matched failing and healthy queens (11 each) were obtained from a research apiary in
466	Pennsylvania. Queens were rated as 'failing' if they had ceased to lay eggs, were 'drone layers' (<i>i.e.,</i>

467 were not laying fertilized female eggs), or had otherwise inferior brood patterns. Queens were frozen on

- 468 dry ice in the field and stored at -80°C until spermatheca and ovary dissection. Proteomics analysis was
- 469 performed as described above. Sample handlers were blind to queen groups until all proteomics data
- 470 was acquired. Differential expression analysis was performed in Perseus as described above.
- 471 References
- 472 1 Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change 473 on the future of biodiversity. Ecol Lett 15, 365-377, doi:10.1111/j.1461-0248.2011.01736.x 474 (2012). 475 Thomas, C. D. et al. Extinction risk from climate change. Nature 427, 145-148, 2 476 doi:10.1038/nature02121 (2004). 477 3 Bálint, M. et al. Cryptic biodiversity loss linked to global climate change. Nature Climate Change 478 **1**, 313 (2011). 479 4 Sales, K. et al. Experimental heatwaves compromise sperm function and cause transgenerational 480 damage in a model insect. Nat Commun 9, 4771, doi:10.1038/s41467-018-07273-z (2018). 481 5 Walsh, B. S. et al. The Impact of Climate Change on Fertility. Trends Ecol Evol, 482 doi:10.1016/j.tree.2018.12.002 (2019). 483 Zeh, J. A. et al. Degrees of disruption: projected temperature increase has catastrophic 6 484 consequences for reproduction in a tropical ectotherm. Global Change Biology 18, 1833-1842 485 (2012). 486 7 Jannes, P. et al. Male subfertility induced by acute scrotal heating affects embryo quality in 487 normal female mice. Hum Reprod 13, 372-375 (1998). 488 8 Pérez-Crespo, M., Pintado, B. & Gutiérrez-Adán, A. Scrotal heat stress effects on sperm viability, 489 sperm DNA integrity, and the offspring sex ratio in mice. Mol Reprod Dev 75, 40-47, 490 doi:10.1002/mrd.20759 (2008). 491 9 Setchell, B. The effects of heat on the testes of mammals. Anim Reprod 3, 81-91 (2006). 492 10 Thonneau, P., Bujan, L., Multigner, L. & Mieusset, R. Occupational heat exposure and male 493 fertility: a review. Hum Reprod 13, 2122-2125 (1998). 494 Yaeram, J., Setchell, B. P. & Maddocks, S. Effect of heat stress on the fertility of male mice in vivo 11 495 and in vitro. Reprod Fertil Dev 18, 647-653 (2006). 12 496 Hurley, L. L., McDiarmid, C. S., Friesen, C. R., Griffith, S. C. & Rowe, M. Experimental heatwaves 497 negatively impact sperm quality in the zebra finch. Proc Biol Sci 285, 498 doi:10.1098/rspb.2017.2547 (2018). 499 13 Breckels, R. D. & Neff, B. D. The effects of elevated temperature on the sexual traits, 500 immunology and survivorship of a tropical ectotherm. J Exp Biol 216, 2658-2664, 501 doi:10.1242/jeb.084962 (2013). 502 14 Harvey, S. C. & Viney, M. E. Thermal variation reveals natural variation between isolates of 503 Caenorhabditis elegans. J Exp Zool B Mol Dev Evol 308, 409-416, doi:10.1002/jez.b.21161 (2007). 504 15 Porcelli, D., Gaston, K. J., Butlin, R. K. & Snook, R. R. Local adaptation of reproductive 505 performance during thermal stress. J Evol Biol 30, 422-429, doi:10.1111/jeb.13018 (2017). 506 16 Gasparini, C., Lu, C., Dingemanse, N. J. & Tuni, C. Paternal-effects in a terrestrial ectotherm are 507 temperature dependent but no evidence for adaptive effects. Functional Ecology **32**, 1011-1021 508 (2018). 509 17 Saxena, B., Sharma, P., Thappa, R. & Tikku, K. Temperature induced sterilization for control of 510 three stored grain beetles. Journal of Stored Products Research 28, 67-70 (1992).

511	18	Pettis, J. S., Rice, N., Joselow, K., vanEngelsdorp, D. & Chaimanee, V. Colony Failure Linked to
512		Low Sperm Viability in Honey Bee (Apis mellifera) Queens and an Exploration of Potential
513		Causative Factors. PLoS One 11, e0147220, doi:10.1371/journal.pone.0147220 (2016).
514	19	Stürup, M., Baer-Imhoof, B., Nash, D. R., Boomsma, J. J. & Baer, B. When every sperm counts:
515		factors affecting male fertility in the honeybee Apis mellifera. Behavioral Ecology 24, 1192-1198
516		(2013).
517	20	Zizzari, Z. V. & Ellers, J. Effects of exposure to short-term heat stress on male reproductive
518		fitness in a soil arthropod. Journal of insect physiology 57, 421-426 (2011).
519	21	David, J. R. et al. Male sterility at extreme temperatures: a significant but neglected
520		phenomenon for understanding Drosophila climatic adaptations. <i>J Evol Biol</i> 18, 838-846,
521		doi:10.1111/j.1420-9101.2005.00914.x (2005).
522	22	Hansen, P. J. Effects of heat stress on mammalian reproduction. Philos Trans R Soc Lond B Biol
523		<i>Sci</i> 364 , 3341-3350, doi:10.1098/rstb.2009.0131 (2009).
524	23	Gong, Y. <i>et al.</i> Heat Stress Reduces Sperm Motility via Activation of Glycogen Synthase Kinase- 3α
525		and Inhibition of Mitochondrial Protein Import. <i>Frontiers in physiology</i> 8, 718 (2017).
526	24	Yang, R. C., Shen, M. R., Chiang, P. H., Yang, S. L. & Chen, S. S. A possible role of heat shock
527		proteins in human sperm motility. <i>Gaoxiong Yi Xue Ke Xue Za Zhi</i> 8 , 299-305 (1992).
528	25	Luber, G. & McGeehin, M. Climate change and extreme heat events. Am J Prev Med 35, 429-435,
529		doi:10.1016/j.amepre.2008.08.021 (2008).
530	26	Hayhoe, K., Sheridan, S., Kalkstein, L. & Greene, S. Climate change, heat waves, and mortality
531		projections for Chicago. Journal of Great Lakes Research 36 , 65-73 (2010).
532	27	Meehl, G. A. & Tebaldi, C. More intense, more frequent, and longer lasting heat waves in the
533		21st century. <i>Science</i> 305 , 994-997, doi:10.1126/science.1098704 (2004).
534	28	Potts, S. G. et al. Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25,
535		345-353, doi:10.1016/j.tree.2010.01.007 (2010).
536	29	Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in
537		protected areas. <i>PLoS One</i> 12 , e0185809, doi:10.1371/journal.pone.0185809 (2017).
538	30	Cameron, S. A. et al. Patterns of widespread decline in North American bumble bees. Proc Natl
539		Acad Sci U S A 108 , 662-667, doi:10.1073/pnas.1014743108 (2011).
540	31	Rasmont, P. & Mersch, P. First estimation of faunistic drift by bumblebees of Belgium
541		(Hymenoptera: Apidae). Annalen van de Koninklijke Belgische Vereniging voor Dierkunde (1988).
542	32	Winfree, R., Aguilar, R., Vázquez, D. P., LeBuhn, G. & Aizen, M. A. A meta-analysis of bees'
543		responses to anthropogenic disturbance. <i>Ecology</i> 90 , 2068-2076 (2009).
544	33	Ricketts, T. H. et al. Landscape effects on crop pollination services: are there general patterns?
545		<i>Ecol Lett</i> 11 , 499-515, doi:10.1111/j.1461-0248.2008.01157.x (2008).
546	34	Biesmeijer, J. C. et al. Parallel declines in pollinators and insect-pollinated plants in Britain and
547		the Netherlands. <i>Science</i> 313 , 351-354, doi:10.1126/science.1127863 (2006).
548	35	Whitehorn, P. R., Tinsley, M. C., Brown, M. J., Darvill, B. & Goulson, D. Genetic diversity, parasite
549		prevalence and immunity in wild bumblebees. Proceedings of the Royal Society of London B:
550		Biological Sciences, rspb20101550 (2010).
551	36	McCallum, H. & Dobson, A. Disease, habitat fragmentation and conservation. Proc Biol Sci 269,
552		2041-2049, doi:10.1098/rspb.2002.2079 (2002).
553	37	Baer, B., Collins, J., Maalaps, K. & den Boer, S. P. Sperm use economy of honeybee (Apis
554		mellifera) queens. <i>Ecol Evol</i> 6, 2877-2885, doi:10.1002/ece3.2075 (2016).
555	38	Delaney, D. A., Keller, J. J., Caren, J. R. & Tarpy, D. R. The physical, insemination, and
556		reproductive quality of honey bee queens (Apis mellifera L.). Apidologie 42, 1-13 (2011).

557	39	Tarpy, D. R. & Olivarez Jr, R. Measuring sperm viability over time in honey bee queens to
558	39	determine patterns in stored-sperm and queen longevity. <i>Journal of Apicultural Research</i> 53,
559		493-495 (2014).
560	40	Stabentheiner, A., Kovac, H. & Brodschneider, R. Honeybee colony thermoregulation–regulatory
	40	
561		mechanisms and contribution of individuals in dependence on age, location and thermal stress.
562		<i>PLoS One</i> 5 , e8967 (2010).
563	41	Alattal, Y. Impact of temperature extremes on survival of indigenous and exotic honey bee
564		subspecies, Apis mellifera, under desert and semiarid climates. Bulletin of Insectology 68, 219-
565		222 (2015).
566	42	Fahrenholz, L., Lamprecht, I. & Schricker, B. Thermal investigations of a honey bee colony:
567		thermoregulation of the hive during summer and winter and heat production of members of
568		different bee castes. Journal of Comparative Physiology B 159, 551-560 (1989).
569	43	Bordier, C. et al. Colony adaptive response to simulated heat waves and consequences at the
570		individual level in honeybees (Apis mellifera). <i>Sci Rep</i> 7 , 3760, doi:10.1038/s41598-017-03944-x
571		(2017).
572	44	Villa, J. D., Gentry, C. & Taylor, O. R. Preliminary observations on thermoregulation, clustering,
573		and energy utilization in African and European honey bees. Journal of the Kansas Entomological
574		Society 60 , 4-14 (1987).
575	45	Smith, K. E. <i>et al.</i> Honey as a biomonitor for a changing world. <i>Nature Sustainability</i> 2 , 223
576	-	(2019).
577	46	Mitchell, J. D., Hewitt, P. & Van Der Linde, T. D. K. Critical thermal limits and temperature
578	10	tolerance in the harvester termite Hodotermes mossambicus (Hagen). <i>Journal of Insect</i>
579		Physiology 39 , 523-528 (1993).
580	47	Clémencet, J., Cournault, L., Odent, A. & Doums, C. Worker thermal tolerance in the
581	47	thermophilic ant Cataglyphis cursor (Hymenoptera, Formicidae). <i>Insectes sociaux</i> 57 , 11-15
582		(2010).
	40	
583	48	Baudier, K. M., Mudd, A. E., Erickson, S. C. & O'Donnell, S. Microhabitat and body size effects on
584		heat tolerance: implications for responses to climate change (army ants: Formicidae,
585	40	Ecitoninae). <i>J Anim Ecol</i> 84 , 1322-1330, doi:10.1111/1365-2656.12388 (2015).
586	49	Chirault, M. et al. A combined approach to heat stress effect on male fertility in Nasonia
587		vitripennis: from the physiological consequences on spermatogenesis to the reproductive
588		adjustment of females mated with stressed males. PLoS One 10, e0120656,
589		doi:10.1371/journal.pone.0120656 (2015).
590	50	Hidalgo, K., Beaugeard, E., Renault, D., Dedeine, F. & Lécureuil, C. Physiological and biochemical
591		responses to thermal stress vary among genotypes in the parasitic wasp Nasonia vitripennis. J
592		Insect Physiol 117, 103909, doi:10.1016/j.jinsphys.2019.103909 (2019).
593	51	Macías-Macías, J. O. et al. Comparative temperature tolerance in stingless bee species from
594		tropical highlands and lowlands of Mexico and implications for their conservation
595		(Hymenoptera: Apidae: Meliponini). <i>Apidologie 42,</i> 679-689 (2011).
596	52	Oberg, E., Del Toro, I. & Pelini, S. Characterization of the thermal tolerances of forest ants of
597		New England. Insectes sociaux 59, 167-174 (2012).
598	53	Verble-Pearson, R. M., Gifford, M. E. & Yanoviak, S. P. Variation in thermal tolerance of North
599		American ants. Journal of thermal biology 48, 65-68 (2015).
600	54	Andrew, N. R., Hart, R. A., Jung, MP., Hemmings, Z. & Terblanche, J. S. Can temperate insects
601		take the heat? A case study of the physiological and behavioural responses in a common ant,
602		Iridomyrmex purpureus (Formicidae), with potential climate change. <i>Journal of Insect Physiology</i>
603		59 , 870-880 (2013).

604	55	Abou-Shaara, H. F., Al-Ghamdi, A. A. & Mohamed, A. A. Tolerance of two honey bee races to
605		various temperature and relative humidity gradients.
606	56	Scaccini, D., Duso, C. & Pozzebon, A. Lethal Effects of High Temperatures on Brown Marmorated
607		Stink Bug Adults before and after Overwintering. Insects 10, doi:10.3390/insects10100355
608		(2019).
609	57	Paynter, E. et al. Insights into the molecular basis of long-term storage and survival of sperm in
610		the honeybee (Apis mellifera). <i>Sci Rep</i> 7 , 40236, doi:10.1038/srep40236 (2017).
611	58	Collins, A., Williams, V. & Evans, J. Sperm storage and antioxidative enzyme expression in the
612		honey bee, Apis mellifera. Insect molecular biology 13 , 141-146 (2004).
613	59	Weirich, G. F., Collins, A. M. & Williams, V. P. Antioxidant enzymes in the honey bee, Apis
614		mellifera. <i>Apidologie</i> 33 , 3-14 (2002).
615	60	Wagner, H., Cheng, J. W. & Ko, E. Y. Role of reactive oxygen species in male infertility: An
616	00	updated review of literature. Arab J Urol 16 , 35-43, doi:10.1016/j.aju.2017.11.001 (2018).
617	61	Agarwal, A., Virk, G., Ong, C. & du Plessis, S. S. Effect of oxidative stress on male reproduction.
	01	
618 610	62	The world journal of men's health 32 , 1-17 (2014).
619	62	Ikwegbue, P. C., Masamba, P., Oyinloye, B. E. & Kappo, A. P. Roles of Heat Shock Proteins in
620		Apoptosis, Oxidative Stress, Human Inflammatory Diseases, and Cancer. <i>Pharmaceuticals (Basel)</i>
621		11 , doi:10.3390/ph11010002 (2017).
622	63	Ren, X., Chen, X., Wang, Z. & Wang, D. Is transcription in sperm stationary or dynamic? <i>Journal</i>
623		of Reproduction and Development, 2016-2093 (2017).
624	64	Mayer, M. P. & Bukau, B. Hsp70 chaperones: cellular functions and molecular mechanism. Cell
625		<i>Mol Life Sci</i> 62 , 670-684, doi:10.1007/s00018-004-4464-6 (2005).
626	65	Yue, L. et al. Genetic analysis of viable Hsp90 alleles reveals a critical role in Drosophila
627		spermatogenesis. <i>Genetics</i> 151, 1065-1079 (1999).
628	66	Ji, ZL. et al. Association of heat shock proteins, heat shock factors and male infertility. Asian
629		Pacific Journal of Reproduction 1 , 76-84 (2012).
630	67	Bakthisaran, R., Tangirala, R. & Rao, C. M. Small heat shock proteins: Role in cellular functions
631		and pathology. <i>Biochim Biophys Acta</i> 1854 , 291-319, doi:10.1016/j.bbapap.2014.12.019 (2015).
632	68	Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search
633		tool. J Mol Biol 215, 403-410, doi:10.1016/S0022-2836(05)80360-2 (1990).
634	69	Morrow, G. & Tanguay, R. M. Drosophila melanogaster Hsp22: a mitochondrial small heat shock
635		protein influencing the aging process. <i>Front Genet</i> 6 , 1026, doi:10.3389/fgene.2015.00103
636		(2015).
637	70	Wójtowicz, I. <i>et al.</i> Drosophila small heat shock protein CryAB ensures structural integrity of
638	70	developing muscles, and proper muscle and heart performance. <i>Development</i> 142 , 994-1005,
639		doi:10.1242/dev.115352 (2015).
	71	
640	71	Kamradt, M. C., Chen, F. & Cryns, V. L. The small heat shock protein alpha B-crystallin negatively
641		regulates cytochrome c- and caspase-8-dependent activation of caspase-3 by inhibiting its
642		autoproteolytic maturation. J Biol Chem 276, 16059-16063, doi:10.1074/jbc.C100107200 (2001).
643	72	Paul, C. <i>et al.</i> Hsp27 as a negative regulator of cytochrome C release. <i>Mol Cell Biol</i> 22 , 816-834
644		(2002).
645	73	Izu, H. et al. Heat shock transcription factor 1 is involved in quality-control mechanisms in male
646		germ cells. <i>Biol Reprod</i> 70, 18-24, doi:10.1095/biolreprod.103.020065 (2004).
647	74	Rockett, J. C. et al. Effects of hyperthermia on spermatogenesis, apoptosis, gene expression, and
648		fertility in adult male mice. <i>Biol Reprod</i> 65, 229-239 (2001).
649	75	Biggiogera, M. et al. Localization of heat shock proteins in mouse male germ cells: an
650		immunoelectron microscopical study. Exp Cell Res 229, 77-85, doi:10.1006/excr.1996.0345
651		(1996).

- 76 Zhang, X. S. *et al.* Dedifferentiation of adult monkey Sertoli cells through activation of
 653 extracellularly regulated kinase 1/2 induced by heat treatment. *Endocrinology* 147, 1237-1245,
 654 doi:10.1210/en.2005-0981 (2006).
- Collins, A. & Donoghue, A. Viability assessment of honey bee, Apis mellifera, sperm using dual
 fluorescent staining. *Theriogenology* **51**, 1513-1523 (1999).
- 657 78 Cobey, S. W., Tarpy, D. R. & Woyke, J. Standard methods for instrumental insemination of Apis 658 mellifera queens. *Journal of Apicultural Research* **52**, 1-18 (2013).
- Taylor, C. M., Coffey, P. L., Hamby, K. A. & Dively, G. P. Laboratory rearing of Halyomorpha halys:
 methods to optimize survival and fitness of adults during and after diapause. *Journal of Pest Science* **90**, 1069-1077 (2017).
- 662 80 Mackensen, O. Effect of carbon dioxide on initial oviposition of artificially inseminated and virgin 663 queen bees. *Journal of economic entomology* **40**, 344-349 (2014).
- Rappsilber, J., Ishihama, Y. & Mann, M. Stop and go extraction tips for matrix-assisted laser
 desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. *Anal Chem* **75**, 663-670 (2003).
- McAfee, A., Chan, Q., Evans, J. & Foster, L. J. A Varroa destructor protein atlas reveals molecular
 underpinnings of developmental transitions and sexual differentiation. *Mol Cell Proteomics*,
 doi:10.1074/mcp.RA117.000104 (2017).
- Lee, H. K., Braynen, W., Keshav, K. & Pavlidis, P. ErmineJ: tool for functional analysis of gene
 expression data sets. *BMC Bioinformatics* 6, 269, doi:10.1186/1471-2105-6-269 (2005).

672

673 Data availability statement

- All raw mass spectrometry data, databases, and search results are available on PRIDE ProteomeXchange
- 675 (accession: PXD013728). Figures with associated raw mass spectrometry data include Figs. 4, 5, 6, and
- 676 S4. Global protein abundances and p values for the laboratory heat-shock comparisons are available in
- Table S1. Data used to generate other figures will be provided upon request.

678 Code availability statement

- 679 No specialized code central to our conclusions was used in this manuscript. R code for standard
- 680 statistical analyses and figure generation will be provided upon request.

681 Acknowledgements

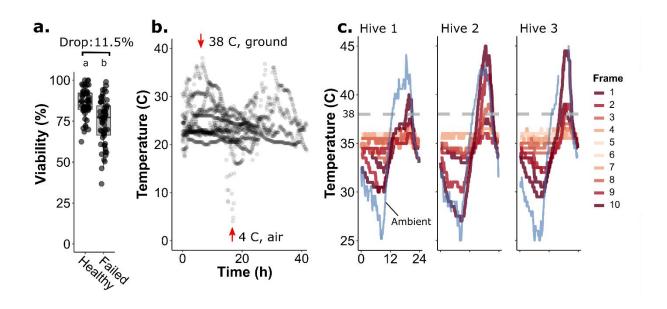
- This work was supported by an NSERC Discovery grant (311654-11) and grants from Genome Canada
- and Genome British Columbia awarded to LJF, a Project Apis m grant (PAm AGR-13255) awarded to

684	MMG, a Project Apis m grant awarded to JSP, and a USDA-NIFA grant (2016-07962) awarded to JSP and
685	DRT. We would like to thank Alexandra Sébastien and Meghan Jelen for providing us with stink bugs and
686	fruit flies, respectively, for the survival experiments.

- 687 We also thank Ashurst Bee Company for help with colony heat testing and Kettle Valley Queens, Nicola
- 688 Valley Honey, Wild Antho, Campbells Gold Honey, Heather Meadows Honey Farm, Six Legs Good
- 689 Apiaries, Wildwood Queens, Cariboo Honey, and Worker Bee Honey Company for donating failed and
- 690 healthy queens for this research.

691 Author contributions

- AM wrote the first draft of the manuscript and revisions, conducted all data analysis, made the figures,
- and performed the proteomics experiments. AC and AM conducted the failed queen survey, with
- assistance from HH and MMG. HH and MMG executed the queen shipment temperature tracking. JM
- 695 performed the survival experiments. MMG and JSP performed the drone sperm viability analyses. JSP
- 696 performed the queen sperm viability measurements across the range of temperatures and measured
- 697 internal hive temperatures. Grants to LJF, JSP, MMG, and DRT funded the research. All authors
- 698 contributed intellectually.

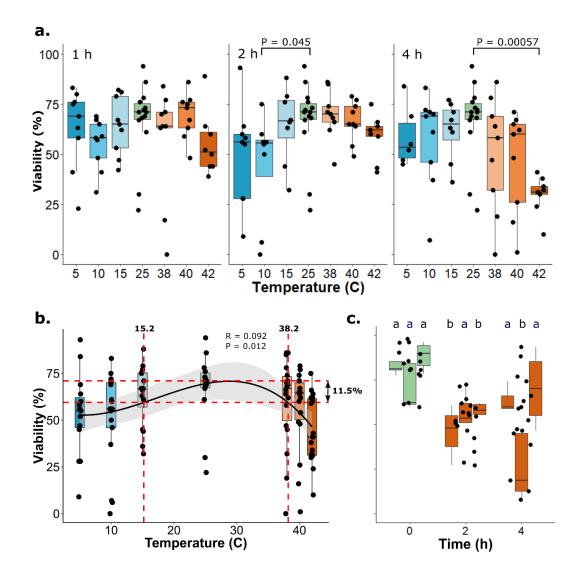

699 Competing interests

- 700 JSP owns a honey bee consulting business.
- 701

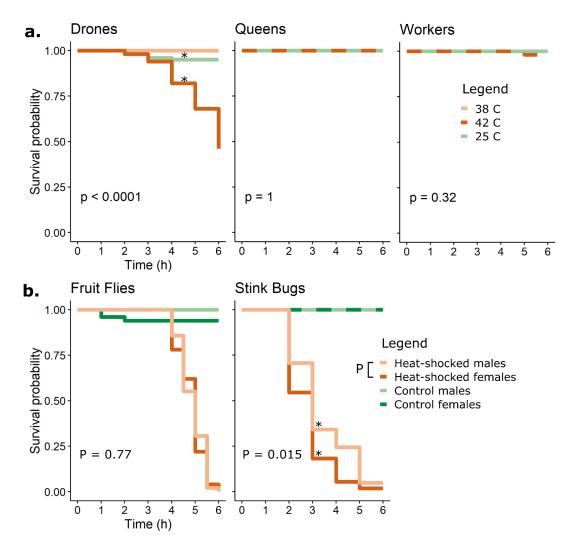
702

703

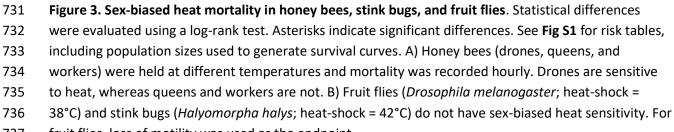
705 Figures and Legends

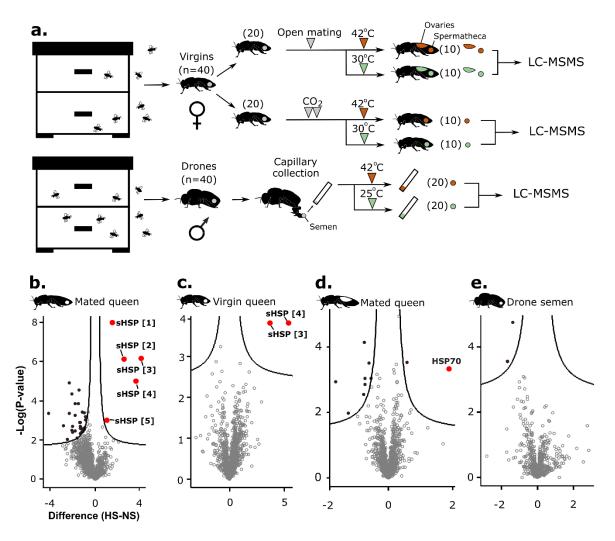

706

707	Figure 1. Observational data on shipping temperatures, hive temperatures, and stored sperm viability.
708	A) Healthy (N = 55) and failed queens (N = 58) were collected from BC beekeepers for sperm viability
709	analysis. Failed queens had significantly lower sperm viability (F = 28.16, P = 5.8E-06), with an average
710	drop of 11.5%. B) Temperatures of eight domestic Canadian queen shipments were recorded during the

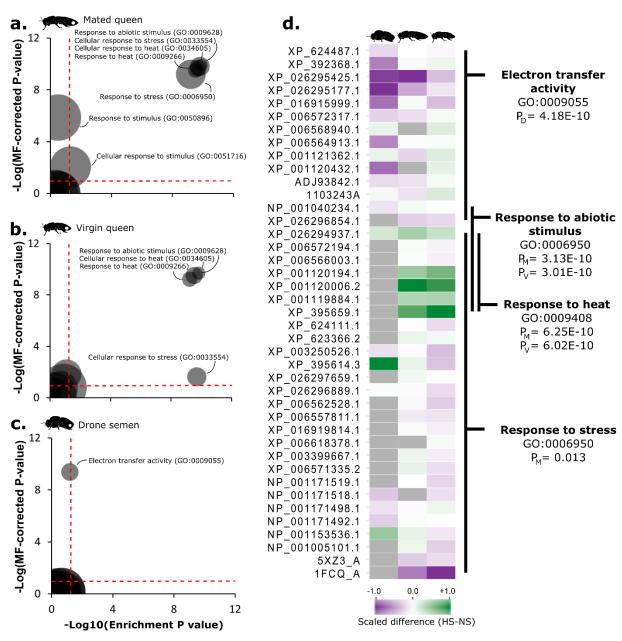

summer of 2019 (7 via ground, 1 via air transportation). Temperature loggers were kept immediately

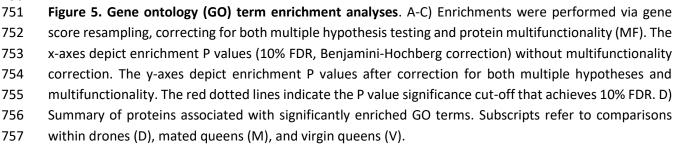
adjacent to the queen cages. C) Internal temperatures of three hives were recorded, with temperature


- 713 loggers placed between each frame. Ambient temperatures were recorded in the shade beneath each
- 714 hive.


716 Figure 2. Viability of stored and ejaculated sperm after temperature stress. In all cases, boxes represent 717 the bounds between the 2st and 3rd interguartile range (IQR), midlines represent the median, and whiskers are extended by 1.5*IQR. A) Honey bee gueens were heat- and cold-shocked for 1 - 4 hours, then 718 719 held at 25°C prior to assessing stored sperm viability. The 25°C treatment is the negative control (the same 720 control data is replotted in each panel). Each data point represents the viability measurement for a single queen. Data were analyzed with a Kruskal-Wallis test followed by a Dunnett's post hoc test. See Table 1 721 722 for sample sizes. B) Combined 2 h and 4 h treatments were optimally fit with a cubic model ($R^2 = 0.092$, P = 0.012). Thresholded at 11.5% loss of viability, the line $y = y_{max} - 11.5$ intersects with temperatures 15.2 723 724 and 38.2°C. C) Ejaculated honey bee semen from three different colonies (5-6 drones per colony, 725 illustrated as different boxes) was subject to heat-shock at 42°C for 2 h and 4 h, then kept at 25°C for 2 d. 726 The total number of drones evaluated for 0, 2, and 4 h treatments were 16, 16, and 18, respectively (see 727 Table 2 for more detail). Each data point represents the viability measurement for a single drone. Letters 728 indicate significant differences at P < 0.05 (two-way ANOVA, factors: colony and time, followed by a Tukey 729 HSD post hoc test).

730




737 fruit flies, loss of motility was used as the endpoint.

739 Figure 4. Differential protein expression comparing heat-shocked (HS) and not heat-shocked (NS) 740 reproductive tissues. A) Samples included mated queen spermathecae, virgin queen spermathecae, 741 ejaculated semen, and mated queen ovaries, which were all analyzed by intensity-based, label-free quantitative tandem mass spectrometry. For drones, 4 semen samples were pooled into one replicate, 742 743 then fractionated into eight fractions by basic reverse phase chromatography prior to analyzing by mass spectrometry (final biological replicates: n = 5 heat-shocked and 5 non-heat-shocked). The significance 744 745 cut-off for volcano plots (B-E) was 10% FDR (false discovery rate, permutation-based). Volcano plots represent mated queen spermathecae (B), virgin spermathecae (C), mated queen ovaries (D), and drone 746 747 semen (E). Differentially expressed HSPs are red; other differentially expressed proteins are black. 748 Accessions for sHSP [1-5] are XP 001120194.1, XP 001119884.1, XP 395659.1, XP 001120006.2, and 749 XP 026294937.1, respectively. The accession for HSP70 is NP 001153536.1.

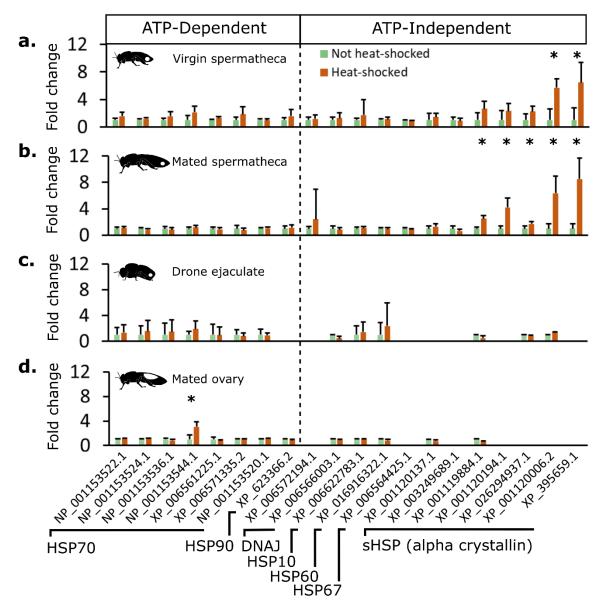


Figure 6. Heat-shock protein expression profiles. Proteins with GO terms for cellular response to heat
were retrieved from the proteomics datasets. Fold-change is relative to the non-heat-shocked state.
Proteins marked with an asterisk were significantly up-regulated in the global differential gene expression
analysis (permutation-based FDR: 10%), and error bars indicate standard deviations.

- 763
- 764 765
- 766
- 767

768 Tables

_

Table 1. Biological replicates for queen temperature stress tests					
Temperature	0 h	1 h	2 h	4 h	
5°C		9	9	9	
10°C		9	8	9	
15°C		9	8	8	
25°C	14				
38°C		9	9	9	
40°C		9	9	9	
42°C		8	9	9	
Total	14	53	52	53	

Table 1. Biological replicates for queen temperature stress tests

Table 2. Biological replicates for drone temperature stress tests*

Colony	0 h	2 h	4 h
1	5	5	6
2	6	6	6
3	5	5	6
Total	16	16	18

769 *Temperature stress for all replicates was 42°C