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Summary.
The immediate physical and bio-chemical surroundings of a cell, the cellular microen-
vironment, is an important component of many fundamental cell and tissue level pro-
cesses and is implicated in many diseases and dysfunctions. Thus understanding the
interaction of cells with their microenvironment can further both basic research and
aid the discovery of therapeutic agents. To study perturbations of cellular microenvi-
ronments a novel image-based cell-profiling technology called the microenvironment
microarray (MEMA) has been recently employed. In this paper we explore the ef-
fect of preprocessing transformations for MEMA data on the discovery of biological
and technical latent effects. We find that Gaussianizing the data and carefully re-
moving outliers can enhance discovery of important biological effects. In particular,
these transformations help reveal a relationship between cell morphological features
and the extra-cellular-matrix protein THBS1 in MCF10A breast tissue. More broadly,
MEMAs are part of a recent and wide-spread adoption of image-based cell-profiling
technologies in the quantification of phenotypic differences among cell populations
(Caicedo et al., 2017). Thus we anticipate that the advantages of the proposed pre-
processing transformations will likely also be realized in the analysis of data from
other highly-multiplexed technologies like Cyclic Immunofluorescence. All code and
supplementary analysis for this paper is available at gjhunt.github.io/rr.

1. Introduction

The microenvironment of a cell encompasses its immediate physical and bio-chemical
surroundings. This includes, for example, the adjacent extra cellular matrix (ECM),
surrounding cells, ligands like hormones, cytokines, chemokines, growth factors, etc
(Bhat and Bissell, 2014). These microenvironmental components modify cellular be-
havior through a host of different mechanisms. Accordingly, the interaction of cells
with their microenvironment is a component of many cell and tissue level processes
(Maman and Witz, 2018; Januschke and Näthke, 2014; Lin et al., 2012). For ex-
ample, the extra-cellular matrix has been long known to regulate cellular functions
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like adhesion, migration, proliferation and differentiation (Teti, 1992; Bissell and
Labarge, 2005; LaBarge et al., 2007). The microenvironment is also implicated in
the development, progression, and ultimately treatment of many diseases and dys-
functions (Pelissier et al., 2014; LaBarge, 2013). For example, it has been posited
that communication between B-cells and proximal stromal cells can promote ma-
lignant B-cell growth and drug resistance (Burger et al., 2009). Similarly, towards
the goal of understanding therapeutic efficacy, it has recently been shown that the
microenvironment of HER2-positive breast cancer cells can modulate drug response
(Watson et al., 2018). Thus a better understanding of the microenvironment ben-
efits not only basic research but also furthers an understanding of the interaction
between therapeutic agents and regulatory behavior.

Understanding cellular microenvironments is part of the 2014 NIH Common
Fund program called the Library of Integrated Network-Based Cellular Signatures
(LINCS). The LINCS program is generally focused on understanding changes in cel-
lular processes as a result of perturbing agents (Keenan et al., 2018). The Microen-
vironmental Perturbagen (MEP) program, one of six major branches of the LINCS
program, specifically focuses on studying the influence of microenvironmental sig-
nals on cellular phenotype. To study signals in the microenvironment, researchers
are using a novel high-throughput technology called the Microenvironment Microar-
ray (MEMA)(Labarge et al., 2014; Watson et al., 2018; Lin et al., 2017; Smith et al.,
2019). The technology, first developed by Mark LaBarge at Lawrence Berkeley Na-
tional Laboratory (Lin et al., 2012; LaBarge et al., 2009), allows the study of several
thousand combinations of microenvironmental factors on molecular and biological
endpoints like cell proliferation, differentiation, or apoptosis. Specifically, MEMAs
facilitate the study of these endpoints via high-throughput image-based profiling of
cells.

A MEMA consists of a plastic substrate divided into several partitioned wells.
Each well contains an array of several hundred ∼400µm spots robotically printed
onto the surface of each well. Thousands of cells are added to each well where
they randomly bind to the spots. The cells on each spot interact with a pair of
microenvironmental perturbagens. This perturbagen pair consists of an insoluble
extra-cellular matrix protein (ECMp) and a soluble ligand. The ECMps are printed
onto specific spots in the wells, while ligands are added to the buffer solutions
in wells. Thus the cells in a spot interact with an ECMp specific to their spot
and a ligand common to their well. In total, there are several thousand different
combinations of ECMps and ligands perturbing the cells on a MEMA. Typically
each perturbagen pair is replicated about a dozen times within each well. The
cells are grown for several days and subsequently immunofluorescently stained and
imaged with fluorescent microscopy. These images are analyzed with image-analysis
software to produce quantified cellular features. These numeric quantifications of
the cells’ properties constitute the data produced by a MEMA. The goal of a MEMA
experiment is to analyze this data to further a biological understanding of the
relationship between the perturbagen pairs and the physical properties of the cells
(as quantified by the software-extracted features).

The features produced by MEMAs cover a wide range of cellular aspects. There
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are morphological features like cell area, compactness, eccentricity, perimeter, or
solidity. The MEMAs also produce stain intensity features and features capturing
the cell cycle state, cell lineage, cell count, texture and many others. Typically,
several hundred features are extracted from the images taken of each spot.

The image features that are extracted from a MEMA can be flexibly adapted
to suit the research interests. One can add to the list of extracted features by
asking the software for more features or by using a different or more sophisticated
image analysis program. Furthermore, since the underlying microscopy images are
retained, features can be added retrospectively through re-analysis of the images
with newer and better algorithms. Finally, the set of immunofluorescent stains
applied to the cells dictates which features may be extracted. In turn, the stains
applied depend on what physical structures are of interest. In summary, the number
of features produced by a MEMA is not only large but the precise set of features
will likely vary from one experiment to the next. This presents a problem for
automatic processing of MEMA data. While the plethora cell-feature data presents
new opportunities for discovery, it also necessitates an adaptive approach that can
handle an ever-changing landscape of features.

In this paper we are interested in how best to transform the MEMA data to ben-
efit downstream analysis. Data transformations are commonly part of the analysis
of high-throughput -omics experiments. For example, microarray data typically is
logarithmically transformed, RNA-seq data often is transformed as the log of one
plus the read count, and mass cytometry data typically is transformed using a arc-
hyperbolic-sine transformation. Unfortunately, determining a good transformation
for MEMA data is more complicated than for many other classic -omics experiments
due to the number, flexibility, and disparate nature of the features.

Importantly, there will not be a single transformation that works well for all
features. For example, the appropriate transformation for the nuclei orientation
will likely not be the same as that for the DAPI intensity. This follows because the
two features have much different measurement scales and distributions. Orientation
is approximately normally distributed with a mean of zero and intensity has a very
right-skewed exponential-like distribution and is always positive (see Supplementary
Figures 1 and 2). Thus we might, for example, want to transform intensity using
a logarithmic transformation while we might not want to transform orientation at
all.

The general problem is that the features produced by a MEMA each have their
own different scales, distributions, ranges, outliers and quirks. There will not be one
common transformation to apply to all the features. Rather, if there are a hundred
MEMA features then we might potentially need a hundred different transformations.
Unfortunately, it is not feasible to determine an appropriate transformation for
each feature by hand, especially given that the set of features may vary from one
experiment to another.

To overcome these problems, this paper comprehensively studies simple and ro-
bust ways of adaptively transforming MEMA features. We study ways of automat-
ically transforming MEMA features to improve discovery of important biological
effects and identification of unwanted latent technical effects. We demonstrate the
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utility of these transformations in both qualitative analyses (like data visualization)
and quantitative analyses (like principal components analysis). In addition to en-
hancing analysis of features individually we show that these transformations are also
beneficial when integrating features together. Towards this latter goal, we explore
the interaction of data integration with data transformation. Finally, as part of
all these analyses we employ methods to estimate principal components from data
with missing values.

2. Data, Methods, and Motivation

In this section we briefly describe the structure of the MEMA data with which
we work, outline our steps for processing the data, and motivate why these steps
enhance visualization, integration, and discovery of latent biological and technical
effects.

2.1. Structure of MEMA Data
In this paper we work with microenvironment microarray data from the MEP-
LINCS Center at the Oregon Health and Science University. The data is accessible
through Synapse with identifiers syn10155286, syn10155289 and syn10155292 (Gray
et al., 2014). In total we analyze 24 MEMAs of human epithelial mammary tissue
(MCF10A). The 24 MEMAs come in three batches of eight plates. Each MEMA
plate is divided evenly into eight wells. Each well contains 700 spots in a 20 by 35
grid. Cells are added to the wells and bind to the spots. Subsequently, a buffer
solution containing a specific ligand is added to each well. Thus the cells can grow
out in the presence of different ECM proteins and ligands. The pattern of ECMps
is identical across all wells (see Supplementary Figure 4) however a (potentially)
different ligand is added to each well (see Supplementary Figure 5). After incubating
the cells for 72 hours they are fluorescently stained, imaged, and cell-level features
are extracted with image analysis software. For the analysis in this paper, we work
with spot-level features (median summarized cell-level features). For each image
feature we have a data matrix of 192 wells (3 batches × 8 plates × 8 wells) by 694
spots (we remove 6 alignment spots with no cells from the 700). In total we will
work with 103 image features and thus have 103 feature matrices to process and
analyze. See Supplementary Table 1 for a complete list of all features.

2.2. Robust Re-scaling
To process these feature matrices we follow three sequential transformation steps:

Procedure 1 Three-step Robust Re-scaling (RR)

Step 1: (G) robustly “Gaussianize” the data,
Step 2: (Z) convert the data to robust z-scores,
Step 3: (O) remove outliers.
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These three steps are applied to each of the 103 feature matrices individually. In
the following sections we explore the details of these steps and motivate why they
enhance analysis.

2.2.1. The Gaussianizing Step (G)

The (G) step transforms the data using a Box-Cox-like procedure (Box and Cox,
1964). We call this a “Gaussianizing” transformation because it makes the data
approximately normally distributed. It first estimates a Gaussianizing (Box-Cox)
transformation for each column of the feature matrix. It does this by optimizing
over parameterized power and arc-hyperbolic-sine transformations and chooses the
parameter for each column of the feature matrix that makes the column as normal
as possible. Since it’s easy to over-fit these parameters, the procedure robustly
chooses the median transformation parameter (across columns). We then apply the
associated transformation element-wise to the feature matrix.

Let Y ∈ RM×N be a specific feature matrix. In our application we have 103 such
feature matrices each with M = 192 rows (wells) and N = 694 columns (spots).
Let T1, . . . , TQ be a collection of Q parameterized transformation families so that

for any q = 1, . . . , Q the family Tq = {T (q)
λ | λ ∈ Λ(q)} consists of differentiable,

monotonic, transformations T
(q)
λ : S → R on some S ⊆ R. The goal is to optimize

over the union of these families and choose the transformation that makes the data
close to being normal (without over-fitting).

In this manuscript we choose Q = 2 families over which to search: a power family

T1 = Tpower = {(sign(y)|y|λ − 1)/λ, λ ∈ R}

and an arc-hyperbolic-sine family

T2 = Tahs = {asinh(λy)/λ, λ ≥ 0}.

We choose these two families because they cover a range of power and sigmoidal
shapes. Many reasonable choices of parameterized families can be made and nothing
in our discussion depends on the specific choices. We include other options of
families in our software.

Before we describe the procedure for optimizing over many families, we will
first consider the simpler case when Q = 1 and discuss how to choose an optimal
transformation over a single family generically denoted T = {Tλ | λ ∈ Λ}. Define
Y∗j be the jth column of Y , and for any λ ∈ Λ let Y∗j(λ) = Tλ (Y∗j) be Y∗j under the

transform Tλ. The goal is to choose a λ̂ so that Y∗j

(
λ̂
)

is approximately normally

distributed for each j = 1, . . . , N . The (G) approach follows two steps:

For the first step, estimate λ̂j using the traditional Box-Cox approach on Y∗j .

Assume there is some λj so that Yij(λj)
iid∼ N(µj , σ

2
j ) for µj ∈ R and σj ≥ 0. Then

let λ̂j be the MLE of λj . This is obtained by profiling the likelihood over µj and σ2
j

and then maximizing the profile likelihood over λj . If Lj is the profile likelihood of
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Procedure 2 (G) Transformation Estimation for One Family (Q = 1)

Step 1: determine the optimal λ̂j for each column Y∗j so that Y∗j

(
λ̂j

)
is as

normal as possible,
Step 2: set λ̂ = medianj λ̂j

λj profiling over µj and σ2
j then

λ̂j
def
= arg max

λj∈Λ
Lj(λj).

After estimating λ̂j for each column, the second step is to summarize the col-

lection of λ̂′js into a single λ̂. This is done with the median. Define λ̂ as the

element-wise median λ̂ = medianj λ̂j .
To summarize, the procedure when Q = 1 is to first optimize within each column

and then median-summarize across the column-wise estimates. When Q > 1 we add
an additional step to first determine which family among T1, . . . , TQ is best. The
procedure is described in Procedure 3.

Procedure 3 (G) Trans. Estimation for Multiple Families (Q > 1)

Step 1: determine which family is the best over-all, call it q̂
Step 2: estimate λ using just the optimal family Tq̂ (following the previous
procedure of Procedure 2 for Q = 1).

This procedure first determines the best family individually for each column and
then uses the family that is best among a plurality of columns. More specifically,
let Lj(qj , λj) be the likelihood of the jth column after transformation using the qthj
family and transformation parameter λj . Optimize Lj(qj , λj) jointly over λj and qj
and let

(q̂j , λ̃j) = arg max
qj=1,...,Q
λj∈Λ(q)

Lj(qj , λj).

and
q̂ = modej q̂j

so that q̂ is the family that is the best among a plurality of the columns. Once we
have determined this optimal family q̂ we then estimate λ̂ following the procedure
when Q = 1 using the family Tq̂. Finally, define the Gaussianized version of Y as

G(Y )
def
= T

( q̂ )

λ̂
(Y ).

2.2.2. The z-score Step (Z)
The second step in the (RR) procedure is the (Z) step, a robust z-score transfor-

mation. Let Ỹ be a vectorized version of Y and Ỹ(q) be the q-winsorized version of
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Y . In this paper we will use q = 0.001 replacing everything below the qth quantile
of Ỹ by the qth quantile and replacing everything above the (1− q)th quantile of Ỹ
by the (1− q)th quantile. Given this, the robust z-score version of Y is defined as

Z(Y )
def
=

Y − µ̂
σ̂

where µ̂ and σ̂ are mean and s.d. estimates of Ỹ(q).

2.2.3. The Outlier Removal Step (O)

The final of the three (RR) steps is outlier removal. The outlier removal procedure
simply thresholds z-scores and marks as missing anything beyond four standard
deviations. First let Z(Y ) be the robust z-scored version of Y . We then define
O(Y ) as {

O(Y )ij = Yij , if |Z(Y )ij | ≤ z
O(Y )ij = NA, if |Z(Y )ij | > z

where “NA” denotes a missing value. To be conservative in this paper we use z = 4
although this is somewhat arbitrary. With z = 4 if the data is truly normal this
removes only about 3e -3 percent of the data from each tail.

2.2.4. The Three-Step (RR) Procedure

Given these definitions, the three step (RR) transformation is to apply the (G), (Z),
and then (O) transformations. If Y is a feature matrix then we define RR(Y ) as

RR(Y ) = O(Z(G(Y ))).

In the remainder of this section we will motivate (1) why these steps help dis-
covery of important latent effects in the data and (2) how this processing improves
data integration.

2.3. Motivation: Discovery of Important Latent Effects
A central component in the analysis of MEMA data is the identification of important
latent effects. We divide these latent effects into two main categories: (1) biological
effects and (2) technical effects. Biological effects are the effects of primary research
interest. Such effects include, for example, differences in biological endpoints due
to ECMps or ligands. On the other hand, technical effects are unwanted and we
are interested in identifying them so that we may remove them. Examples of these
effects include batch across plates or wells and spatial effects within wells. Discov-
ery of either technical or biological latent effects is typically done through visual
inspection of plots or quantitative analysis like PCA. Unfortunately, methods like
PCA are often misled by prominent aspects of the data that tell us little about
either technical or biological effects.
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As an example, consider how PCA can be misled when used to identify groups
in skewed data. Let u(1), u(2), v(1), v(2) ∈ RN have elements that are i.i.d from a
standard log-normal distribution. For a small δ ∈ R and noise ε ∈ R2N×N define a
block data matrix Y as

Y =

[
u(1)v(1)′

δ + u(2)v(2)′

]
+ ε

so that the first N rows of the data matrix and the last N rows of the data matrix
constitute two groups with a mean difference of δ. The left side of Figure 1 displays
a histogram of the elements of Y for a simulation using δ = 1/2 and ε distributed
i.i.d. standard normal. It is difficult to distinguish between the two groups in the
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Fig. 1. (A) The percentage of cumulative variance captured by first k principal components
for both un-transformed data and log-transformed data. (B) The mean squared canonical
correlations between the grouping factor and the first k principal components.

right-hand panel of Figure 1 because the group difference is over-shadowed by the
data’s long tails. Consequently, PCA identifies the variance due to tail skewness,
not the group difference, as the most prominent variation in the data. While the
first two principal components capture more than 99% of the total variance in this
example, they only capture about 50% of the group difference (see Supplementary
Figure 3). The right side of Figure 1 shows that a log transformation makes the
groups more prominent. The transformation un-skews the data thereby attenuating
the effect of the tails on PCA. In this case, while the first two PCs only capture
about 80% of the total variation, they capture about 94% of the variation due to
group difference (see Supplementary Figure 3).

As motivated by the previous example, we want to attenuate the influence of
prominent, yet uninformative, variation. Our processing steps described in Section
2.2 attempt to ameliorate the effects of two commonly encountered, and potentially
misleading, aspects of MEMA data. Those aspects are (1) skewness in measure-
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ment scales and (2) anomalous outliers. By anomalous outliers we mean extremely
unusual data points that are not informative of much beyond their own uniqueness.
These outliers could result from biological or technical artifacts. For example, cells
may have difficulty growing on a spot, distorting the median-summarized morpho-
logical measurements of the cells present. Or, for example, if the image-analysis
software has difficulty determining the boundary between overlapping cells leading
to features that do not properly reflect the true biology.

To guard our analysis against un-interesting variation we follow the three robust
re-scaling steps (G), (Z) and (O) outlined previously. The (G) step is used to prevent
a feature’s naturally long-tailed measurement scale from dominating analysis. This
is done by applying a robust Box-Cox-like procedure to “Gaussianize” the data and
adaptively de-skew each feature’s distribution. We use (G) instead of the traditional
Box-Cox procedure as the latter will be highly influenced by outliers. Box-Cox will
propose an extreme transformation to rectify single outliers that it perceives as a
huge violation of normality. Conversely, (G) is “robust” to outliers as it estimates

λ̂ as the median of the column-wise λ̂j estimates. (G) only transforms the data to
un-skew fundamentally skewed data not simply to reign in a few points. Dealing
with outliers is more parsimoniously done by specific outlier targeting procedures
not a global Gaussianizing transformation. To remove outliers (RR) first converts
the data to robust z-scores using (Z) and then removes any entry of the feature
matrix bigger in magnitude than four (the (O) step).

2.4. Complete Singular Vectors
The primary tool we use to recover latent effects is the singular value decomposition
(SVD). For a feature matrix Y with a singular value decomposition (SVD) of Y =
UΣV ′ we call the columns of the U left singular vectors and the columns of V the
right singular vectors. When the columns of Y have been mean-centered the left
singular vectors are often called the principal components (PCs). We avoid this
terminology because we do not mean-center.

When calculating the SVD for MEMA data we need to account for missing
data. Missing values arise for biological reasons (e.g. the cells failed to grow),
image-analysis reasons (e.g. the software could not detect any cells), and because
(RR) introduces missing values as part of (O). As the SVD is undefined for matrices
with missing values, we use “complete” singular vectors calculated from re-scaled
pairwise-complete gram matrices. Note that this is similar to the pairwise-complete
option for cor in R (R Core Team, 2018).

Let Y ∈ RM×N be a feature matrix with missing values. Define Y0 as Y with
missing values replaced by zeros and Y1 so that (Y1)ij = 1{Yij is not missing}. We
define the re-scaled pairwise-complete left Gram matrix Y · Y ′ so that

(Y · Y ′)ij =
N

nij

N∑
k=1

(Y0)ik(Y0)jk

where nij = (Y1Y
′
1
)ij is the number of pairwise non-missing entries between row i

and j of Y . This is well-defined so long as none of the entries of Y1Y1 are zero.
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The matrix Y · Y ′ is a matrix of re-scaled inner products of the rows of Y
accounting for the number of non-missing pairs between rows. We similarly define
the right gram matrix Y ′ · Y replacing Y for Y ′ above. We call the eigenvectors of
Y ·Y ′ the complete left singular vectors and the eigenvectors of Y ′ ·Y the complete
right singular vectors. We order these vectors decreasing by associated eigenvalue
keeping only those associated with positive eigenvalues. For brevity we often omit
the adjective “complete”, referring to these simply as the “singular vectors.” If
there are no missing values they are one and the same.

2.5. Average Singular Vectors
In addition to recovering important latent effects in individual features, we are
interested in latent effects common to multiple features. To extract a common set
of latent effects from a collection of P features Y (1), . . . , Y (P ) we use the eigenvectors
from the average of their re-scaled pairwise-complete left and right gram matrices,
respectively,

1

P

P∑
i=1

Y (p) · Y (p)′ and
1

P

P∑
i=1

Y (p)′ · Y (p).

We call these eigenvectors the left and right average singular vectors (ASVs), again
retaining only those eigenvectors associated with positive eigenvalues.

3. Results

3.1. Features and Transformations Considered
The MEMA plates we analyze are grown, stained and imaged in three separate
processing batches. A different set of stains is used in each batch. Those sets are: (1)
“SS1” (containing stains DAPI, Actin, CellMask and MitoTracker), (2) “SS2noH3”
(containing stains DAPI, Fibrillarin and EdU), and (3) “SS3” (containing stains
DAPI, KRT5, KRT19 and CellMask). Because each of these batches use a different
staining set we refer to them as the “staining batches.” While these batches are
separate experiments, aside from the staining set the experimental conditions were
made as identical as possible.

In total there are 103 different image features extracted from the MEMAs. A
different set of features is extracted in each staining batch with some being common
across multiple batches. There are 50 features extracted in at least two of the
staining batches and 18 features that are extracted from all three. We focus on four
features in this paper:

(a) cell area (notated on synapse as “Cells CP AreaShape Area”)

(b) cell compactness (“Cells CP AreaShape Compactness”)

(c) spot cell count (“Spot PA SpotCellCount”)

(d) total cytoplasm DAPI intensity
(“Cytoplasm CP Intensity IntegratedIntensity Dapi”).
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We choose these features because they represent several different feature types.
The first two are morphological traits of cells, the third is the cell count, and
the last is an intensity. We have deposited the full results for all features at
gjhunt.github.io/rr.

To explore the effects of (G), (Z) and (O), we consider five transformations of
the features: (1) no transformation (NT), (2) the (G) step only (3) the (Z) step
only (4) the (O) step only (5) the three-step (RR) transformation.

3.2. Visualization
3.2.1. Feature Distributions
A typical first step in exploratory analysis is data visualization. Simple data vi-
sualizations can succinctly summarize the major features of the data and inform
qualitative analyses. In Figure 2 we plot the distribution of cell area for the five
transformations. The colored densities correspond to staining batches. The black
line is the density of all data combined. Notice in Figure 2 that the density of (NT)

O RR
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Fig. 2. Density of elements of cell area feature matrix. Black density is all elements
combined. Colored densities are the densities for the two staining batches. Subplots are for
five processing transformations of this matrix: (NT) no transformation, (G) Gaussianization,
(Z) z-score, (O) outlier removal, (RR) the three-step (G), (Z), and (O), robust re-scaling.

largely reflects the data’s long tail. The same can be said for (Z). Conversely, the
other transformations reveal the staining batches. Both (O) and (G) de-emphasize
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12 G. Hunt, M. Dane, J. Korkola, L. Heiser, J. Gagnon-Bartsch

the data’s long tail in favor of the group difference. Furthermore, in (RR) these
groups are approximately Gaussian.

Supplementary Figure 6 shows a similar plot to Figure 2 but for the other ex-
ample features. Largely we see the same behavior. In Supplementary Figures 7, 8
and 9 we display density plots similar to Supplementary Figure 6 but for different
wells, plates, and ligands instead of the staining batches. These other covariates are
picked up in a similar, albeit more attenuated, manner.

3.2.2. Heat-maps

Another way to visualize the MEMA data is through heat-map pseudo-images.
These pseudo-images are heat-maps of the value of a feature for each spot plotted
following the same physical layout as the MEMA. These pseudo-images can be useful
for discovering spatial effects and assessing the quality of data. As an example, we
visualize cell area this way in Supplementary Figure 10. In Figure 3 we display
a single well from Supplementary Figure 10 across the five transformations. The
colors are more blue if they are close to the minimum cell area, red if they are
close to the maximum, and white if they are half-way between. Dark grey spots are
omitted according to the MEMA design. Note that the color scale is determined
globally over all wells and all plates in the dataset (see Supplementary Figure 10).

NT G Z O RR

Fig. 3. Heat map of a single well across the five transformations (NT), (G), (Z), (O), (RR).
This is a sub-plot of Supplementary Figure 10. Color scaled is determined globally over all
spots, wells, and plates in the dataset to reflect the fact that the transformation is similarly
calculated over this data. Thus we see no blue in this (NT) sub-plot as we see almost no
blue in Supplementary Figure 10. This plot is a representative microcosm of the larger
plot.

This figure is not very informative for (NT) or (Z). The skewness and outliers
assign the bulk of data to a tiny range of colors meaning the plots are essentially a
single color. Conversely, for (G) and (O) we see a spatial effect between the right
and edges and the rest of the well. We also see a non-spatial effect where certain
spots are much different than their surroundings. We circle these spots in orange
in Supplementary Figure 11. In Section 3.5 we show that this is an effect of the
ECMps NID1 and ELN. We can see from these plots that (RR) strongly highlights
the spatial effects as well as the NID/ELN effect.

In Figure 4 we focus on a different well of Supplementary Figure 10. Here, the
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NT G Z O RR

Fig. 4. Similar to Figure 3 but focusing on a different well.

green spots indicate missing data. These spots are missing either due to experi-
mental error or because they have been removed as part of analysis. We see similar
behavior where (G) and (O) reveal spatial differences between the upper right and
the rest of the well. This spatial effect is also seen in (RR) however the num-
ber of points removed is much different in (RR) compared to (O). This highlights
the difference between (O) thresholding outliers without transformation and (RR)
thresholding outliers after (G). We believe thresholding based on a z-score makes
most sense on a Gaussianized scale (as in (RR)). Note also that outliers are defined
in a global context of the entire data, so while many values are marked as outliers
by (RR) in this particular well it is a small percentage of the entire data.

In addition to highlight spatial effects, these transformations also reveal batch
effects between plates, wells, and staining batches. In Figure 5 we display the
heat-map pseudo-image of cell area for eight wells across (NT), (G), (O) and (RR).
((Z) is identical to (NT).) The top four wells in each sub-plot are from the first
staining batch, the bottom four wells are from the second. Nonetheless, we see
little indication of batch in (NT). However batch is visible in (G), (O) and (RR).
The bottom of (G) is lighter blue than the top, and the top of (O) is lighter red
than the bottom. In (RR) we have solid-blue in the top and mostly red in the
bottom. Being better able to identify batch effects hopefully will aid down-stream
procedures to account for such effects.

3.3. Recovering Technical Effects Across Wells
Batch effects are a common and well-studied problem in high-throughput biological
experiments like MEMAs (Leek et al., 2010). Often, such batch effects obscure
biological variation of interest. To deal with this problem, unwanted variation like
batch is typically identified using the SVD and projected out of the data. In this
section we explore how (RR) helps identify unwanted variation like batch using the
SVD. We focus on the large staining batch effect as it was visible by eye in Figure 5.

We assess the transformations by measuring the percentage of the batch cap-
tured by the first k singular vectors of the transformed feature matrix. Let U =
[u1, . . . , uN ] ∈ RM×N be the (complete) left singular vectors of a feature matrix and
B ∈ RM×D be the batch indicator matrix so that Bij = 1 if well i is in batch j for
j = 1, . . . , D. Here we have D = 3 for the three staining batches. For k = 1, . . . , N
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Fig. 5. Heat map of a eight wells across the five transformations (NT), (G), (Z), (O), (RR).
Top row of each subplot is from first staining batch. Bottom row is from second staining
batch. Colors are more blue if they are close to the minimum, red if they are close to the
maximum, and white if they are close to half-way between. Green spots are missing. Dark
grey spots are omitted according to the MEMA design.

and t = 1 . . .min(k,D) define C
(t)
k to be the tth canonical correlation between the

first k left singular vectors Uk = [u1, . . . , uk] and the batch B. Then let

C2
k =

1

D

min(k,D)∑
t=1

(
C

(t)
k

)2

to be the average of these squared canonical correlations. We can interpret C2
k as

the percentage of the batch B that is captured by these first k singular vectors. In
Figure 6 we plot C2

k on the y-axis and vary k across the x-axis from k = 1 to 192.
From this figure we see that the transformations enhance identification of the

staining batch. Consider the cell area and total DAPI intensity features. As com-
pared with no transformation (NT), these plots shows that (G), (O), and (RR)
increase how much of the staining batch is captured by the first several singular
vectors. These transformations attenuate the non-informative tails of the distribu-
tions and focus the singular vectors on the differences across the staining batches.

We summarize batch recovery for all features in Figure 7. Here, we calculate
the area under the CC curves (AUC) for each feature as AUC =

∑192
k=1C

2
k Broadly,

we see the same behavior in Figure 7 as displayed in Figure 6. (RR) seems to
generally improve recovery of the staining batch. Sometimes we see a substantial
improvement (e.g. Cell Compactness) and rarely do we see that (RR) is detrimental.

In Supplementary Figures 15 - 20 we display similar plots for the recovery of
plate, well, and ligand effects. While these effects are not as prominent, we still
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Fig. 6. Mean of the squared canonical correlations between the first k left singular vectors
and the staining batch dummy variables.

see that the (RR) transformation slightly improves recovery of these latent effects
without being detrimental.

3.4. Data Integration for Discovering Between-Well Effects
Given the close relationship among many of the MEMA image features, latent effects
that appear in one feature may show up in other features. Shared effects give insight
into biological and technical aspects that are important across many features. To
extract these common effects we integrate information across MEMA features using
the left average singular vectors (ASVs) as described in Section 2.
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Fig. 7. Grand mean of the squared canonical correlations across number of components
(k). Canonical correlation is calculated between the first k left singular vectors and the
staining batch dummy variables. Variable names have been shortened for readability. We
order the features left to right decreasing by the difference in the AUC between (RR) and
(NT). Thus those on the left are where (RR) performs relatively better than (NT) and less
so on the right.

In the left panel of Figure 8 we plot the mean squared canonical correlations
(C2

k) between the first k left ASVs and the staining batch. We calculate the ASVs
using the 18 features measured in every plate. From this figure we can see that
(Z) and (RR) quickly and strongly recover the staining batch. The AUC for these
curves is in excess of 0.95, meaning it recovers batch better than the majority of
individual features. The ASVs “average-out” feature-specific effects and amplify
common effects like staining batch.

It is notable that the (Z) and (RR) recover batch significantly better than (O),
(G), and (NT). This happens because the ASVs element-wise average Gram matrices
across features. If these Gram matrices are on vastly different scales their average is
biased towards the largest features. This arbitrarily weights features’ by their scales.
To equitably integrate information all features should have values in a similar range
as in (Z) and (RR). Thus they recover batch better.

Finally, it is notable how well (Z) does alone. This happens because the averaging
used to compute the ASVs conveys some of the same benefits as (G) and (O). This
is true so long as we do not have a small number of features or systematic skewness
or outliers across features. In the right panel of Figure 8 we calculate the ASVs
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Fig. 8. Mean of the squared canonical correlations between the first k average left singular
vectors and the staining batch dummy variables. The average left singular vectors come
from integration of (Left) the 18 features that are measured across all MEMAs, and, (Right)
the five with the highest leverage points (among those 18).

using only five features with several high-leverage points. Here we see a separation
between (Z) and (RR) since the average is over a small number of highly-skewed
features. In any case, including (G) and (O) steps does not seem to hurt the analysis
and thus we still recommend the full three-step (RR) transformation for integrating
features in this manner. Similar, but attenuated results for plate, well and ligand
are shown in Figures 21 - 23.

3.5. Discovering Biological and Spatial Effects within Wells
The left singular vectors of the feature matrices reveal latent effects across the
wells, plates, and staining batches. Similarly, the right singular vectors (RSVs)
reveal effects across the spots. In Figure 9 we display a scatter plot of the first four
RSVs of total cytoplasmic DAPI intensity for (NT) and (RR).

A prominent feature of Figure 9 is the separation between the ECMps ELN,
NID1, and the rest. Upon further investigation of the underlying MEMA images
we find that this effect manifests because the cells have difficulty adhering to the
ELN and NID1 ECMp substrates. Notice the cell count heat-map in Supplementary
Figure 13 shows that the cell count in the ELN and NID1 spots are significantly
lower than other spots. While this ELN-NID1 effect is present in the un-transformed
data, it is more prominent in (RR). The first RSV from the un-transformed data
does capture the effect, however the second through fourth RSVs are focused on
explaining several outliers. Moreover, (RR) separates NID1 and ELN from the other
ECMps and from each other.

In Figure 10 we plot pseudo-image heat-maps of the first ten RSVs for cyto-
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Fig. 9. Scatter plot of elements of first four right singular vectors against each other for
the total cytoplasmic DAPI intensity feature. Shape and color indicate ECMp of the spot
corresponding to the elements of the singular vector.

plasmic DAPI intensity arranging elements of the RSVs according to the MEMA
plate spatial layout. In addition to the ELN/NID effect, these plots reveal common
spatial patterns across wells. These patterns are more visible for (RR) than (NT)
as the RSVs of (NT) mostly capture outliers. It is important to identify such un-
wanted effects so that we can properly account for them downstream. In Figures 25
- 29 we display similar scatter plots and heat-maps for the other example features.
They tell similar stories.

To see what biological effects can be found if we a priori remove the dominating
ELN-NID effect, we re-analyze the MEMA data after removing these spots. Now
we find an effect separating THBS from the other ECMps. This is particularly
prominent in morphological features. As an example, in Figure 11 we plot a scatter
plot of the top four RSVs for cell compactness. (RR) reveals a difference between
THBS and the other ECMps. This effect shows up in many of the morphological
features but not cell count. Thus this THBS effect does not appear to be of similar
origin to the ELN-NID effect. Instead, it appears to be a biological effect on cell
morphology.
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NT: Cytoplasm_CP_Intensity_IntegratedIntensity_Dapi

RR: Cytoplasm_CP_Intensity_IntegratedIntensity_Dapi

Fig. 10. Heat map of elements of top ten right singular vectors for the total cytoplasmic
DAPI intensity feature.

3.6. Data Integration for Discovering Within-Well Effects

In section 3.4 we saw that data integration helped make salient important between-
well effects. In a similar fashion, the average right singular vectors (ASVs) help
bring out within-well effects. In Figure 12 we plot the first two right ASVs against
each other. Again, (RR) equitably integrates information from all features and
helps highlight the NID/ELN effect.

Finally, we display heat-maps pseudo-images for the first ten right ASVs in
Figure 13. The right ASVs for (NT) seem to be mostly picking up a couple of
outliers. On the other hand, (RR) strongly picks up several interesting spatial
effects.
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Fig. 11. Scatter plot (after removing ELN and NID from analysis) of elements of top four
right singular vectors against each other for the cell compactness feature. Shape and color
indicate ECMp of the spot corresponding to the elements of the singular vector. The clus-
ters seen in the NT panels are from missing spots on an outlier plate (see Supplementary
Figure 31)

4. Discussion

The microenvironment of cells is an important component of many cell and tis-
sue level processes. Studying the cellular microenvironment not only furthers a
fundamental understanding of these processes but also helps us understand the in-
teraction of the microenvironment with disease-targeting therapies. In this paper
we have explored the effects of several transformations as part of a pre-processing
pipeline. The goal of these transformations is to emphasize important latent effects
in the data and attenuate common and misleading aspects of MEMA data.

Un-transformed feature data is often encumbered by skewed measurement scales,
outliers, or both. These aspects can hinder discovery of important biological effects
and impair the identification of unwanted technical variation. To de-emphasize such
misleading aspects of the data (O), (G), and their combination in (RR) were helpful.
(O) removed outliers using a conservative threshold and (G) reduced skewness by
Gaussianizing the data. Additionally, (RR) included a (Z) step that converted
values to robust z-scores. (Z) and (RR) allowed features to be straight-forwardly
integrated with a simple arithmetic average of Gram matrices.

We showed that a combination of a Gaussianizing transformation (G), z-score
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Fig. 12. Scatter plot of elements of top four right ASVs calculated over 18 features mea-
sured on all MEMAs. Shape and color indicate ECMp of the spot corresponding to the
elements of the singular vector.

transformation (Z), and removal of outliers (O) can improve visualization and dis-
covery of biological and technical latent effects in both features individually and
when combining features together. Finally, as (RR) automatically chose transfor-
mations for each feature this allowed adaptive application of (RR) to a range of
MEMA data containing different features.

This adaptive ability makes (RR) a promising candidate for pre-processing data
generated by other image-based cell-profiling technologies. For example (RR) seems
well suited for the analysis of data generated by Cyclic Immunofluorescence (Cy-
cIF)(Lin et al., 2016). CycIF is a new technology that allows up to 30-channel
immunofluorescent imaging. It does this through a series of imaging and washing
steps, each step staining with up to 6 different stains. Thus, through image-analysis,
CycIF has the potential to generate several hundred features. This is several times
the number seen for MEMAs and further compounds the need for automatic fea-
ture transformation. Exploring the application of (RR) to other highly-multiplexed
technologies like CycIf is a direction we hope to explore in future work.
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NT: ASVD

RR: ASVD

Fig. 13. Heat-map of top ten right ASVs calculated over 18 features measured on all
MEMAs.
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