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Abstract7

Chikungunya and Zika viruses are arthropod-borne viruses that pose significant threat to public health.8

Experimental data show that during in vitro infection both viruses exhibit qualitatively distinct repli-9

cation cycle kinetics. Chikungunya viral load rapidly accumulates within the first several hours post10

infection whereas Zika virus begins to increase at much later times. We sought to characterize these11

qualitatively distinct in vitro kinetics of chikungunya and Zika viruses by fitting a family of mathe-12

matical models to time course viral load datasets. We demonstrate that the standard viral kinetic13

model, which considers that new infections result only from free virus penetrating susceptible cells,14

does not fit experimental data as well as a model in which the number of virus-infected cells is the15

primary determinant of infection rate. We provide biologically meaningful quantifications of the main16

viral kinetic parameters and show that our results support cell-to-cell or localized transmission as a17

significant contributor to viral infection with chikungunya and Zika viruses.18

19

Importance20

Mathematical modeling has become a useful tool to tease out information about virus-host interactions21

and thus complements experimental work in characterizing and quantifying processes within viral22

replication cycle. Importantly, mathematical models can fill in incomplete data sets and identify key23

parameters of infection, provided the appropriate model is used. The in vitro time course dynamics of24

mosquito transmitted viruses, such as chikungunya and Zika, have not been studied by mathematical25

modeling and thus limits our knowledge about quantitative description of the individual determinants26

of viral replication cycle. This study employs dynamical modeling framework to show that the rate at27
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which cells become virus-infected is proportional to the number or virus-infected cells rather than free28

extracellular virus in the milieu, a widely accepted assumption in models of viral infections. Using29

the refined mathematical model in combination with viral load data, we provide quantification of30

the main drivers of chikungunya and Zika in vitro kinetics. Together, our results bring quantitative31

understanding of the basic components of chikungunya and Zika virus dynamics.32

Introduction33

Chikungunya (CHIKV) and Zika (ZIKV) viruses are arthropod-borne viruses (arbovirus) primarily34

transmitted through a bite of infected Aedes mosquitoes, and their continuous re-emergence pose an35

important public health threat. CHIKV was originally isolated in 1953 during an epidemic outbreak36

in Tanzania [1]. Outbreaks of CHIKV occurred in the western Indian Ocean in 2005-6 [2], India37

and Italy in 2007 along with several Southeast Asian countries, Pacific regions and the Americas38

[3]. Similarly, ZIKV was first discovered in 1947 in a Ugandan forest [4]. The first sporadic ZIKV39

outbreaks outside Africa were reported in the Asia-Pacific region in 2007 [5] and 2013 [6], followed40

by its rapid spread to the Western hemisphere in 2016 [7], which received public attention due to the41

association of ZIKV infection with newborn microcephaly and other neurological abnormalities [8–11].42

Currently, no approved vaccine or therapeutic treatments exist to specifically target CHIKV or ZIKV43

infections. Disease prevention mostly relies on decreasing the number of transmission events through44

vector control strategies, presenting a significant challenge to limit the incidence of future epidemics,45

especially in developing countries.46

Although CHIKV and ZIKV belong to distinct virus families (Togaviridae and Flaviviridae, re-47

spectively), virus particles share common characteristics, such as their positive single-stranded RNA48

genome and the presence of a lipid envelope derived from the host. Both viruses infect a wide spec-49

trum of mosquito and mammalian cell lines, including Vero cells, mosquito cells Aag2 or C6/36, as50

well as various human cell lines, including Huh7 [12, 13]. The classical kinetics following infection51

of a non-lytic virus begins with an eclipse phase in which attachment, entry and the first round of52

replication and assembly occurs. This period is followed by an exponential increase in viral particles53

released to the extracellular milieu following virus egress. Finally, a plateau phase is reached when54

the maximum capacity of virus production by the cells is reached. Following the plateau phase, the55

number of infectious virus particles in the extracellular milieu generally begins to decline due to a loss56

in stability and infectivity of the virions in the environment. Importantly, the time for each of these57
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phases of virus replication kinetics may vary between virus types, strains, and cell type, as the rate of58

different processes occurring in an infected cell (such as penetration, uncoating, replication, budding)59

may differ under different conditions.60

Mathematical models of in vitro viral infections help elucidate the time scales of each of these61

phases and characteristics affecting virus-infected cells, such as the length of eclipse phase, or the62

mean lifespan of virus-releasing cells. Dynamical models provide accurate estimations of the rates that63

dictate the accumulation of virus in the free space outside of cells, such as viral genome production64

rates and loss of viral infectivity. The more precise quantification of such fundamental processes within65

virus-host interactions can better replace generic, experiment-specific, qualitative descriptions of virus66

replication (e.g., ‘attenuated growth’, ‘reduced fitness’ in vitro). These measures have been determined67

for a number of viruses, including HIV-1 and simian-human immunodeficiency virus (SHIV) [14–68

19], hepatitis C virus [20–24], poliovirus [25–27], influenza A virus and its variants [28–32], West69

Nile virus [33], and Ebola virus [34, 35]. The mathematical models proposed in these experimental70

studies rely on the assumption that infection of susceptible cells occurs via free infectious virus. In71

contrast, only a limited number of theoretical studies have considered infection of susceptible cells to72

be proportional to the total number of virus-producing cells, which is commonly referred to as the73

cell-to-cell transmission model. The latter type of modeling is important to consider, since cell-to-74

cell viral transmission has been observed to be an additional contributor to the infection for many75

enveloped viruses [36–38]. Indeed, some theoretical studies showed that cell-to-cell transmission of76

virus contributed approximately equally to the in vitro growth of equine infectious anaemia virus [39]77

and HIV-1 [40], explained multiplicity of (HIV-1)-infected splenocytes in humans [41], or permitted78

spread of HIV-1 virus despite antiretroviral therapy [42, 43]. Interestingly, while no direct evidence of79

cell-to-cell transmission of ZIKV exists to date, indirect evidence of cell-to-cell transmission of CHIKV80

was previously suggested to enable CHIKV resistance to antibody neutralization by bypassing the81

extracellular space [44, 45].82

Modeling cell-to-cell transmission most commonly refers to modeling direct biological transfer of83

a virus. However, modeling cell-to-cell transmission may also be viewed as a proxy to model localized84

infections caused by low amounts of free infectious virus. This may especially be enhanced in static85

conditions, such as cell culture, where cell infections are more likely to occur in a localized manner as86

viral particles produced by an infected cell penetrate susceptible cells within their immediate neigh-87

borhood. In addition, such relatively low amounts of infectious virus responsible for new cell infections88

would be difficult to distinguish within the total infectious viral load especially for rapidly growing89
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viruses, such as CHIKV. Consequently, modeling occurrence of cell infections via total infectious viral90

load could result in misleading model parametrization. It is important to revise assumptions about91

viral infection dynamics as they could profoundly affect conclusions drawn from modeling in vitro92

virus dynamics under antiviral therapy, as the assays are often performed in adherent cell culture, as93

well as from modeling in vivo virus spread in organs and tissues.94

In this study, we use viral dynamics modeling to numerically characterize the main determinants95

of ZIKV and CHIKV in vitro kinetics and to tease apart the effects of each determinant on the viral96

load. To inform the mathematical model, we measured temporal changes in the infectious viral titres97

and encapsulated genome abundances in a series of experiments reflective of different aspect of viral98

replication cycle in the extracellular milieu. To minimize the influence of immune responses on the99

CHIKV and ZIKV infection, we used a mammalian cell line (Vero) which is incapable of producing100

type I interferon in response to viral infections [46, 47]. Infection of Vero cells was carried out using101

two distinct amounts of input virus at multiplicity of infection (MOI, defined as the number of viral102

genomes that enter and effectively replicate in a cell) of 0.01 (hereafter referred to as low MOI) and103

1 (hereafter referred to as high MOI) of infectious virus per cell. Using mathematical modeling, we104

compared CHIKV and ZIKV infection kinetics by allowing new infections to be facilitated via free105

extracellular infectious virus (hereafter referred to as ‘standard’ model) or via virus-producing cells106

(hereafter referred to as cell-to-cell transmission model). We show that because CHIKV-infected cells107

exhibit a much shorter eclipse phase and rapid accumulation of virus during the initial growth phase108

compared to rather long eclipse phase of ZIKV-infected cells and slow accumulation of virus over the109

infection course, the standard model fails to describe temporal CHIKV viral load data. The cell-110

to-cell transmission model, in which virus spread occurs via virus-producing cells, transpired to be111

significantly more descriptive of both CHIKV and ZIKV viral load time course data. Overall, we112

deliver the first comprehensive numerical characterization of in vitro CHIKV and ZIKV infections.113

Results114

Quantification of chikungunya and Zika loss of infectivity c and RNA genome sta-115

bility crna.116

To precisely calculate the degradation rates of infectious virus c and RNA genomes crna, we exper-117

imentally measured stability of RNA genomes subjected to the physical conditions of the in vitro118

experiments. ZIKV and CHIKV stocks were incubated at 37◦C for up to 72h in cell culture media and119
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at time points 8h, 48h and 72h, RNA was extracted and quantified by qRT-PCR. By fitting equation120

(1) to RNA genome abundances (see Material and Methods for description of the fitting procedure),121

we determined that CHIKV RNA genome degradation over the course of 72h was negligible (Figure122

1a) and for practical reasons was in the model (4) set to zero. ZIKV RNA genome degradation over123

the course of 72h was crna = 0.01h−1 (a half-life of 69.3h) (Figure 1b). Infectivity of both ZIKV and124

CHIKV were significantly reduced over time as determined by titration by plaque assay of infectious125

virus remaining in the solution (Figure 1a, 1b). By fitting equation (2) to viral titres (see Mate-126

rial and Methods for description of the fitting procedure), we determined the mean infectivity loss127

rate of CHIKV and ZIKV over the infection course to be c = 0.048h−1 and c = 0.072h−1, respec-128

tively, (a half-life of 14.4h and 9.6h, respectively). In conclusion, ZIKV loses infectivity more rapidly129

than CHIKV. Estimated viral decay kinetic parameters for both ZIKV and CHIKV with their 95%130

confidence intervals are summarized in Table 1 and Figure 1.131

Model selection132

For each virus, we used Approximate Bayesian Computation (ABC, Materials and Methods) to fit133

equations (4) (see also Figure 2 for biological description of the equations) to low and high MOI exper-134

imental datasets separately and simultaneously. For each virus and each MOI dataset, we quantified135

viral parameters within the model (4) for both viral transmission modes. To determine which of the136

two transmission models provides better description of the data, we performed model selection based137

on the calculation of posterior odds ratio (Materials and Methods). We found strong evidence for138

the cell-to-cell viral transmission model to describe CHIKV infection dynamics as the posterior odds139

ratio was equal to one in favour of cell-to-cell viral transmission model. For ZIKV, we also found140

evidence for the cell-to-cell viral transmission model to describe infection dynamics with posterior141

odds ratio equal to 0.74 for the cell-to-cell viral transmission model compared to 0.26 for the standard142

transmission model. Solutions of the cell-to-cell transmission model associated with parameter sets143

inferred from ABC provided good fits to both CHIKV and ZIKV time course datasets (Figures 3a and144

4a, respectively). In contrast, solutions of the standard model associated with parameter sets inferred145

from ABC fit well ZIKV time course datasets (Figure 4b) and CHIKV time course datasets only when146

low and high MOI datasets were fit separately (results not shown) but did not fit well CHIKV time147

course datasets when low and high MOI datasets were fit simultaneously (Figure 3b).148

Herein, we focus on the select model parameters, that is, eclipse phase τE , viral genome production149

rate p and infectious virus to total RNA genomes ratio α. For the remaining model parameters, namely150
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the number of compartments of eclipse and infectious phases nE and nI , respectively, the mean lifespan151

of infected cells τI and the infection rate β the ABC converged on posterior distributions that were152

not significantly different from their uniform priors (results not shown). The mean, median and 95%153

credible intervals for all viral parameters for both models, both viruses and input MOI are listed in154

Tables 2, 3, 4 and 5.155

Duration of eclipse phase τE of chikungunya- and Zika-infected cells is not exponential.156

Inference process under standard model yielded posterior distributions of τE with substantially differ-157

ent peaks and shapes for different initial experimental conditions (MOI) in the case of CHIKV infection158

(Figure 5a, left column). We estimated the median to be 14.6h for low MOI CHIKV infection, 6.3h159

for high MOI CHIKV infection and 9.3h if we fit the standard model to low and high MOI CHIKV160

datasets simultaneously. It is unlikely that differences in multiplicity of infection would promote such161

differences in posterior distributions of τE as the time for a virion to complete its replication cycle is162

biologically rather predetermined. Inference process under cell-to-cell transmission model converged163

to posterior distributions with consistent shapes and peaks for different initial experimental conditions164

(MOI) for both CHIKV and ZIKV infections (Figures 5b, 5d, left column) yielding medians between165

6-7.5h and 36.4-39.8h, respectively. Interestingly, for ZIKV infection time course datasets, inference166

process under standard model yielded posterior distributions comparable to those under cell-to-cell167

transmission model (Figure 5c, left column) with the median between 36-38.8h across different initial168

viral input MOI. The mean, median and 95% credible intervals of the posterior distributions for the169

eclipse phase duration τE for each virus, each transmission model and each initial MOI are listed in170

Tables 2, 3, 4 and 5.171

Viral genome production rate p and infectious virus to total RNA genomes ratio α are172

substantially different for chikungunya and Zika viruses. Posterior distributions of the viral173

genome production rate p exhibited substantial differences in the peaks and shapes when the standard174

model was fit to low and high MOI CHIKV experimental datasets (Figures 5a, middle column). We175

estimated the median to be 250, 2.6, and 70.6, viral genomes released out of a cell per hour. These176

discrepancies disappeared when CHIKV dynamics was described by the cell-to-cell viral transmission177

model (Figure 5b) yielding median between 1.9-2.4 viral genomes per hour across different initial178

viral input MOI. Inference of ZIKV genome production rate under both standard and cell-to-cell179

transmission models yielded a bounded posterior distribution of p of which median varied between180

0.13-2.9×106 genomes released out of a cell per hour across different initial viral input MOI (Figures181
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5c and 5d, middle column). ZIKV-infected cells appeared to produce considerably more viral genomes182

but also significantly less infectious virus to total RNA genomes produced compared to CHIKV. For183

CHIKV, median of posterior distribution of α varied between 3 to 5 infectious viruses per ten RNA184

genomes produced whereas for ZIKV we obtained 5.9-7.4 infectious viruses per ten thousand RNA185

genomes produced (Figure 5, right column in each panel). The mean, median and 95% credible186

intervals of the posterior distributions for the viral genome production rate p and infectious virus to187

total RNA genomes ratio α for each virus, each transmission model and each initial MOI are listed in188

Tables 2, 3, 4 and 5.189

Viral parameters within cell-to-cell transmission model.190

We used the least-square fitting procedure described in Materials and Methods (Extraction of virus191

decay parameters) to precisely quantify the viral parameters by fitting the cell-to-cell transmission192

model (4) to low and high MOI datasets simultaneously. Because the number of compartments of the193

eclipse and infectious phases, nE and nI , respectively, could not be inferred, we set nE = nI = 40194

(as e.g. used to estimate Influenza A in vitro kinetic parameters in [29]) and fit equations (4) to195

low and high MOI CHIKV and ZIKV datasets. The estimated best-fit parameter values and 95%196

bootstrap confidence intervals are listed in Table 6 and associated dynamics of CHIKV and ZIKV197

infections are depicted in Figure 7. The infection rate βC was found to be βC = 4.2 × 10−3 and198

3.5 × 10−4 (cells×h)−1 for CHIKV and ZIKV infections, respectively. The duration of eclipse phase199

of CHIKV- and ZIKV-infected cells were found to be 6.4h and 29.4h, respectively. The mean lifespan200

of CHIKV- and ZIKV-producing cells were found to be 44.8h and 31.4h, respectively. Although the201

lifespan of virus-producing cells seems to be overestimated, especially in the case of CHIKV as it is202

highly cytopathic and promotes rapid cell death, such high values may be the result of post-peak203

virus clearance not having been captured in the data (Figures 7). As virus-producing cells undergo204

infection-induced death, additional data points capturing viral decay would reflect the phase when205

viral production becomes slower than viral clearance and possibly improve estimation of lifespan of206

virus-producing cells. The viral genome production rate p and infectious virus to total RNA genomes207

produced by a cell α were found to be significantly different for both viruses. While production rate208

of CHIKV genomes was estimated to be 2.4 genomes per cell per hour with the proportion of 18209

infectious viruses per one hundred genomes, ZIKV genomes were being produced at the rate 3.3× 104210

genomes per cell per hour with the proportion of 6.3 infectious viruses per ten thousand genomes211

produced (Table 6).212
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Discussion213

The present study investigated the in vitro dynamics of chikungunya (CHIKV) and Zika (ZIKV)214

viruses whose time course of viral load data showed significantly different replication cycle kinetics.215

In particular, a longer replication cycle of ZIKV compared to that of CHIKV gave rise to qualitatively216

distinct viral dynamics which we studied by mathematical modeling to tease apart and quantify217

individual drivers within each virus-cell interactions. The dynamics of extracellular free virus was218

found not to be descriptive of either CHIKV or ZIKV infection dynamics. Therefore, we hypothesized219

that the rate at which cells were infected was not proportional to the total extracellular infectious220

virus but rather the number of virus-producing cells.221

In modeling the viral kinetics, we were able to evaluate which of the two transmission models, that222

is the standard model in which viral transmission is facilitated by extracellular free virus or cell-to-223

cell transmission model in which viral transmission is facilitated by virus-producing cells, can explain224

empirical observations. Although the dynamics of virus-producing cells transpired to be significantly225

more explanatory of viral kinetic data, we cannot establish the exact mechanisms responsible. The226

cell-to-cell transmission term (−βC T
∑

j Ij) in the mathematical model (4) represents two physical227

and generally distinct biological processes; first, utilization of existing cell-to-cell contacts by the virus228

and second, exploitation of cell adhesion biology to deliberately establish contact between infected229

and uninfected target cells. Biologically, much remains unknown about the possibility of ZIKV and230

CHIKV spread via direct cell-to-cell interactions. To date, evidence for such spread for ZIKV does not231

exist. On the other hand, cell-to-cell-transmission of CHIKV has been previously suggested to describe232

the resistance of CHIKV mutants to antibody-dependent neutralization [36]. The authors suggested233

that presumably cell-to-cell transmission occurs when virus budding occurs near a cell junction and234

when the virus can recognize the viral receptors on the neighboring cell. It is important to note235

that other ways of transmission, which may resemble cell-to-cell transmission in ‘protecting’ the virus236

from the extracellular space exist, and have not been taken into account in the latter study. For237

example, it is becoming increasingly evident that viruses hijack cellular machinery to be transmitted238

through extracellular vesicles (such as exosomes) in order to escape antibody and immune responses239

and mediating further infection [48–51]. Indeed, ZIKV transmission has been shown to be mediated240

by exosomes in cortical neurons [52]. In a similar manner, CHIKV was shown to trigger apoptosis241

and ‘hide’ in apoptotic blebs, which were then able to infect cells otherwise refractory to CHIKV242

infection [49]. Although direct cell-to-cell viral transmission remains to be experimentally explored243
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and demonstrated for CHIKV and ZIKV, we showed that mathematical model in which virus spread244

is proportional to virus-producing cells is able to explain experimental data more accurately. Despite245

that the spatial component of virus infection dynamics is not taken into account by either of the two246

models, a virus is most likely to infect neighboring cells following budding, especially in more static247

environments such as cell culture without mixing, or possibly in tissue compartments in vivo. This248

may explain why the cell-to-cell transmission model is favored in this study, as the extracellular free249

virus model, which assumes that progeny virus is likely to infect any cell, irrespective of the distance250

from the infected cell.251

It is important to note that most empirical data used for modeling tend to be generated under a252

single growth condition. We conscientiously chose to perform and analyze both low and high MOI253

growth, individually and combined, to further test the validity of each model. Had only one growth254

condition been selected, we would not have identified that the standard model failed. These results255

argue for the inclusion of more diverse experimental sets in model selection and development. We256

could argue that the extreme differences between the inferred posterior distributions of CHIKV viral257

parameter values under free-virus transmission may have been the result of MOI-dependent cellular258

response to the presence of the virus throughout the infection course. Another possible explanation259

for the reported discrepancies is superinfection. However, CHIKV superinfection is not well supported260

since it has recently been shown that prior CHIKV infection of BHK cells (which are also interferon-261

incompetent) inhibits re-infection of already infected cells by a challenge CHIKV [53]. Modeling262

CHIKV in vitro dynamics thus presents a challenge and requires further investigation.263

Statistical model comparison provided more support for cell-to-cell over the standard viral trans-264

mission model. Nevertheless, this does not imply that cell-to-cell transmission model is the correct265

model to be used to model CHIKV in vitro dynamics. To possibly test the hypothesis that standard266

transmission model is indeed descriptive of CHIKV kinetics, infectious and total RNA genomes would267

have to be measured in a timely manner in-between time points 8h and 24h to capture two-phase in-268

crease of virus, particularly at low MOI. Insufficient data may have not provided enough information269

about the viral dynamics to the mathematical model. Genome quantification of intracellular virus270

would provide evidence for differential accumulation of virus within cells during low and high MOI271

infection. Another, although indirect, evidence to support the standard model would include timely272

measures of cell death as their accumulation would reflect removal of short-lived virus producing cells273

with a large viral burst size from the system. Interestingly, both standard and cell-to-cell transmission274

models were able to describe ZIKV in vitro kinetics. Although there was stronger statistical preference275
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for the latter, inference process yielded comparable posterior distributions of viral parameter values276

for both standard and cell-to-cell transmission models. Thus, we conclude that CHIKV as a model277

virus with fast replication cycle may exhibit MOI-dependent phenotypes.278

Overall, this study showed that the mathematical model in which the spread of an infection is279

described by cell-to-cell viral transmission can more accurately describe the in vitro dynamics of280

CHIKV and ZIKV infections than the standard model in which the spread of an infection is mediated281

via free extracellular virus. By modeling viral load datasets reflective of the virus kinetics at low and282

high MOI, we quantified the rates of different processes within the CHIKV- and ZIKV-cell interactions.283

Although we could not directly identify and quantify specific mechanisms, differences in the time scales284

of viral replication cycle may play an important role in identifying the model of better predictive power.285

This could have a significant impact on the development of models for viral control as the predictive286

ability of a chosen model to reflect and meaningfully interpret viral data under the influence of an287

external intervention, such as antiviral treatment, would be skewed. Identifying descriptive models288

and confronting them with diverse experimental datasets is essential to the development of therapies289

that prevent or treat CHIKV, ZIKV, and other infections.290

Materials and Methods291

Cells Vero, HEK-293T and BHK cells were maintained in Dulbecco’s modified Eagles medium292

(DMEM), supplemented with 10% fetal calf serum (FCS) and 1% penicillin/streptomycin (P/S;293

Thermo Fisher) in a humidified atmosphere at 37◦C with 5% CO2. U4.4 cells (derived from Aedes294

albopictus) were grown in Leibovitz’s L-15 medium with 10% FCS, supplemented with 1% P/S, 1%295

non-essential amino acids (Sigma) and 1% tryptose phosphate (Sigma) at 28◦C.296

Viruses The chikungunya virus (CHIKV) stock was generated from a Caribbean infectious clone297

described elsewhere [54]. After linearization with NotI restriction enzyme (Thermo Fisher), RNA298

was generated by in vitro transcription (IVT) with SP6 mMESSAGE mMACHINE kit (Invitrogen)299

and transfected into BHK with lipofectamin 2000 (invitrogen). The Zika virus (ZIKV) used for this300

study is the prototype african MR-766 strain derived from an infectious clone described elsewhere301

[55]. ZIKV was rescued by transfection of the infectious clone in semi-confluent HEK-293T cells using302

TransIT-LT1 transfection reagent (Mirus Bio). For both viruses, virus stocks used in this study were303

generated by infection of Vero cells for amplification, titred by plaque assay and frozen at -80◦C prior304

to use.305
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Plaque assay Viral titration was performed on Vero cells plated 1 day prior to infection on 24 well306

plates. Ten fold dilutions were performed in DMEM alone and transferred onto Vero cells for 1 hour307

to allow infection before adding DMEM with 2% FCS, 1% P/S and 0.8% agarose. Plaque assays308

were fixed with 4% formalin (Sigma) 3 days post infection (p.i.) (CHIKV) or 4 days p.i. (ZIKV) and309

plaques were manually counted.310

Growth curves Cells were plated in 12 well plates at 80-90% confluence one day before infection.311

At day 0, virus was diluted in 300 or 200 µl PBS to obtain a multiplicity of infection (MOI) of 1 PFU312

per cell (high MOI) or 0.01 PFU per cell (low MOI). After 1 hour, the viral solution was removed,313

cells were washed three times with PBS and new media supplemented with 2% FCS was added. At314

each time point 0h, 4h, 8h, 24h, 48h and 72h for CHIKV and 0h, 4h, 6h, 8h, 24h, 48h, 72h, and 96h for315

ZIKV infection 60 µl and 5 µl were separately aliquoted and frozen for further titration (as described316

above) and RT qPCR. 65 µl of fresh media was added on top of cells to replace the taken volume.317

Each growth curve was done in triplicates.318

RT qPCR As described in [56], cell supernatants were heated 5 minutes at 60◦C for viral inacti-319

vation. Quantitative RT-PCR was then performed with TaqMan RNA-to-Ct One-step RT-PCR kit320

(Applied Biosystems) using the following cycling conditions: 20 minutes at 50 C, 10 minutes at 95321

C, 40 cycles of 95 C for 15 seconds, followed by 60 C for 1 minute). The primer and probe sets used322

for each virus are shown in Table 7. RNA copy number was derived from a standard curve generated323

using reactions containing 10-fold dilutions of known amounts of in vitro generated RNA transcripts324

Each reaction contained a scale of diluted IVT to calculate RNA copy number. The CHIKV RT-PCR325

amplifies a 152 nucleotide-region spanning the 5’ UTR and NSP1. The ZIKV primers bind to and326

amplify a 77 nucleotide region in the 5’ end of the ZIKV genome (position 1192-1268).327

Extraction of virus decay parameters To identify viral decay parameters, crna and c, we assumed328

that the loss of RNA genomes and infectious virus proceeds in an exponential (or log-linear) manner329

over time. Therefore, the loss of RNA genomes Vrna(t) and infectious virus Vpfu(t) can be expressed as330

lnVrna(t) = lnVrna(0)− crna t, (1)

lnVpfu(t) = lnVpfu(0)− cpfu t, (2)
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where crna and cpfu (measured in h−1) are the decay rates of RNA genomes and virus infectivity,331

respectively, as in equations (4), and lnVrna(0) and lnVpfu(0) are natural logarithms of the initial332

states of RNA genomes and infectious virus at t = 0h.333

To obtain estimates of viral decay parameters, we minimized the sum of squared errors (SSE)334

between the measured data D(ti) and the model solution V (ti) at each measured time point ti and335

for each measured replicate j given as336

SSE(V,D) =
∑
i

∑
j

(V (ti)−D(ti))
2 (3)

across parameter ranges using the Python function scipy.optimize.least squares for performing337

bound-constrained optimization on variables. To provide 95% confidence intervals for each estimated338

best-fit parameter, we fit equations (1) and (2) to 3000 bootstrap replicates of each data set, the339

detailed description of which can be found in [59].340

Mathematical model The cell-free, low and high MOI time course datasets were numerically sim-341

ulated using a collection of ordinary differential equations, in which susceptible target cells (T ) become342

infected by infectious virus ((Vpfu), measured in plague forming units (PFU)) or virus-producing cells343

(Ij=1...nI ) at the infection rate (βV ), (measured in (PFU × h)−1) or (βI), (measured in (cell × h)−1),344

respectively. The rate of cell infection by infectious virus depends on the concentration of free extra-345

cellular infectious virus (Vpfu), but not released total virus ((Vrna), measured as total RNA genomes346

(RNA)). Upon successful infection, target cells enter an eclipse phase (the time between virus entry347

into the cell to the beginning of viral release out of the cell), separated into (nE) stages. Eclipse348

cells (Ei=1,...,nE ) remain in each stage i = 1, . . . , nE for an exponentially-distributed time of equal349

average length (τE/nE). Only eclipse cells in the last compartment (EnE ) are allowed to transition350

into the infectious state and begin producing viral genomes. Infectious phase (the amount of time351

between the beginning of viral release out of a cell until the cell undergoes cell death or is removed352

from the state of being infectious by other mechanisms) is separated into (nI) stages, and infectious353

cells (Ij=1,...,nI ) spend an exponentially-distributed time of equal average length (τE/nE) in each stage354

before infectious cells in the last stage (nI) are removed from the system. It is unrealistic to impose355

the assumption on the cells to spend an exponentially distributed amount of time in the eclipse or356

infectious phases (here equivalent to nE = nI = 1) as it would allow cells to initiate viral production357

immediately upon infection, stop viral production immediately after it is initiated, and produce virus358

indefinitely [19, 18, 30, 31, 57]. Therefore, we subdivided eclipse and infectious phases into nE and359
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nI compartments, such that these times are Erlang distributed with means τE and τI , respectively.360

Erlang distribution is a special case of Gamma distribution of which the shape is dictated by nE and361

nI and vary from an exponential (= 1) to a normal-like (� 1) (Figure 6). Infectious cells in all stages362

can produce viral genomes at the rate ((p), measured in RNA×(cell × h)−1), the proportion of which363

((α), measured in PFU/RNA) translates into infectious virus. Viral particles degrade at the rate364

((crna), measured in h−1) and infectious virus loses infectivity at the rate ((c), measured in h−1). The365

viral dynamics model is illustrated in Figure 2 and comprises of the following collection of ordinary366

differential equations:367

dT

dt
= −β(Vpfu, I1, . . . , InI )T

dE1

dt
= β T Vpfu −

nE
τE

E1

dEi=2...nE

dt
=
nE
τE

Ei−1 −
nE
τE
Ei

dI1
dt

=
nE
τE

EnE −
nI
τI
I1

dIj=2...nI

dt
=
nI
τI
Ij−1 −

nI
τI
Ij

dVpfu

dt
= αp

nI∑
j=1

Ij − (c+ crna)Vpfu

dVrna

dt
= p

nI∑
j=1

Ij − crna Vrna

(4)

where368

β(Vpfu, I1, . . . , InI ) =

 βV Vpfu in case of free-virus transmission

βI
∑nI

j=1 Ij in case of cell-to-cell transmission.

The experiments to obtain viral load data at different time points began with overlaying the369

virus supernatant on susceptible cells followed by a one hour cultivation to allow cell infection. The370

supernatant was then removed and cells were thoroughly washed off the remaining virus that did371

not enter the cells. The proportion of susceptible cells that became infected was governed by the372

multiplicity of infection (i.e., the ratio of infectious virus in the inoculum to the total number of373

susceptible cells) and was assumed to follow Poisson distribution as follows:374

Proportion of cells receiving N viral particles =
MOIN exp(−MOI)

N !
. (5)

We further simplify the process by allowing only eclipse cells in their first stage of eclipse phase, E1,375

to have received the virus. The fraction of E1 cells which received one or more viruses is equivalent376
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to the total proportion of cells excluding those which did not receive any virus377

Proportion of E1 cells = 1− MOI0 exp(−MOI)

0!
= 1− exp(−MOI). (6)

Thus, the initial conditions are T (t = 0) = T0 × exp(−MOI), E1(t = 0) = T0 × (1 − exp(−MOI)),378

E2,...,nE (t = 0) = 0, I1,...,nI (t = 0) = 0, Vpfu(t = 0) = 0, and Vrna(t = 0) = 0, where T0 = 2 × 105379

susceptible cells seeded in each well.380

Parameter inference We used Approximate Bayesian Computation (ABC) rejection approach to381

infer viral parameters and perform model selection. We simulated large numbers of datasets using382

parametrisations sampled from a log-uniform prior probability distribution for each model parameter.383

Specifically, the ranges over which we varied both CHIKV and ZIKV parameters were nE ∼ U(1, 40),384

nI ∼ U(1, 40), log10 βV ∼ U(−10, c/T0), log10 βC ∼ U(−6,−1), log10 τE ∼ U(−1, 2) and log10 τI ∼385

U(−1, 3). CHIKV-specific parameter ranges were within log10 p ∼ U(0, 6), log10 α ∼ U(−2, 0) and386

ZIKV-specific parameter ranges were within log10 p ∼ U(2, 8), log10 α ∼ U(−5, 0). At the time387

point t = 0h, the extracellular virus was either undetectable or some residual virus was detected due388

to insufficient washing of cells. Thus, we keep the initial residual extracellular viral loads as free389

parameters and do not allow the residual virus to engage in the dynamics (residual infectious virus390

and RNA genomes are only allow to decay at the rates c and crna, respectively). The initial CHIKV391

residual inputs were varied within log10 Vpfu(0) ∼ U(0, 2), log10 Vrna(0) ∼ U(0, 3) for low MOI infection392

and log10 Vpfu(0) ∼ U(2.5, 3.5) and log10 Vrna(0) ∼ U(2.5, 3.5) for high MOI infection. The initial393

ZIKV residual inputs were varied within log10 Vpfu(0) ∼ U(1.5, 2.5), log10 Vrna(0) ∼ U(2.5, 5.5) for low394

MOI infection and log10 Vpfu(0) ∼ U(3, 4.5) and log10 Vrna(0) ∼ U(4, 7.5) for high MOI infection. We395

numerically solved the system (4) using the Python function scipy.integrate.odeint and simulated396

data Vpfu and Vrna were then compared with the mean of measured data Dpfu and Drna by calculating397

Euclidean distance398

dist(Vpfu, Vrna, Dpfu, Drna) =

√√√√√ N∑
i=1

(Vpfu(ti)−Dpfu(ti)

SDpfu(ti)

)2

+

(
Vrna(ti)−Drna(ti)

SDrna(ti)

)2
 (7)

for measured times {ti|i = 1, . . . , N} where SDpfu(ti) and SDrna(ti) are the standard deviations of the399

measured viral titres and RNA genome abundances at the time point ti. The parametrizations of400

all simulated datasets were sorted with respect to the distance (7) in an ascending manner and the401
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first one thousand parametrizations were accepted. The posterior density distributions were then402

constructed from the pool of accepted parametrisations.403

Model selection We evaluate the evidence provided by the data in favour of cell-to-cell transmis-404

sion model over the standard model by computing posterior odds as a summary of such evidence.405

Practically, for each of the models we find the largest distance (7) at which a parameter set was ac-406

cepted. Using the smaller of these two distances, we can then determine for each model the number407

of parameter sets that would be accepted at this threshold. The posterior odds are then the fraction408

of all parameter sets accepted at this threshold contributed by each model.409

Biological constraints We impose realistic biological constraints on the viral parameters whenever410

the spread of infection is modelled by free-virus transmission. Since infectious virus is cleared at a rate411

c, then its mean lifetime is 1/c. Therefore, the mean number of cells infectious virus infects during412

its lifetime is βV T0/c. We require that inferred viral parameters satisfy βV T0/c ≤ 1 and thus, on413

average, infectious virus can infect at most one cell.414

Since we initiate equations (4) at time 0h assuming a portion of cells already in the eclipse phase,415

any combination of viral parameters will result in viral growth. To ensure realistic parametrization416

of equations (4), we required the basic reproduction number R0, defined as the number of secondary417

infected cells that will be infected by a single infectious cell in a completely susceptible population is418

at least one, to satisfy R0 = βV T0 τI αp/c ≥ 1. R0 is here a product of the mean amount of infectious419

virus produced during the lifetime of an infected cell (αp τI) and the mean number of cells infected420

per infectious virus βV T0/c [58].421
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Tables582

Description Parameter Value, 95% CI (h−1)
CHIKV ZIKV

Infectious virus decay rate c 0.05, [0.03, 0.06] 0.072, [0.069, 0.076]
RNA genome decay rate crna 2.2× 10−10, [10−10, 3.7× 10−3] 0.01, [0.0082, 0.011]

Table 1: Best-fit parameter values and 95% confidence intervals obtained from fitting equations
(1) and (2) to total RNA genome abundances and viral titres, respectively, from the RNA genome
degradation assays with the corresponding titre quantifications to asses infectivity of CHIKV (Figure
1a) and ZIKV (Figure 1b) over time.
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CHIKV ZIKV

Forward primer (5’ to 3’) GAGACACACGTAGCCTACCA TCGTTGCCCAACACAAG

Reverse primer (5’ to 3’) GGTTCCACCTCAAACATGGG
CCACTAATGTTCTTTTG
CAGACAT

Probe (5’ [6-FAM] to 3’) ACGCACGTTGCAGGGCCTTCA
GCCTACCTTGACAAGCA
ATCAGACACTCA

Table 7: The primer and probe sets used for CHIKV and ZIKV.
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Figure 1: Cell-free experiment to determine stability of RNA genomes (grey dots) and loss of in-
fectivity (red dots) of (a) CHIKV and (b) ZIKV subjected to the physical conditions of the in vitro
experiments over 72h. The best fits of equations (1) and (2) describing the decay of RNA genomes
and viral infectivity, respectively, are displayed as dashed and solid lines, respectively. Data are shown
as the mean ± standard deviation. The best-fit parameter values and 95% confidence intervals are in
Table 1.

26

.CC-BY-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 5, 2019. ; https://doi.org/10.1101/627968doi: bioRxiv preprint 

https://doi.org/10.1101/627968
http://creativecommons.org/licenses/by-nd/4.0/


Target cells

β
b b b

T E1 E2 EnE

Eclipse phase

nE

τE
nE

τE
nE

τE

b b b

nI

τI
nI

τI
nI

τI
nI

τI

Infectious phase

Infectious RNA Non-infectious RNA

I1I2InI

p

RNA particles VRNA

cRNA c cRNA

∅

∅ ∅

Figure 2: Graphical representation of the mathematical model (4) describing the in vitro viral
kinetics. Susceptible cells (T ) may get infected either by extracellular free virus entering susceptible
cells at the rate (βV Vpfu) or when virus invades susceptible cells from virus-producing cells via cell-
to-cell transmission at the rate (βC Vpfu). Upon successful virus infection, susceptible cells enter an
eclipse phase which is divided into nE sub-phases each of which last (nE/τE) time units. Thus, the
duration of eclipse phase is τE time units and (E1), . . . , (EnE ) are cells in eclipse sub-phases. Only
cells in the last sub-phase of eclipse phase (EnE ) enter infectious phase in which they become virus-
producing. Infectious phase is divided into nI sub-phases each of which last (nI/τI) time units. Thus,
the duration of infectious phase is τI time units and (I1), . . . , (InI ) are cells in infectious sub-phases.
Cells in any infectious sub-phase produce virus at the rate (p). Only cells in the last sub-phase of
infectious phase (InI ) exit the system at the rate (nI/τI). Infectious virus loses infectivity at the rate
(c) and viral genomes lose stability at the rate (crna).
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Figure 3: One thousand best ABC fits of the (a) standard (b) cell-to-cell transmission model to
low (left panel) and high (right panel) MOI datasets depicted as filled areas around the time course
CHIKV titres and total RNA genome abundances. Data are shown as the mean ± standard deviation
and model was fit to low and high MOI datasets simultaneously.
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Figure 4: One thousand best ABC fits of the (a) standard (b) cell-to-cell transmission model to
low (left panel) and high (right panel) MOI datasets depicted as filled areas around the time course
ZIKV titres and total RNA genome abundances. Data are shown as the mean ± standard deviation
and model was fit to low and high MOI datasets simultaneously.
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Figure 5: The posterior distributions of the select viral parameters obtained from ABC fits of the
standard transmission model to (a) CHIKV and (c) ZIKV low (blue), high (red) and both low and
high (grey) MOI kinetic data. The posterior distributions of the select viral parameters obtained from
ABC fits of the cell-to-cell transmission model to (b) CHIKV and (d) ZIKV low (blue), high (red)
and both low and high (grey) MOI kinetic data. The horizontal dashed lines indicate the initial prior
(uniform) distribution from which the viral parameter values were sampled. The bounds imposed on
viral parameters are in Material and Methods.
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Figure 6: Probability density (y-axis) that a cell spends x hours in the (eclipse or infectious) phase.
As the Erlang shape parameter (nE or nI in the model (4) for the eclipse and virus-producing phases,
respectively) is increased, the distribution of the phase duration shifts from an exponential (n = 1), to
a fat-tailed (1 < n < 10), to a normal-like (n� 10) distribution. In these graphs, the mean time spent
by cells in the phase (τE or τI in the model (4), respectively) is fixed (set to 10h, chosen arbitrarily)
as the shape parameter (nE or nI) is varied.
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Figure 7: CHIKV and ZIKV kinetics that corresponds to the best-fit parameters obtained from the
least-square fitting of the cell-to-cell viral transmission model (4) to (a) low and (b) high CHIKV
MOI dataset, and (c) low and (d) high ZIKV MOI dataset. Data are shown as the mean ± standard
deviation. The best-fit parameter values dictating CHIKV kinetics are in Table 6.
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