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Abstract 46 

Nitrogen metabolism in the rhizosphere microbiome plays an important role in mediating plant 47 

nutrition, particularly under low inputs of mineral fertilisers. However, there is relatively little 48 

mechanistic information about which genes and metabolic pathways are induced by rhizosphere 49 

bacterial strains to utilise diverse nitrogen substrates.  Here we investigate nitrogen substrate 50 

utilisation in three taxonomically diverse bacterial strains previously isolated from Arabidopsis 51 

roots. The three strains represent taxa that are consistently detected as core members of the plant 52 

microbiome: Pseudomonas, Streptomyces and Rhizobium. We use phenotype microarrays to 53 

determine the nitrogen substrate preferences of these strains, and compare the experimental 54 

results versus computational simulations of genome-scale metabolic network models obtained 55 

with EnsembleFBA. Results show that all three strains exhibit generalistic nitrogen substrate 56 

preferences, with substrate utilisation being well predicted by EnsembleFBA. Using label-free 57 

quantitative proteomics, we document hundreds of proteins in each strain that exhibit differential 58 

abundance values following cultivation on five different nitrogen sources: ammonium, glutamate, 59 

lysine, serine and urea. Proteomic data show that the three strains use different metabolic 60 

strategies to utilise specific nitrogen sources. One diverging trait appears to be their degree of 61 

proteomic flexibility, with Pseudomonas sp. Root9 utilising lysine nutrition via widespread 62 

protein-level alterations to its flexible metabolic network, whereas Rhizobium sp. Root491 shows 63 

relatively stable proteome composition across diverse nitrogen sources. Our results give new 64 

protein-level information about the specific transporters and enzymes induced by diverse 65 

rhizosphere bacterial strains to utilise organic nitrogen substrates. 66 

 67 
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Importance 68 

Nitrogen is the primary macronutrient required for plant growth. In contemporary agriculture, the 69 

vast majority of nitrogen is delivered via mineral fertilisers, which have undesirable 70 

environmental consequences such as waterway eutrophication and greenhouse gas production. 71 

There is increasing research interest in designing agricultural systems that mimic natural 72 

ecosystems, where nitrogen compounds are cycled between plants and soil, with the 73 

mineralisation of recalcitrant soil organic-N molecules mediated via microbial metabolism. 74 

However, to date there is little mechanistic information about which genes and metabolic 75 

pathways are induced by rhizosphere bacterial strains to metabolise organic-N molecules. Here, 76 

we use quantitative proteomics to provide new information about the molecular mechanisms 77 

utilised by taxonomically diverse rhizosphere bacterial strains to utilise different nitrogen 78 

substrates. Furthermore, we generate computational models of bacterial metabolism from a 79 

minimal set of experimental information, providing a workflow that can be easily reused to 80 

predict nitrogen substrate utilisation in other strains. 81 

 82 
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Introduction 83 

Improved nitrogen management in agricultural systems is crucial for environmental 84 

sustainability. Large-scale application of mineral nitrogen fertilisers has extensive off-target 85 

effects, such as greenhouse gas production and waterway eutrophication (1). One potential 86 

pathway to boost agricultural sustainability involves substituting mineral fertilisers with organic 87 

nutrients derived from recycling various waste streams. For low-input agricultural systems to 88 

provide sufficient bioavailable nitrogen to meet the demands of plant growth, future crop 89 

management practices will need to better incorporate microbial pathways of nitrogen 90 

mobilisation (2). One specific suggestion involves engineering the rhizosphere microbiome to 91 

promote the mineralisation of organic nitrogen, coupled with engineering of plant root 92 

metabolism to release rhizodeposits that recruit beneficial microbial strains (3). However, the 93 

ability to manipulate plant-microbe cooperation is limited by an incomplete knowledge of the 94 

specific microbial traits involved in root colonisation and nutrient mobilisation (4). 95 

 96 

Nitrogen flows in the rhizosphere are complex, with plants and microbes potentially cooperating 97 

but sometimes competing for uptake of diverse nitrogen molecules (5). Legume-Rhizobia 98 

symbioses provide an example of cooperation, whereby the majority of the plant’s nitrogen 99 

nutrition is derived from bacterial fixation of atmospheric N2 (6). Outside of legumes, it is 100 

generally accepted that plants obtain the majority of their nitrogen nutrition from inorganic forms 101 

such as NO3 and NH4, whereas microbes are more adept at acquiring more recalcitrant organic 102 

nitrogen forms such as proteins and amino acids (7). Therefore, cooperative nutrient transfers can 103 

occur when microbes take up soil-bound organic nitrogen, which is subsequently transferred to 104 

plants in a mineralised form following microbial lysis or protozoic predation (8). Conversely, 105 

competitive flows can occur when microbes immobilise inorganic nitrogen, or when plants take 106 
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up organic nitrogen (9). Adding further complexity, plant root exudates contain large amounts of 107 

organic nitrogen molecules which can serve as carbon and nitrogen substrates for bacterial 108 

growth. The rate of amino acid release from plant roots increases under exposure to specific 109 

bacterial metabolites (10), but organic nitrogen molecules released via root exudation can also be 110 

efficiently re-acquired by the root system (11).  111 

 112 

Investigations of how bacteria utilise diverse nitrogen substrates have been documented since the 113 

beginning of modern microbiology (12). Ammonium is the preferred nitrogen source for most 114 

bacteria, and experimental designs usually include ammonium as a control treatment, to compare 115 

against alternative nitrogen sources or starvation treatments (13). Over decades, such studies have 116 

provided detailed insight into fundamental physiological mechanisms such as the molecular 117 

pathways of bacterial nitrogen assimilation, the perception of nitrogen status, and the response to 118 

nitrogen starvation in E. coli (14). However, other bacterial taxa possess different mechanisms 119 

for regulating nitrogen metabolism (15, 16), with soil bacteria exhibiting extensive diversity 120 

regarding their nitrogen substrate preferences and also the metabolic pathways used to metabolise 121 

organic nitrogen sources (17, 18). Therefore, novel insights into metabolic mechanisms of 122 

nitrogen metabolism may be observed by studying nitrogen substrate utilisation in taxonomically 123 

diverse bacterial strains isolated from the rhizosphere. 124 

 125 

The rhizosphere microbiome has attracted increasing research attention over the past 20 years. 126 

From the results of 16S pyrosequencing studies, it has become increasingly apparent that the 127 

rhizosphere hosts a taxonomically diverse bacterial microbiota, which plays an important role in 128 

determining plant growth and health (19). Recently, multiple research groups have established 129 

large collections of bacterial strains isolated from field-grown plants, which can be used to 130 
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dissect the functional traits carried out by individual strains, or reassembled into synthetic 131 

communities that recapitulate microbiome function (20, 21). There is now an opportunity to study 132 

these plant-associated microbial strains using high-throughput ‘omics techniques, to acquire new 133 

insights into the specific molecular mechanisms that confer a selective advantage in the plant-134 

associated niche (22). 135 

 136 

Alongside experimental approaches, computational modelling is becoming a widespread 137 

approach to investigate microbial metabolism (23). One particularly useful method is the 138 

construction of genome-scale metabolic network models, which translate the information 139 

encoded in the bacterial genome into a computational formalism that can be analysed with 140 

mathematical methods (24). However, curated genome-scale metabolic models are only available 141 

for a relatively small set of extensively studied bacterial strains, and generally it is difficult to 142 

analyse newly sequenced bacterial strains using computational modelling. This limitation exists 143 

because reconstructing a curated genome-scale metabolic network model is a painstaking process 144 

that requires extensive manual curation as well as the acquisition of devoted experimental data, 145 

particularly regarding biomass composition. Although progress is being made towards automated 146 

reconstruction of genome-scale metabolic network models, many challenges still have to be 147 

addressed (25). Recently, a method named EnsembleFBA has been proposed as a potential 148 

approach to approximate genome-scale metabolic networks for diverse bacterial strains. Instead 149 

of relying on the availability of a single manually curated genome-scale model, EnsembleFBA 150 

uses the information derived from multiple metabolic networks, which are reconstructed from the 151 

same initial draft network and refined through the process of positive and negative gapfilling on 152 

randomized sets of growth and non-growth conditions (26). As a proof of concept, it was shown 153 
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that the EnsembleFBA method achieved greater precision in predicting essential genes than an 154 

individual, highly curated model. 155 

 156 

Here we investigate nitrogen metabolism in three taxonomically diverse bacterial strains 157 

previously isolated from Arabidopsis roots. We apply a combination of methods, including 158 

quantitative proteomics, growth assays, phenotype microarray and EnsembleFBA. With the 159 

proteomic data, we were particularly interested in determining the specific proteins that are 160 

enriched according to different nitrogen sources, to decipher the metabolic strategies used for 161 

nitrogen acquisition across different rhizosphere bacterial strains. In parallel, we applied the 162 

EnsembleFBA method to reconstruct and analyse sets of genome-scale metabolic network 163 

models for each strain, using the phenotype microarray data for training and testing the model 164 

predictions of nitrogen substrate utilisation. 165 

  166 
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Results 167 

We studied nitrogen metabolism in three taxonomically diverse bacterial strains isolated from 168 

roots of field-grown Arabidopsis: Pseudomonas sp. Root9, Streptomyces sp. Root66D1 and 169 

Rhizobium sp. Root491. Strains were previously isolated in Bai et al (20), and the three strains 170 

chosen here correspond to taxa that were repeatedly observed to be highly abundant in the 171 

microbiome of field-grown Arabidopsis plants (20, 27, 28).  172 

 173 

Measurement and modelling of growth phenotypes on different nitrogen sources  174 

First, we investigated each strain’s ability to utilise 94 diverse nitrogen sources using a phenotype 175 

microarray (BIOLOG PM3B) (Supplementary Figure 1, Supplementary Table S1). The data 176 

reveal that all three strains can catabolise a relatively high number of substrates, with the three 177 

strains exhibiting positive growth phenotypes on 55-61 of the 94 substrates tested. This indicates 178 

that all three strains have generalistic nitrogen substrate preferences, which has been previously 179 

suggested to be a selective advantage in the rhizosphere (29). In parallel, we used EnsembleFBA 180 

(26) to test how accurately nitrogen substrate utilisation can be computationally predicted across 181 

the three strains (Supplementary Figure 1, Supplementary Table S1). When nitrogen substrate 182 

utilisation is assessed in binary terms (growth versus no growth), there is a good concordance 183 

between the experimental results and the computational predictions, with Ensemble FBA 184 

showing an accuracy in predicting growth in about 78% of cases for the three strains 185 

(Supplementary Table S2). However, there is a relatively poor correlation between the proxy 186 

values of metabolic activity predicted by the models versus the experimental measurements, with 187 

a comparison of percentile rank between the datasets yielding r
2
 values between 0.23 and 0.5 188 

across the three strains (Supplementary Figure S2). Interestingly, the accuracy of the model 189 
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prediction seems to vary across different molecular classes, with good concordance for amino 190 

acids but poor concordance for nitrogen bases (Figure 1). 191 

 192 

Growth curves in batch culture 193 

We conducted growth curves in batch culture to further investigate the growth phenotypes of 194 

these three strains when cultivated on five selected nitrogen sources (ammonium, glutamate, 195 

lysine, serine and urea), (Figure 2, Supplementary Table S3). The rationale for selecting these 196 

nitrogen sources is because ammonium serves as the inorganic reference, the three chosen amino 197 

acids are abundant in soils and exhibit diverse charges (glutamate negative, lysine positive, serine 198 

neutral), and urea is a widely applied agricultural fertiliser. Nitrogen concentration in the medium 199 

was 5 mM, which was determined to be a yield-limiting nitrogen concentration in all three strains 200 

(30), (Supplementary Figure S3). In Pseudomonas sp. Root9, we see that lysine nutrition elicits a 201 

long extension of the lag phase (Figure 2A), perhaps indicative of a physiological reprogramming 202 

that must occur before rapid proliferation can proceed (31). In contrast, Rhizobium sp. Root491 203 

exhibited very similar growth curves across all five nitrogen sources, indicative of growth 204 

homeostasis across different nutrient sources. 205 

 206 

Proteome remodelling in response to different nitrogen sources 207 

The main aim of this study was to define systems-level differences in cellular proteome 208 

composition in three rhizosphere bacterial strains cultivated on five different nitrogen sources. 209 

Therefore, bacteria were cultivated on the same nitrogen sources shown in Figure 2 (ammonium, 210 

glutamate, lysine, serine and urea), cells were harvested during the exponential growth phase, and 211 

cellular protein composition analysed using label-free quantitative proteomics. A numerical 212 

summary of protein IDs is shown in Table 1, a visual overview of the derived results is shown in 213 
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Figure 3, volcano plots for all 10 pairwise comparisons across all three strains are shown in 214 

Supplementary Figures S4-S6, and the MaxQuant abundance values for all detected proteins are 215 

given in Supplementary Table S4.   216 

 217 

Comparing protein composition across the three strains, it seems that Pseudomonas sp. Root9 218 

exhibits more protein-level flexibility compared to the other two strains. This is evident in the 219 

PCAs and heatmaps presented in Figure 3, which show that lysine treatment of Pseudomonas sp. 220 

Root9 elicits a large proteomic remodelling compared to the other four nitrogen treatments, 221 

characterised by hundreds of differentially expressed proteins. In contrast, we see that Rhizobium 222 

sp. Root491 exhibits a degree of proteomic homeostasis across the different nitrogen treatments, 223 

as shown by the closer clustering of the PCA data points and the lower number of differentially 224 

expressed proteins in this strain.  225 

 226 

Comparing across the five different nitrogen sources, we see that each individual nitrogen source 227 

seems to elicit a differential proteomic impact in the three different strains. For example, lysine 228 

nutrition elicits large-scale changes in the proteome of Pseudomonas sp. Root9, yet relatively few 229 

proteomic changes in the other two studied strains. In both Streptomyces sp. Root66D1 and 230 

Rhizobium sp. Root491, urea nutrition elicited no proteomic changes compared to ammonium, 231 

whereas in Pseudomonas sp. Root9 there were over 100 proteins with differential abundance 232 

values between ammonium versus urea (Supplementary Figures S4-S6). 233 

 234 

Orthologous proteins and metabolic pathways modulated by nitrogen nutrition 235 

To allow inter-strain comparisons of the label-free quantitative proteomic data acquired from the 236 

three taxonomically diverse rhizosphere bacterial strains, we utilised cross-species gene 237 
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annotation via KEGG orthologues (32). We selected individual proteins that represent the 495 238 

KEGG orthologues which were detected in all five treatments across all three strains, and 239 

visualise the abundance of these representative orthologues using a heatmap and PCAs in Figure 240 

4, with numerical data provided in Supplementary Table S5. As can be seen in Figure 4A and 4B, 241 

the samples group together according to the three bacterial strains rather than the five nitrogen 242 

sources. This indicates that the baseline differences in strain-specific proteome composition are 243 

much greater than any treatment-induced differences elicited by nitrogen nutrition. In Figure 4C 244 

we plot a PCA of these 495 KEGG orthologues when protein abundance in the four organic 245 

nitrogen sources is normalised versus the inorganic nitrogen source ammonium. This shows that 246 

lysine nutrition in Pseudomonas sp. Root9 elicits a proteomic response that is qualitatively 247 

different compared to the strain-medium combinations profiled in this study.  248 

 249 

Our next step was to analyse which specific KEGG pathways were modulated according to 250 

nitrogen treatment in the three strains. In Figure 5, we show the results of Fisher’s exact test to 251 

determine whether the constituent proteins of 30 KEGG pathways exhibited altered abundance 252 

profiles in the 10 pairwise comparisons between different nitrogen sources. Numerical data for all 253 

126 tested pathways compared is provided in Supplementary Table S6. Looking at the specific 254 

pathways modulated by nitrogen nutrition across the three strains, it seems that Rhizobium sp. 255 

Root491 undergoes fewer alterations to KEGG pathways related to metabolism, but instead 256 

exhibits extensive modulation to pathways related to environmental processing and motility. For 257 

Pseudomonas sp. Root9 and Streptomyces sp. Root66D1, we see that many of the pairwise 258 

comparisons are characterised by widespread modulation to all KEGG pathways, indicating that 259 

extensive proteome remodelling has taken place between the different nitrogen sources. 260 

 261 
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Next, we compared the metabolic flux distributions outputted from EnsembleFBA versus the 262 

differentially expressed proteins identified in the quantitative proteomic datasets (Supplementary 263 

Tables S7-S13). To visualise how nitrogen source affects protein abundance and computationally 264 

predicted fluxes, we used the Interactive Pathway Explorer to map KEGG orthologues and 265 

reactions onto the KEGG map ‘Metabolic Pathways’ (33). Visualisations for each of the three 266 

amino acid treatments (glutamate, lysine and serine) in pairwise comparisons versus ammonium 267 

were produced for both the proteomic data (Supplemental Figure S7) and also the computational 268 

modelling data (Supplemental Figure S8). Overall, it is evident that a similar set of metabolic 269 

pathways have been mapped in both the experimental and computational approaches, with good 270 

coverage of glycolysis, TCA cycle, and amino acid metabolism. However, there is relatively little 271 

concordance between the differentially regulated metabolic steps identified by the proteomics 272 

data versus the differentially regulated fluxes outputted by EnsembleFBA. For instance, the 273 

proteomic data show that lysine nutrition elicits significant modifications to lipid metabolism in 274 

Pseudomonas sp. Root9, whereas many of the reaction steps in lipid metabolism are absent from 275 

the EnsembleFBA flux distributions. This difference could derive from a known limitations of 276 

genome-scale modelling approaches such as EnsembleFBA, because we used a generic biomass 277 

function to construct the models, which does not account for variations in bacterial lipid 278 

composition between genotypes and treatments (34). Therefore, improved model accuracy 279 

probably requires condition-specific measurement of microbial biomass composition. 280 

 281 

Proteins correlated to the PII protein of the nitrogen stress response 282 

Analysing the quantitative proteomics data, we noticed that the different nitrogen sources often 283 

elicited changes in the abundance of proteins involved in the well-characterised nitrogen stress 284 

response, such as GlnK (PII protein), amtB (ammonium transporter) and GlnA (glutamine 285 
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synthetase) (14). Therefore, we postulated that our dataset may allow us to discover new proteins 286 

that are regulatory targets of the nitrogen stress response in less studied bacterial taxa. We first 287 

analysed the abundance of PII, a well characterised protein of the nitrogen stress response that 288 

exhibited significantly different abundance values between certain nitrogen treatments in all three 289 

strains (Figure 6A). Next, we assessed which other proteins in the dataset were correlated to PII 290 

in terms of protein abundance, by plotting their correlation against PII on the x-axis and the slope 291 

of this correlation on the y-axis (Figure 6B, numerical data in Supplementary Table S14). These 292 

analyses show that Rhizobium sp. Root491 shows the highest nitrogen stress response under these 293 

nitrogen treatments, with all three amino acid treatments leading to dramatic increases in the 294 

abundance of the PII protein, and also with many more proteins positively correlated to PII 295 

abundance in Rhizobium sp. Root491 compared to the other two strains. Looking at the identity 296 

of proteins whose abundance was correlated to PII in Rhizobium sp. Root491, we see that 10 297 

proteins controlled by the exo operon that conduct the synthesis and export of extracellular 298 

polysaccharides are positively correlated to PII abundance (Supplementary Table S14). 299 

Analogous findings have been reported via genetic manipulation of V. vulnificus and S. meliloti, 300 

with knockout of nitrogen stress response elements NtrC and NtrX resulting in reduced 301 

production of extracellular polysaccharides (35, 36). In Pseudomonas sp. Root9, the data point 302 

that exhibits a strong negative correlation to PII is an NADP-dependent glutamate dehydrogenase 303 

(Supplementary Table S14), previously shown to be a target of NtrC-driven transcriptional 304 

repression in P. putida (37). 305 

  306 
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Discussion 307 

Differential nitrogen treatments are a classical experimental manipulation in microbiology, but 308 

the majority of molecular knowledge about bacterial nitrogen metabolism has been acquired in E. 309 

coli (14). To deepen our knowledge of nitrogen metabolism in the rhizosphere microbiome, this 310 

study analyses nitrogen substrate utilisation in three taxonomically diverse bacterial strains 311 

previously isolated from field-grown Arabidopsis roots (20). The three strains represent taxa that 312 

are consistently detected as core members of the plant microbiome: Pseudomonas, Streptomyces 313 

and Rhizobium (21). Using label-free quantitative proteomics, we document hundreds of proteins 314 

in each strain that exhibit differential abundance values between nitrogen sources. To enable 315 

protein-level comparisons between these taxonomically diverse strains, we integrate the 316 

identified proteins using KEGG Orthologues, and map the differential expression of orthologous 317 

proteins onto metabolic maps to determine which specific metabolic pathways are modulated by 318 

nitrogen source at the protein level. We also determine novel proteins linked to the nitrogen stress 319 

response in these three strains, by investigating which proteins display abundance values that are 320 

positively and negatively correlated to the PII signal transduction protein. Furthermore, we 321 

integrate experimental data with computational models, using the EnsembleFBA method to test 322 

how accurately metabolic phenotypes can be computationally predicted from a minimal set of 323 

experimental data. Our results show that the three strains exhibit diverse metabolic responses to 324 

different nitrogen nutrition regimes, with a summary of key results presented in Supplementary 325 

Table S15. 326 

 327 

One noticeable observation in our quantitative proteomic dataset is that the three different 328 

bacterial strains exhibit widely divergent protein-level responses to the same nitrogen source. 329 

This is best illustrated in the pairwise comparisons of protein composition between two nitrogen 330 
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sources, which yield dramatic variation in the number of differentially expressed proteins across 331 

the three strains. For example, the ammonium versus serine pairwise comparison resulted in only 332 

eight DEPs for Pseudomonas sp. Root9, but 74 DEPs in Streptomyces sp. Root66D1 and 100 333 

DEPs in Rhizobium sp. Root491. Reciprocal responses were observed for pairwise comparisons 334 

between ammonium versus lysine nutrition, which elicited widespread alterations to the proteome 335 

of Pseudomonas sp. Root9 but relatively fewer protein-level changes in the other two studied 336 

strains. One potential explanation for this difference is that the minimally responsive strains 337 

induce enzymes that can convert these different nitrogen sources into ammonium via relatively 338 

simple metabolic pathways. For Pseudomonas sp. Root9, one of the few proteins induced under 339 

serine nutrition is serine dehydratase, which yields ammonium in one enzymatic step, along with 340 

pyruvate that can be quickly assimilated in the TCA cycle. In contrast, the other two studied 341 

strains exhibited no upregulation of their serine dehydratase proteins under serine nutrition, 342 

potentially indicating the assimilated serine must be distributed through multiple elements of the 343 

metabolic network requiring a wider modulation of protein expression. For lysine, our proteomics 344 

data indicate that lysine degradation in Pseudomonas sp. Root9 proceeds via the δ-aminovalerate 345 

pathway, whereas Rhizobium sp. Root491 appears to utilise the saccharopine pathway of lysine 346 

degradation. Although both of these pathways yield relatively similar products and contain a 347 

similar number of enzymatic steps, our data indicate that the operation of the δ-aminovalerate 348 

pathway in Pseudomonas sp. Root9 could require a dramatic remodelling of cellular protein 349 

composition, and a much longer lag phase before cell proliferation can begin. In contrast, 350 

Rhizobium sp. Root491 shows almost identical growth curves on lysine and ammonium, and the 351 

relatively small set of proteins modulated by lysine nutrition contains a high proportion of 352 

transporters. Although both strains exhibit generalistic nitrogen substrate preferences, the 353 

contrasting proteomic impact of lysine nutrition indicates that Pseudomonas sp. Root9 354 
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metabolises diverse substrates by adapting its highly flexible metabolic network, whereas 355 

Rhizobium sp. Root491 utilises different transport mechanisms to assimilate diverse nitrogen 356 

sources into a relatively stable metabolic network.   357 

 358 

There is a longstanding appreciation that amino acids play a significant role in the nutrition of 359 

rhizosphere bacterial strains (38). Amino acids are an important component of the soil nitrogen 360 

cycle, derived from diverse sources such as depolymerisation of soil bound protein and also from 361 

plant rhizodeposition (18). Microbial metabolism of amino acids in the rhizosphere is related to 362 

plant productivity, because microbial mineralisation of organic nitrogen can boost plant nutrition 363 

(39), while the microbial uptake of amino acids is one mechanism used by plants to recruit 364 

specific strains into the rhizosphere microbiome (40). The data presented here could potentially 365 

assist future efforts to manipulate the rhizosphere microbiome for altered metabolism of amino 366 

acids. For instance, our data in Pseudomonas sp. Root9 implicate serine dehydratase as an 367 

important protein for degradation of serine, and measurements in Rhizobium sp. Root491 position 368 

saccharopine dehydrogenase as important for degradation of lysine. Perhaps bacterial strains with 369 

high activities of these two enzymes could be recruited to the rhizosphere to promote faster rates 370 

of amino acid mineralisation. In Rhizobium sp. Root491, we document that this strain grows 371 

quickly on three chemically diverse amino acids, and also that dozens of ABC transporter 372 

proteins exhibit altered abundance values under amino acid nutrition. Previous work in E. coli 373 

has shown amino acids such as glutamate and arginine serve as poor sole nitrogen sources for 374 

enteric bacteria, with this phenotype being underpinned by slow rates of amino acid transport and 375 

catabolism (41). Perhaps the protein network that undertakes amino acid transport and catabolism 376 

in Rhizobium sp. Root491 could serve as a template for engineering other bacterial strains to 377 

grow rapidly on amino acids as a sole nitrogen source. In Streptomyces sp. Root66D1, amino acid 378 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 5, 2019. ; https://doi.org/10.1101/627992doi: bioRxiv preprint 

https://doi.org/10.1101/627992


Jacoby et al, Page 18 

 

nutrition results in upregulation of dozens of proteins, but very few of these are classically 379 

recognised as being involved in amino acid degradation. Compared to other bacterial taxa, there 380 

is generally less knowledge about nitrogen metabolism in Gram-positive Streptomyces (16), so 381 

the uncharacterised proteins shown to be differentially expressed under amino acid nutrition in 382 

Streptomyces sp. Root66D1 could be targets for future studies investigating their biochemical 383 

function.  384 

 385 

Urea is the most widely applied agricultural fertiliser globally, but plant nutrition experiments 386 

show that urea is a relatively poor sole nitrogen source for plant growth (42). Although plants can 387 

uptake urea to some degree, a large proportion of the nitrogen delivered via urea fertilisers must 388 

first undergo hydrolysis by microbial metabolism before it can subsequently contribute to plant 389 

nutrition (43). Therefore, urea metabolism in the rhizosphere microbiome is a potential target for 390 

improving agricultural nitrogen use efficiency. In our work, we show that all three tested strains 391 

can grow rapidly on urea as a sole nitrogen source. However, the proteomic impact of urea 392 

nutrition differed widely between the three strains, with Streptomyces sp. Root66D1 and 393 

Rhizobium sp. Root491 both showing zero proteins that were differentially expressed between 394 

ammonium versus urea treatment, whereas this comparison in Pseudomonas sp. Root9 elicited 395 

126 differentially expressed proteins. The urease enzyme that converts urea to ammonium is 396 

required under normal conditions for catabolism of purine and arginine, and is increasingly 397 

expressed under nitrogen stress as a nutrient salvage mechanism. In our dataset, all three strains 398 

exhibit high expression of urease subunits under all conditions tested, and our investigations of 399 

the nitrogen stress response showed that many urease subunits are tightly correlated to PII 400 

expression. For all three strains, we see that at least one amino acid treatment actually elicits a 401 

higher urease expression compared to urea nutrition. This suggests that urease abundance is not 402 
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the limiting factor for utilisation of urea as a sole nitrogen source, and that other mechanisms may 403 

explain urea-induced proteome remodelling in Pseudomonas sp. Root9. Inspecting the data, we 404 

see many transporter proteins are differentially expressed in Pseudomonas sp. Root9 under urea 405 

versus ammonium nutrition, which may be involved in urea uptake or the excretion of urea-406 

derived waste products. In comparison, the transport machineries of both Streptomyces sp. 407 

Root66D1 and Rhizobium sp. Root491 seem to already be primed for urea uptake when cultivated 408 

on ammonium. Future studies could investigate how to optimally coordinate urea transport and 409 

metabolism between plants and rhizosphere microbes to deliver higher nitrogen use efficiency 410 

from urea fertilisers. 411 

 412 

Many microbial strains have been labelled as plant growth promoting, but there is relatively little 413 

knowledge about the genes and mechanisms that underpin this trait (44). In previous work, 414 

Rhizobium sp. Root491 was characterised as a plant growth promoting bacterium by its ability to 415 

increase Arabidopsis root length in co-cultivation experiments (45). Furthermore, 416 

exometabolomics profiling has shown that Rhizobium sp. Root491 can consume a wide variety of 417 

plant-derived metabolites as carbon substrates (46). Here, we show that Rhizobium sp. Root491 418 

exhibits fast growth on a variety of nitrogen sources, that its set of ABC transporters exhibit 419 

differential abundance values in response to nitrogen source, and also that amino acid nutrition 420 

induces the expression of multiple proteins involved in the production of extracellular 421 

polysaccharides. When combined with previous observations of Rhizobium sp. Root491, we can 422 

begin to characterise the functional traits possessed by this strain that contribute to plant growth 423 

promotion, such as: recruitment to the rhizosphere via the consumption of plant root metabolites, 424 

adherence to the root surface via biofilm production in the presence of plant-derived amino acids, 425 

and the potential for mineralisation of diverse nitrogen molecules to fuel plant nutrition. 426 
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Potentially, future studies could predict whether other rhizosphere strains can also promote plant 427 

growth via similar mechanisms, by investigating genetic similarities with Rhizobium sp. Root491. 428 

Also, future work could investigate whether plant genotypes differ in their ability to attract 429 

growth-promoting strains to the rhizosphere, and how to design synthetic microbial communities 430 

that combine multiple growth-promoting strains. 431 

 432 

There is increasing interest in combining experimental and computational approaches to analyse 433 

microbial metabolism, with the long-term goal of quantitatively predicting the behaviour of 434 

microbial communities (47). Metabolic modelling is rapidly progressing as a powerful 435 

computational tool to explore the metabolic capacities of bacteria. However, the main limitation 436 

that prevents modelling approaches from being applied to diverse bacterial strains is the need to 437 

obtain a highly curated genome-scale metabolic model for each strain of interest. This process of 438 

model curation still requires a significant amount of manual inspection and relies heavily on 439 

accurate genome annotation (25). In the present study, we used EnsembleFBA (26) to produce 440 

metabolic models for three diverse bacterial strains using a minimal set of experimental 441 

information. We compared the derived models versus experimental data by assessing how 442 

accurately they can predict growth phenotypes and proteome remodelling across different 443 

nitrogen sources. This showed that EnsembleFBA gives relatively accurate predictions of 444 

nitrogen substrate utilisation, with binary phenotypes (growth versus no growth) correctly 445 

predicted in around 80% of cases. However, there was only an intermediate correlation between 446 

the proxy values of metabolic activity predicted by the model versus the experimentally acquired 447 

measurements (r
2
: 0.23-0.50), and a relatively poor concordance between the differential fluxes 448 

predicted by the model versus the differentially expressed proteins identified via proteomics. We 449 

present two potential interpretations for these inaccurate predictions. First, there is no 450 
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straightforward relationship between enzymatic flux and protein abundance, because the catalysis 451 

rate of many enzymes is not only regulated via abundance but also by other factors including 452 

post-translational modifications, allosteric regulators or the relative concentrations of substrates 453 

and products (48). Second, our models used the same biomass definition that Biggs and Papin 454 

used for their EnsembleFBA analyses of Pseudomonas and Streptococcus (26). Although efforts 455 

have been made to define a general biomass composition for bacteria (49), inaccuracies of this 456 

definition can decrease the predictive power of metabolic models. Therefore, one potential 457 

pathway to improve model accuracy would involve measuring the biomass composition for all 458 

genotypes and treatments under study. Despite these limitations, our work shows that 459 

EnsembleFBA shows strong potential for predicting nitrogen substrate utilisation across diverse 460 

bacterial strains, using minimal experimental data and requiring no manual curation of the model. 461 

 462 

Manipulating the rhizosphere microbiome is one proposed solution to reduce the application of 463 

synthetic chemicals in agriculture, particularly mineral nitrogen fertilisers (3). Plant microbiome 464 

research is being advanced by the collection of thousands of genomically sequenced bacterial 465 

strains isolated from the plant host (20, 21). A current research priority is to characterise the 466 

functional traits encoded by plant-associated microbial strains, in order to rationally design 467 

synthetic microbial communities that can promote plant growth and health (50). Here we analyse 468 

nitrogen metabolism in three bacterial strains previously isolated from field-grown Arabidopsis 469 

roots using a combination of experimental and computational approaches. From the growth 470 

analyses, it is evident that all three strains can utilise a large and similar set of nitrogen substrates. 471 

However, proteomic measurements showed that the strains deploy different metabolic strategies 472 

to utilise specific nitrogen sources. One diverging trait appears to be their degree of proteomic 473 

flexibility, with Pseudomonas sp. Root9 utilising lysine via widespread protein-level alterations 474 
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to its flexible metabolic network. In contrast, Rhizobium sp. Root491 shows relatively stable 475 

proteome composition across diverse nitrogen sources, characterised by minimal alterations to 476 

central metabolism but differential abundance of many transport proteins. In addition, we 477 

document a large set of functionally uncharacterised proteins that display differential abundance 478 

values in response to nitrogen source, with functional annotations being particularly unclear in 479 

Gram-positive Streptomyces sp. Root66D1. These proteins are potentially important for nitrogen 480 

metabolism in the rhizosphere, and could be the targets of future functional study. Our results 481 

could inform the selection of high-performing strains in synthetic microbial communities 482 

designed to mediate plant nitrogen nutrition under lower inputs of mineral fertilisers.  483 

  484 
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Materials and methods 485 

Bacterial strains 486 

Bacterial strains used in this study were Pseudomonas sp. Root9 (NCBI Taxonomy ID: 1736604), 487 

Streptomyces sp. Root66D1 (NCBI Taxonomy ID: 1736582) and Rhizobium sp. Root491 (NCBI 488 

Taxonomy ID: 1736548), all isolated from field-grown Arabidopsis roots (20), and provided by 489 

Paul Schulze-Lefert, MPIPZ Cologne.  490 

 491 

Bacterial pre-cultivation and harvest 492 

Bacterial strains were pre-cultivated by streaking glycerol stocks onto TSA plates (0.5× TSB, 493 

1.2% Agar), and incubating at 28° C for 24 hours. Single colonies were picked from plates and 494 

inoculated into TSB medium (0.5× TSB), and incubated for 24 h at 28° C with 200 rpm shaking. 495 

Next, cells were harvested by centrifuging 800 μL of culture at 5,000× g for 2 min at RT. These 496 

cells were then rinsed 3× in sterile 10 mM MgCl2, and resuspended at a final OD600 of 1.0 in 497 

sterile 10 mM MgCl2. 498 

 499 

Phenotype microarrays 500 

For phenotype microarrays using PM3B (Biolog), 12 ml of inoculant was prepared comprising 10 501 

mL of 1.2× IF-0 (Biolog), 1.2 mL of 500 mM glucose, 600 uL of bacterial suspension (as 502 

prepared above), 120 uL of Redox Dye D (Biolog) and 80 uL of sterile water. Next, 100 uL of 503 

this inoculant (starting OD600 of 0.05) was loaded into each well of the phenotype microarray, 504 

which was transferred to a plate reader (Tecan Infinite Pro 100) and incubated at 28° C for 72 h 505 

with shaking (30 sec continuous orbital shaking followed by 9:30 min stationary, shaking 506 

amplitude 3 mm). Tetrazolium reduction at A590 was measured once per 10 min cycle, without 507 

correcting for path length, and derived curves were fitted to a logistic equation using the 508 
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Growthcurver program (51). For each well in every assay, background was subtracted by 509 

subtracting the value of the negative control (well A1) from each time point. In our hands, 510 

guanosine (well F7) gave a very high background reading and was excluded from the analysis. 511 

Wells were considered growth-positive if the carrying capacity (k) of the logistic fit was greater 512 

than A590 of 0.1 in at least two of the three independent biological replicates. Next, area under the 513 

curve (AUC) values for all growth-positive wells were z-score normalised within each strain, and 514 

the average value of the three replicate assays was calculated. These averaged z-score values 515 

were divided into quartiles, so data presented in Fig 1 represent five possible growth intensities, 516 

ranging from 0 (no growth) to 4 (highest AUC quartile). 517 

 518 

Metabolic models and computational simulations 519 

The EnsembleFBA workflow from Biggs and Papin (26) was adapted to analyse the three studied 520 

bacterial strains. Scripts were implemented either in Matlab (Mathworks) as the original code, or 521 

adapted for Python (Python Software Foundation). Briefly, genomes were downloaded from 522 

NCBI (52) and uploaded to KBase (25), where genome re-annotation and draft metabolic model 523 

reconstruction was performed. Outputted draft networks were downloaded and used as inputs for 524 

the EnsembleFBA workflow. Also inputted to Ensemble FBA were the composition of the 525 

Biolog media, and the experimentally derived growth matrices obtained from PM3B phenotype 526 

microarray. Next, 50 metabolic networks were generated for each strain, with each network being 527 

trained on 26 nitrogen substrates that supported growth and 11 nitrogen substrates that didn’t 528 

support growth, in order to perform positive and negative gapfilling. Compounds present on the 529 

phenotype microarray but not found in the ModelSEED database (24) were excluded, and a 530 

second set of simulations excluding the five N-sources used for proteomics experiments were 531 

also obtained for unbiased integration with the proteomics datasets. To evaluate the performance 532 
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of EnsembleFBA for predicting growth on the different N-sources, its accuracy, precision and 533 

recall were compared to randomly generated predictions, after masking the conditions used to 534 

gapfill the individual networks to avoid bias. Metabolic activity on a given nitrogen source was 535 

estimated as the average growth rate obtained with EnsembleFBA, and weighted according to the 536 

fraction of networks in the ensemble that predicted growth. Metabolic fluxes through specific 537 

reactions were estimated by averaging the reaction flux for each reaction across all the networks 538 

in the ensemble, and weighted according to the fraction of networks where the reaction was 539 

active. To visualise up- or down-regulated metabolic fluxes in metabolic pathway maps, 540 

metabolic fluxes obtained by simulating growth on Glutamate, Serine or Lysine were compared 541 

versus Ammonium, and filtered for reactions with log2 fold change greater than 1.  542 

 543 

Cultivation on individual N-sources for growth assays and proteomic analysis 544 

For growth assays on individual N-sources, media were based on M9 formulation (53), with 545 

nutrient concentrations of: 50 mM glucose, 24 mM Na2HPO4, 11 mM KH2PO4, 4 mM NaCl, 350 546 

μM MgSO4, 100 μM CaCl2, 50 μM Fe-EDTA, 50 μM H3BO3, 10 μM MnCl2, 1.75 μM ZnCl2, 1 547 

uM KI, 800 nM Na2MoO4, 500 nM CuCl2, 100 nM CoCl2. To this, one nitrogen source was 548 

added at 5 mM elemental-N (ie: 5 mM of ammonium, glutamate and serine, or 2.5 mM of urea 549 

and lysine). For growth assays, 20 μL of bacterial suspension (as prepared above) was inoculated 550 

into 380 μL of growth medium (starting OD600 of 0.05), in individual wells of a sterile 48-well 551 

plate (Corning). These plates were then transferred to a plate reader (Tecan Infinite Pro 100) and 552 

incubated at 28° C for 48 h with shaking (3 min continuous orbital shaking followed by 7 min 553 

stationary, shaking amplitude 3 mm). Culture density at OD600 was measured once per 10 min 554 

cycle, without correcting for path length. To obtain quantitative growth metrics, a logistic 555 

equation was fitted to measured growth curves using the Growthcurver program (51). To collect 556 
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samples for proteomics, cultivation was identical, except that bacterial cells were harvested 557 

during the exponential growth phase. Harvest involved pooling of four duplicate wells (total of 558 

1.6 mL culture), followed by centrifugation at 10,000× g for 3 min at 4° C. Supernatant was 559 

discarded, and cell pellets were rinsed twice with 900 uL of 4° C PBS via centrifugation at 560 

10,000x g for 3 min at 4° C. Rinsed cell pellets were then flash-frozen and stored at -80° C.  561 

 562 

Proteomic sample preparation 563 

Cellular protein was extracted using protocols modified from Tanca et al (54) as well as Wessel 564 

and Flugge (55). To frozen cell pellets, 250 uL of lysis buffer (5% SDS, 100 mM DTT, 100 mM 565 

Tris pH 7.5) was added, along with ~100 uL of acid-washed glass beads (1 mm diameter). 566 

Samples were then incubated for 10 min on an orbital mixer at 95° C with 1500 rpm shaking, 567 

then at -80° C for 10 min, then bead-beaten (Bead Ruptor 24, Omni International) at 5 ms-1 for 568 

10 min. Next, samples were again incubated at -80° C for 10 min, then again incubated for 10 569 

min on an orbital mixer at 95° C with 1500 rpm shaking, then again bead-beaten at 5 ms-1 for 10 570 

min. Finally, samples were centrifuged at 20,000x g for 10 min at RT, and 200 uL of supernatant 571 

was transferred to a new tube. Protein was then precipitated via the addition of 800 uL MeOH, 572 

500 uL H2O, and 200 uL chloroform followed by centrifugation at 10,000x g for 5 min at 4° C. 573 

The upper aqueous phase was removed and discarded, then 700 uL MeOH was added to the 574 

lower organic phase and samples were centrifuged at 20,0000x g for 10 min at 4° C. Protein 575 

pellets were then rinsed twice with -20° C acetone via centriguation at 20,0000x g for 10 min at 576 

4d C, before being air-dried at RT for 15 min. Dried protein pellets were then stored at -80° C. To 577 

solubilise protein pellets, 40 uL of solubilisation buffer (8 M urea, 50 mM TEAB, 5 mM DTT) 578 

was added, and samples were incubated on an orbital mixer at 28° C for 1 h with 350 rpm 579 

mixing. Next, CAA was added to a final concentration of 30 mM, and samples were incubated on 580 
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an orbital mixer at 28° C for 30 min with 350 rpm mixing in darkness. To quantify protein 581 

concentration, an aliquot of the protein extract was taken and diluted 1:8 in water, then a 582 

Bradford assay was performed on the diluted protein samples using BSA as standard. Next, 40 ug 583 

of protein extract was transferred to a new tube and incubated with 0.8 ug Lys-C for 2 h at 37d C 584 

with 350 rpm shaking. Samples were then diluted 1:8 in TEAB, 0.8 ug of trypsin was added, and 585 

samples were incubated overnight at 37° C. Next day, samples were acidified by adding formic 586 

acid to a final concentration of 1%. Peptides were then cleaned up via SPE using SDB-RP stage 587 

tips. Following elution from stage tips, peptides were dried down in a vacuum centrifuge and 588 

stored at -80° C. 589 

 590 

Mass spectrometry 591 

Digested peptides were analysed on a QExactive Plus mass spectrometer (Thermo Scientific) 592 

coupled to an EASY nLC 1000 UPLC (Thermo Scientific). Dried peptides were resolubilised in 593 

solvent A (0.1% formic acid), and loaded onto an in-house packed C18 column (50 cm × 75 µm 594 

I.D., filled with 2.7 µm Poroshell 120, (Agilent)). Following loading, samples were eluted from 595 

the C18 column with solvent B (0.1% formic acid in 80% acetonitrile) using a 2.5 h gradient, 596 

comprising: linear increase from 4-27% B over 120 min, 27-50% B over 19 min, followed by 597 

column washing and equilibration. Flow rate was at 250 nL/min. Data-dependent acquisition was 598 

used to acquire MS/MS data, whereby the 10 most abundant ions (charges 2-5) in the survey 599 

spectrum were subjected to HCD fragmentation. MS scans were acquired from 300 to 1750 m/z 600 

at a resolution of 70,000, while MS/MS scans were acquired at a resolution of 17,500. Following 601 

fragmentation, precursor ions were dynamically excluded for 25 s. 602 

 603 

Label-free protein quantification 604 
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Label-free quantification of protein abundance was conducted with MaxQuant v1.5.3.8 (56). 605 

Acquired MS/MS spectra were searched against FASTA protein sequences for the three studied 606 

bacterial strains, obtained from IMG (57). Sequences of common contaminant proteins were also 607 

included in the search database. Protein FDR and PSM FDR were set to 0.01%. Minimum 608 

peptide length was seven amino acids, cysteine carbamidomethylation was set as a fixed 609 

modification, while methionine oxidation and protein N-terminal acetylation were set as variable 610 

modifications.  611 

 612 

Statistical analysis of proteomic data 613 

To determine proteins that exhibited significantly different abundance between N-treatments, a 614 

statistical threshold was imposed where the MaxQuant LFQ values must differ by log2FC > 1 and 615 

BH-p-value <0.05. To determine the abundance of Kegg Orthologues (KOs) across bacterial 616 

strains and N-treatments, KOs annotated to proteins via IMG were matched across bacterial 617 

strains. Data were filtered to contain only the 495 KOs that were observed in at least three 618 

replicates across all five treatments in all three strains. In instances where a single strain had 619 

multiple proteins matching the same KO, the protein with the highest average MaxQuant LFQ 620 

value across all samples was taken as the representative KO for that strain. To determine the 621 

KEGG pathways that were significantly modulated at the protein abundance level between 622 

nitrogen treatments, KOs annotated onto proteins via IMG were mapped against KEGG pathways 623 

using KEGG-REST, and Fisher’s exact test was used to generate a single p-value for each KEGG 624 

pathway by combining the individual BH-p-values for all constituent proteins mapped to that 625 

pathway. Pathways were only analysed when at least three representative proteins were detected 626 

for a single strain across all five nitrogen treatments, and pathways associated with non-bacterial 627 

processes were discarded.  628 
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 629 

Data availability 630 

All LC-MS/MS files and MaxQuant outputs have been uploaded to ProteomXchange and can be 631 

accessed via PRIDE (URL: https://www.ebi.ac.uk/pride/archive/, Accession: PXD011436, 632 

Username: reviewer58195@ebi.ac.uk, Password: IG63IYVi). Details of the EnsembleFBA 633 

workflow are available at: https://github.com/asuccurro/ensembleFBA, and the KBase narrative 634 

is available at https://narrative.kbase.us/narrative/ws.37070.obj.1. Interactive maps of metabolic 635 

pathways modulated between amino acid treatments can be viewed at: 636 

https://pathways.embl.de/shared/rjacoby. 637 
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Figure captions 820 

Figure 1: Nitrogen substrate preferences of three rhizosphere bacterial strains assessed via 821 

Phenotype Microarray and EnsembleFBA. Displayed here are results for 30 nitrogen substrates 822 

selected from the 94 tested. White boxes indicate no metabolic activity, whereas boxes with 823 

darker shades correspond to higher metabolic activity, either measured via Phenotype Microarray 824 

(pink) or predicted via EnsembleFBA (green). Metabolic activity values were z-score normalised 825 

within each strain. 826 

 827 

Figure 2: Growth curves of three rhizosphere strains cultivated on five nitrogen sources. Cultures 828 

were grown in 48-well plates on minimal medium containing a single nitrogen source. OD600 829 

(uncorrected for path length) was logged every 10 min using a plate reader. 830 

 831 

Figure 3: Overview of proteome composition in three rhizosphere bacterial strains when 832 

cultivated on five nitrogen sources. A: Principal component analysis (PCA) of the five different 833 

nitrogen sources for each strain. B: Heat maps of protein abundance for differentially expressed 834 

proteins (DEPs) for each of the three strains. To define DEPs, protein abundance in one condition 835 

was compared to its abundance in the other four conditions. If in any of these 10 comparisons, a 836 

protein has a log2FC > 1 and a BH-p-value < 0.05, then it is considered a DEP. Only DEPs that 837 

were detected in at least three replicates for all five nitrogen treatments are included in the 838 

heatmaps. Rows were clustered using Pearson’s correlation coefficient. 839 

 840 

Figure 4: Comparison of protein abundance values for 495 KOs (Kegg orthologs) across three 841 

rhizosphere bacterial strains cultivated on five nitrogen sources. A: Heat map of KO abundance 842 

across the three rhizosphere bacterial strains cultivated under five nitrogen sources. B: Principal 843 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 5, 2019. ; https://doi.org/10.1101/627992doi: bioRxiv preprint 

https://doi.org/10.1101/627992


Jacoby et al, Page 35 

 

component analysis (PCA) of KO abundance across the three rhizosphere bacterial strains 844 

cultivated under five nitrogen sources. C: Principal component analysis (PCA) of KO abundance 845 

across the three rhizosphere bacterial strains for the four organic nitrogen sources, when KO 846 

abundance was normalised to ammonium (inorganic reference). The KOs annotated to proteins 847 

via IMG were matched across the proteomic dataset for the three bacterial strains. Data was 848 

filtered to contain only the 495 KOs that were observed in all four replicates across all five 849 

treatments in all three strains. MaxQuant LFQ abundance values were z-score normalised within 850 

each strain. Rows and columns were clustered using Pearson’s correlation coefficient. 851 

 852 

Figure 5: Assessment of KEGG pathways that were modulated at the protein abundance level 853 

between different nitrogen treatments. Kegg orthologs annotated to proteins via IMG were 854 

matched to KEGG pathways, and Fisher’s exact test was used to determine the statistical 855 

significance of pathway modulation between two nitrogen treatments. Darker shades of pink 856 

represent lower p-values via Fisher’s exact test. Pathways with fewer than three identified 857 

proteins were excluded from analysis. This figures shows the 30 pathways with the highest 858 

number of significantly differences between treatments (p<0.01), data for all ~100 pathways are 859 

in Supplementary Table S6.  860 

 861 

Figure 6: Investigating proteins correlated to the abundance of nitrogen stress response 862 

component PII. A: Abundance of the PII protein across five nitrogen treatments in three 863 

rhizosphere bacterial strains. Different letters above data series indicate p<0.05 following two-864 

way ANOVA and Tukey’s HSD test. B: Plots to highlight proteins that are positively or 865 

negatively correlated to PII according to their abundance values across five nitrogen treatments. 866 

Y-displays the slope of the linear fit (z-score normalised) between protein abundance versus the 867 
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abundance of PII protein, and X-axis displays correlation between protein abundance versus PII 868 

abundance. If a protein has a correlation higher than 0.75 and a slope higher than 2, it is deemed 869 

positively correlated, whereas if a protein has a correlation lower than 0.75 and a slope lower 870 

than -2, it is deemed negatively correlated to PII.  871 

 872 

Table caption: 873 

Table 1: Summary of label free quantitative proteomic data for three rhizosphere bacterial strains 874 

cultivated on five different nitrogen sources.   875 

 876 

Supplementary Figure captions: 877 

Supplementary Figure S1: Nitrogen substrate preferences of three rhizosphere bacterial strains 878 

assessed via Phenotype Microarray and EnsembleFBA. Displayed here are metabolic activity 879 

values for 94 nitrogen substrates measured via phenotype microarray and 81 nitrogen substrates 880 

predicted via EnsembleFBA. White boxes indicate no metabolic activity, while boxes with darker 881 

shades correspond to higher metabolic activity, either measured via Phenotype Microarray (pink) 882 

or predicted via EnsembleFBA (green). Metabolic activity values were z-score normalised within 883 

each strain. 884 

 885 

Supplementary Figure S2: Comparison of measured versus predicted nitrogen substrate 886 

utilisation for three rhizosphere bacterial strains. A: Venn diagram showing nitrogen substrate 887 

utilisation for three bacterial strains as measured using phenotype microarray. B, C and E: Plots 888 

showing the correlation between predicted metabolic activity (EnsembleFBA) versus measured 889 

metabolic activity (EnsembleFBA) for 81 nitrogen substrates across three bacterial strains. D: 890 
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Venn diagram nitrogen substrate utilisation for three rhizosphere bacterial strains as predicted 891 

using EnsembleFBA. 892 

 893 

Supplementary Figure S3: Determination of ammonium concentration where nitrogen is the yield 894 

limiting nutrient in batch culture. Three rhizosphere bacterial strains were cultivated on media 895 

containing different concentrations of NH4Cl, and OD600 was logged every 10 min in a plate 896 

reader. Logistic growth equations were fitted to derived growth curves, and in these graphs the 897 

carrying capacity (k) of the logistic fits is plotted against NH4Cl concentration. There is a linear 898 

relationship between k and NH4Cl concentration until around 10 mM, indicating that N is the 899 

yield-limiting nutrient at these concentrations. Therefore, nitrogen was supplied at 5 mM N for 900 

all experiments. 901 

 902 

Supplementary Figure S4: Volcano plots of proteomic data for Pseudomonas sp. Root9 grown on 903 

five different nitrogen sources. For proteins that were detected in three or more replicates in both 904 

treatments, the Y-axis shows –log10 of the Benjamini-Hochberg p-value, while X-axis shows the 905 

log2 fold change. Proteins with a log2 fold change ≥ 1 and Benjamini-Hochberg p-value ≤ 0.05 906 

are deemed differentially expressed and rendered in colour. In total, 10 comparisons were 907 

performed, A: Ammonium vs Glutamate, B: Ammonium vs Lysine, C: Ammonium vs Serine, D: 908 

Ammonium vs Urea, E: Glutamate vs Lysine, F: Glutamate vs Serine, G: Glutamate vs Urea, H: 909 

Lysine vs Serine, I: Lysine vs Urea, J: Serine vs Urea: 910 

 911 

Supplementary Figure S5: Volcano plots of proteomic data for Streptomyces sp. Root66D1 grown 912 

on five different nitrogen sources. For proteins that were detected in three or more replicates in 913 

both treatments, the Y-axis shows –log10 of the Benjamini-Hochberg p-value, while X-axis 914 
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shows the log2 fold change. Proteins with a log2 fold change ≥ 1 and Benjamini-Hochberg p-915 

value ≤ 0.05 are deemed differentially expressed and rendered in colour. In total, 10 comparisons 916 

were performed, A: Ammonium vs Glutamate, B: Ammonium vs Lysine, C: Ammonium vs 917 

Serine, D: Ammonium vs Urea, E: Glutamate vs Lysine, F: Glutamate vs Serine, G: Glutamate vs 918 

Urea, H: Lysine vs Serine, I: Lysine vs Urea, J: Serine vs Urea: 919 

 920 

Supplementary Figure S6: Volcano plots of proteomic data for Rhizobium sp. Root491 grown on 921 

five different nitrogen sources. For proteins that were detected in three or more replicates in both 922 

treatments, the Y-axis shows –log10 of the Benjamini-Hochberg p-value, while X-axis shows the 923 

log2 fold change. Proteins with a log2 fold change ≥ 1 and Benjamini-Hochberg p-value ≤ 0.05 924 

are deemed differentially expressed and rendered in colour. In total, 10 comparisons were 925 

performed, A: Ammonium vs Glutamate, B: Ammonium vs Lysine, C: Ammonium vs Serine, D: 926 

Ammonium vs Urea, E: Glutamate vs Lysine, F: Glutamate vs Serine, G: Glutamate vs Urea, H: 927 

Lysine vs Serine, I: Lysine vs Urea, J: Serine vs Urea: 928 

 929 

Supplementary Figure S7: Differentially expressed proteins mapped onto metabolic pathways for 930 

three rhizosphere bacterial strains cultivated on amino acids as the sole nitrogen source. Protein 931 

abundance data from each of the three amino acid treatments (glutamate, lysine and serine) is 932 

compared against the ammonium control. For proteins that were detected in three or more 933 

replicates in both treatments, Kegg orthologs annotated to proteins via IMG were matched to the 934 

‘Metabolic Pathways’ map provided via the Interactive Pathways Explorer v3. KOs matching 935 

proteins with a log2 fold change ≥ 1 and Benjamini-Hochberg p-value ≤ 0.05 are deemed 936 

differentially expressed and rendered in colour. KOs matching proteins that were not 937 
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differentially expressed are rendered in grey. Interactive maps can be viewed at: 938 

https://pathways.embl.de/shared/rjacoby. 939 

 940 

Supplementary Figure S8: Differentially expressed fluxes mapped onto metabolic pathways for 941 

three rhizosphere bacterial strains cultivated on amino acids as the sole nitrogen source. Modelled 942 

flux from each of the three amino acid treatments (glutamate, lysine and serine) is compared 943 

against the ammonium control. Kegg reactions annotated via KBase were matched to the 944 

‘Metabolic Pathways’ map provided via the Interactive Pathways Explorer v3. Reaction fluxes 945 

with a log2 fold change ≥ 1 are rendered in colour. Fluxes that were not different expressed are 946 

rendered in grey. Interactive maps can be viewed at: https://pathways.embl.de/shared/asuccurro. 947 

 948 

Supplementary Table captions: 949 

Supplementary Table S1: Nitrogen substrate utilisation of three rhizosphere bacterial strains 950 

assessed by phenotype microarray measurement for 94 nitrogen sources and EnsembleFBA 951 

prediction for 81 nitrogen sources. 952 

 953 

Supplementary Table S2: Assessment of concordance between EnsembleFBA predictions and 954 

experimental measurements of nitrogen substrate utilisation across three rhizosphere bacterial 955 

strains. 956 

 957 

Supplementary Table S3: Growth curve metrics for three bacterial strains cultivated on five 958 

nitrogen substrates. 959 

 960 
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Supplementary Table S4: Protein abundance information acquired from label-free proteomic 961 

profiling of three rhizosphere bacterial strains cultivated on five nitrogen sources. 962 

 963 

Supplementary Table S5: Protein abundance values mapped to KEGG Orthologues for three 964 

rhizosphere bacterial strains cultivated on five nitrogen sources. 965 

 966 

Supplementary Table S6: Determination of KEGG pathways with differentially expressed 967 

proteins calculated via Fisher’s exact test of protein abundance values. 968 

 969 

Supplementary Tables S7-S8: Metabolic model parameters for Pseudomonas sp. Root9 generated 970 

by KBase. 971 

 972 

Supplementary Tables S9-S10: Metabolic model parameters for Streptomyces sp. Root66D1 973 

generated by KBase. 974 

 975 

Supplementary Tables S11-S12: Metabolic model parameters for Rhizobium sp. Root491 976 

generated by KBase. 977 

 978 

Supplementary Table S13: Biomass components used for models generated by EnsembleFBA, 979 

taken from Biggs and Papin (2017). 980 

 981 

Supplementary Table S14: Determination of proteins that are correlated to the PII component of 982 

the nitrogen stress response in three rhizosphere bacterial strains cultivated on five nitrogen 983 

sources. 984 
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 985 

Supplementary Table S15: Summary of key results obtained regarding nitrogen metabolism in 986 

the three rhizosphere bacterial strains studied.  987 

 988 
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Table 1: 989 

 Pseudomonas 
sp. Root9 

Streptomyces 
sp. Root66D1 

Rhizobium 
sp. Root491 

Proteins encoded in genome 5871 6744 5225 

Proteins observed in any treatment (n≥3) 3117 2552 3358 

Proteins observed in all five treatments (n≥3) , abundance 
significant between any 2 (log2FC>1, BH p-value<0.05) 

712 346 238 

Proteins observed in ≥1 treatment (n≥3), but undetected in 
≥1 other treatment (n=0) 

548 168 397 

 990 
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