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2 

 

ABSTRAT 30 

 31 

Nature-based agriculture, reducing dependency on chemical inputs, requires using ecological principles 32 

for sustainable agro-ecosystems, balancing ecology, economics and social justice. There is growing 33 

evidence that pollinator-dependent crops with high insect pollination service can give higher yields. 34 

However, the interacting effects between insect pollination and agricultural inputs on crop yields and 35 

farm economics remain to be established to reconcile food production with biodiversity conservation. 36 

We investigated the effects of insect pollination and agricultural inputs on oilseed rape (Brassica napus 37 

L.). We show that not only yield but also gross margins are 16-40% higher in fields with higher 38 

pollinator abundance than in fields with reduced pollinator abundance. This effect is however strongly 39 

reduced by pesticides use. Higher yields may be achieved by either increasing agrochemicals (reducing 40 

pests) or increasing bee abundance, but crop economic returns was only increased by the latter, because 41 

pesticides did not increase yields while their costs reduced gross margins.   42 
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INTRODUCTION 43 

Achieving world food production to meet the demands of a growing population while minimizing 44 

environmental impacts is a major challenge [1]. Modern agriculture may be at a tipping point, with 45 

nature’s supporting mechanisms failing [2] and artificial inputs such as fertilizers and pesticides being 46 

either ineffective or used inefficiently [3,4]. There is also growing recognition that ecosystem service 47 

degradation is not only an environmental problem but has huge economic consequences [5]. The next 48 

key challenge in western agriculture is, therefore, to stabilize crop yields while decreasing the 49 

dependence on agrochemical inputs [6]. Nature-based solutions for agriculture are a key EU research 50 

target [7] and form the basis of agro-ecology [6]. This requires using ecological principles for sustainable 51 

agro-ecosystems, balancing ecology, economics and social justice [8]. Sustainable agro-ecology relies 52 

on maximizing the replacement of agro-chemicals by natural capital and ecosystem functions, while 53 

minimizing the reduction in yield and increasing farm profitability.  54 

Insect pollination is a key intermediate ecosystem service as a third of human food production 55 

benefits directly or indirectly from it [9]. However, in recent years, the abundance and diversity of insect 56 

pollinators have been declining worldwide, affecting pollination services [10,11]. At the same time, the 57 

cultivated area of oilseed rape (OSR, Brassica napus L.) is rapidly increasing, driven by increasing 58 

demand, so that OSR production may become limited by pollinator abundance such as honeybees [12]. 59 

Pesticides are used in large quantities for intensive farming to mitigate the direct impact of pests or 60 

weeds on OSR yield [13–15], but these pesticides, and especially insecticides, can increase the mortality 61 

rates of pollinators [16] and reduce their efficiency [17–19]. Herbicide, by modifying weeds abundance 62 

in crops may positively [20] or negatively [21] also influence pollinator abundance.  63 

OSR is considered to be both self-pollinated and wind-pollinated [22]. Though, insect pollination 64 

can increase the yield of winter OSR by 20-35% [23,24], with a possible benefit of €2.6 M.year-1 for the 65 

whole of Ireland [25]. Estimating the extent to which OSR production relies on insects for pollination 66 

services is, however, less easy than usually thought [26,27]. Firstly, measuring pollination services by 67 

quantifying the reduction in yield when pollinators are excluded, also excludes other ecosystem services 68 

and may stress the plants [26]. Secondly, the benefits of a pollination service in terms of increased yield 69 

is often assumed to be independent of the level of inputs [26,28]. However, crop production is a complex 70 
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multi-scale system [29,30] which involves inputs that may interact with abiotic factors (e.g. soil 71 

properties), the biodiversity, and the services they provide. Recent studies have demonstrated that the 72 

value of insect pollination depends on the soil fertility [30,31], field size [32] and farming practices such 73 

as the selection of cultivars [22] and pest control [33]. When pollinators are limited, farmers can change 74 

their practices to compensate for poor pollination by, for example, increasing fertilizer applications [34]. 75 

Thirdly, pollinator abundance and pollination efficiency vary with the composition of the surrounding 76 

landscape [35]. Landscapes with large quantity of pollinator-friendly areas, such as semi-natural habitats 77 

(SNH: woodlands, meadows) which can increase the abundance of pollinators [28] or attract pollinators 78 

away from the OSR fields [36]. Recent research [37] has showed that a higher proportion of OSR in the 79 

surrounding landscape may also decrease insect pollination by spatial dilution of the pollinator 80 

population. Moreover, pollinator abundance decreases with distance from the edge of an OSR field [38] 81 

especially for wild pollinators with limited range [39]. Overall, the extent to which pollinators and other 82 

farming practices interact to increase or limit OSR yields remains little known [29,30].  83 

Although OSR is perhaps the most well studied crop regarding the interaction between pollination 84 

services and farmers practices, very few studies have been performed under real working farm 85 

conditions (but see for exception Lindström studies in Sweden [40,41] and Perrot et al. (2018)[24]). 86 

Moreover, studies generally investigated the effect of a single farming practice on the contribution of 87 

pollinators, such as  fertilizer inputs [30,34], insecticide use [41], pest exclusion [33] or cultivar type 88 

[34,40]. Furthermore, the effect of interactions between pollination and farming practices on farm 89 

income (Fig. 1) have never been investigated, despite pollination being one of the most commonly 90 

assessed services. Existing studies of the economic value of pollination have been almost exclusively 91 

illustrative, with few cost-benefit analyses of the role of pollinators (review in Hanley et al. [42]). In our 92 

study, we address this gap by quantifying the effect of bee visitation on yields and gross margins for 93 

OSR with diverse farming practices and landscape characteristics (Fig. 1). We collected the data over 94 

six years from 294 OSR fields along landscape gradients with varying proportions of arable and semi-95 

natural habitats (SNH), ensuring a wide variation in pollinator abundance and diversity (the pollinators 96 

were counted in the focal fields). We used linear models fitted to this large dataset to quantify the 97 

individual and combined effects of farming practices, soil quality and, bee abundance (on a subset of 98 
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data), on OSR yield and gross margin. We then used the model to test the effect of maximizing pest 99 

control or bee abundance on yield and gross margin. We predicted that reducing herbicide (presumably 100 

increasing weed abundance) would increase the attractiveness of the OSR field and the bee visitation 101 

rate (this assumes no competition for pollinators between higher weed abundance and OSR plants). We 102 

also predict that reducing insecticide (presumably decreasing the bee mortality rate) use would not only 103 

increase OSR fruiting success and yield, but increase the gross margin further by reducing costs. Our 104 

findings provide an important contribution to the evidence-based promotion of biodiversity as a means 105 

of increasing yield and farming profit, an essential step for the adoption of nature-based solutions. 106 

 107 

MATERIAL & METHODS 108 

Study area 109 

The study took place from October 2011 to August 2016 in the LTSER “Zone Atelier Plaine & 110 

Val de Sèvre”, a long term social-ecological research site covering 450 km² [43]  in central western 111 

France (46.23°N, 0.41W). It is an agricultural landscape dominated by intensive cereal production, with 112 

8-12% OSR, and average field size of 4-5 ha. The site is also used by professional or amateur beekeepers 113 

who own several hundreds of hives, though none of them contract or are paid by farmers for crop 114 

pollination. Information about crop yields and farming practices (pesticide and fertilizer use, tillage and 115 

mechanical weed control) and general information about the farm (number of crops, agricultural 116 

equipment) were collected by farm surveys after harvest. The sample comprised 142 farmers with 294 117 

OSR fields of which 273 fields were sown with hybrid OSR and 21 with pure line OSR (further details 118 

on field selection in electronic supplementary material, methods S1). The large majority of farmers (103) 119 

managed two fields (2.1±1.4 fields per farmer), and nineteen farmers managed four or more fields. The 120 

field size ranged from 0.4 ha to 28.5 ha (mean 6.9±5.0 ha). The soil type varied from very poor dry soil 121 

20 cm deep or less, to 50 cm silt, and was classified in four categories: three highly calcareous soils, 122 

with depths of 20, 30 and 40 cm, and one with red silt over limestone.  123 

 124 

Insect pollinator surveys 125 
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Between 2013 and 2016, the abundance and diversity of the major groups of flower-visiting 126 

insects, including bees (Hymenoptera, Apoidea, Apiformes) and hoverflies (Diptera, Syrphidae) were 127 

surveyed [44]. A total of 85 fields (10, 19, 24 and 32 in 2013, 2014, 2015 and 2016) were sampled using 128 

both pan traps and sweep nets to get local estimates of the pollinator abundance and richness. The counts 129 

of four groups of pollinators (honeybees, bumblebees, other wild bees, and hoverflies) in each field 130 

obtained by these, and were combined to provide pollinators abundance index (further details in 131 

electronic supplementary material, Methods S2). Due to their limited effect in the study area as 132 

demonstrated in [24], hoverflies were excluded from the calculation of pollinator abundance. For each 133 

three remaining groups of pollinators and for each field, we averaged the counts for each trapping 134 

method. Then, we standardized the values using z-scores [45] across the whole sample size per trapping 135 

method. The z-scores for pan-traps corresponded to the total abundance catch per field which were 136 

centred (mean of total abundance are removed to each value of total abundance) and reduced (each total 137 

abundance value are divided by the standard deviation of total abundance). The final total abundance 138 

for each three groups of pollinators was the sum of z-scores for sweep net and pan traps counts in 2013 139 

and 2014, and for visual counts and pan traps in 2015 and 2016. This first metric was called total 140 

pollinator abundance. A second metric was further derived, since in our study area, the main bee 141 

pollinators in OSR fields are by far Lasioglossum spp. (a wild bee) and honeybees [24]. We thus used 142 

the sum of the reduced-scores values of these two species/genus as a bee index (electronic 143 

supplementary material, Table S1).  144 

 145 

Farm surveys 146 

The general farm statistics obtained from the survey questionnaires during interviews are given 147 

in electronic supplementary material, Table S2. From these surveys, we derived the treatment frequency 148 

indicator (TFI) as a pesticide use indicator. TFI is a quantitative index that measures the intensity of 149 

applications as the number of dose applied per unit of cropped area in relation to the recommended 150 

dosage per crop type [46]. TFI reflects the recommended dose necessary to control pests and can be 151 

broken down per group of pesticides (herbicide, insecticide and fungicide) or aggregated for all 152 

pesticides. TFI per hectare is expressed as: 153 

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 5, 2019. ; https://doi.org/10.1101/628123doi: bioRxiv preprint 

https://doi.org/10.1101/628123
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 

 

𝑇𝐹𝐼𝑘 =∑(∑
𝐷𝑖. 𝑆𝑖
𝐷ℎ𝑗. 𝑆𝑡

𝑛

𝑖=1

)

𝑘

𝑗=1

  

where Di is the dose in application i, Dhj is the national approved dose for pesticide j, and Si is the 154 

surface area treated in application i and St is the total field area [47]. This includes all the pesticide 155 

treatments applied in a given crop field. The recommended dose is defined for each combination of 156 

pesticide product and crop type. We computed for each field a global TFI and a TFI for each group of 157 

pesticides. A TFI equal to one, e.g. for herbicides, means that the farmer either: (i) applied a single 158 

product at the recommended dose in the entire field; (ii) applied two products at half of their 159 

recommended dose; or (iii) a single product applied twice at the recommended dose on only half of the 160 

surface of the field. For our sample of farms, the global TFI varied from 0.6 to 11.3 (mean: 4.9±1.8, 161 

N=294).  162 

Since the inorganic nitrogen in mineral fertilizers is rapidly available to plants, the quantity of 163 

nitrogen used was directly calculated from the fertilizer composition and the quantity applied. However, 164 

organic compounds with nitrogen are relatively stable and must be mineralized to be available to the 165 

crops. The quantity of nitrogen mineralized in organic fertilizers was calculated using the method 166 

described by Jeuffroy and Recous [48]. 167 

 168 

Statistical analyses 169 

Using the complete dataset (294 fields), we first analysed with a linear mixed model (LMM), the 170 

effects of farming practices (fertilizer and pesticides) and soil type (four class) on both yield and gross 171 

margin (GM; for further details on gross margins calculation, see electronic supplementary material, 172 

Methods S3) accounting for direct and interacting effects. We included interactions between practices 173 

(fertilizers) and soil types to account for farmers adapting their practices to soil quality. We also included 174 

Farmer ID as a random factor to account for varying number of fields per farmer, and present results in 175 

the proportion of variance explained by the fixed factors (marginal R², R²m), and the one explained by 176 

both the fixed and random factors (conditional R², R²c). To estimate the effect of pollinators, we then 177 

added bee abundance index and its two-way interactions with the farming practices. The effect of 178 

pollinators was studied only for years 2013 to 2016 with a sample size of 85 fields, as bees were not 179 
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sampled before 2013. In this dataset, since 80% of farmers managed only one field, Farmer ID was not 180 

included as a random factor. Finally, we added field size and landscape metrics to the model. The 181 

landscape was modelled as the percentages of OSR and SNH (meadows, woodland and hedges, 182 

considering a hedge to have a width of two meters), outside the focal field at eight buffer sizes, from 183 

250m to 2000m. Buffer distance was measured from the focal field edge, not the centroid, because the 184 

field size was highly variable. The model with buffer width with the highest explanatory power was kept 185 

(see below). All models were checked for normality and homoscedasticity. Collinearity was low in all 186 

models, with variance inflation factors (VIF) less than 3.1. 187 

At each step, we selected the linear models and linear mixed models with the highest explanatory 188 

power, using a multi-model Akaike information criterion method and model averaging using the 189 

“dredge” function in MuMin R package [49]. The model averaging approach provides an estimate of 190 

the uncertainty of each coefficient [50]. We kept all models with AIC less than 2.0 greater than the best 191 

model [50]. The average model was considered to be the best explanatory model. Consequently, 192 

although similar set of variables were included in the models for yield and gross margin, after the model 193 

selection procedure, different set of variables can be retained. The weight of a parameter was calculated 194 

as the sum of the Akaike weights over all of the models in which the parameter was retained [50]. The 195 

total amount of variance explained (R²) was calculated using the model with the smallest AIC among 196 

all models in which the parameter was retained. Farming practices were also standardized per year using 197 

z-scores. This transformation does not constrain the variability found in the raw data and allows focusing 198 

on each effect independently of the year effect.   199 

Based on our empirical data, we finally explored whether the losses due to reducing the use of 200 

herbicides and insecticides could be balanced by an increase in the yield and/or GM due to an increase 201 

in bee abundance. We choose to analyse the sum of herbicides, insecticides and fungicides, combining 202 

them into a single pesticide TFI, i.e. the sum of each individual TFI. We then used a LM including 203 

pesticide TFI, bee abundance and the interaction between bee abundance and pesticide TFI. Annual 204 

variation in yield was taken into account by subtracting the average yield of the studied year. We varied 205 

the TFI for pesticides and the bee abundance within the observed range of values assuming that the 206 

pressure from pests was not increased by the reduction in insecticide. To test the robustness of this 207 
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assumption, we assessed the relationship between OSR yield, insecticide use and insect pest abundance, 208 

using a LM fitted to a third dataset with 74 data points over three years (18 in 2014, 24 in 2015 and 32 209 

in 2016) for which insect pest abundances were available. The effect of pesticides on insect pest 210 

abundance was tested using a linear model with insecticides, herbicides and fungicides as explanatory 211 

variables. Pest abundance was obtained from the pan trap surveys which give good predictions of pest 212 

abundance in OSR inflorescences [51] (see electronic supplementary material, Methods S4 and Table 213 

S3). 214 

 215 

Figure 1: Schematic representation of the relationships between soil type, agricultural practices, bees, landscapes and their 216 
effect on yield and economic returns. Red arrows indicate negative interactions, whereas green ones show positive ones. 217 

RESULTS 218 

Effect of farming practices on OSR yields and gross margins  219 

Overall, OSR crop yield averaged 3.1 t.ha-1 (±0.6, range 1.6:5.4, n=294), red soils showing a 220 

significantly higher yield (c. 16% on average) than the other soil types. We tested whether farming 221 

practices (fertilizer and pesticide use), soil type and the two-way interactions between fertilizer and soil 222 

type affected yield using the complete dataset. The best model (explaining R²m = 13.98% of the variance 223 

and R²c = 46.87%) showed that fungicide significantly increased yield (Table 1a). For gross margin 224 

(GM), all inputs were kept in the selected model, as well as all interactions between fertilizer and the 225 

soil type (explaining R²m=36.37% of the variance (R²c=48.72%), Table 1b). The practices most affecting 226 
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yield and GM were quite different. But most importantly, except phosphorus, all inputs kept in the final 227 

model negatively affected GM (Table 1b), including the significant negative effect of nitrogen and 228 

herbicides. The soil type and its interaction with nitrogen also had significant effects, with more effect 229 

for red soils. Keeping only the variables selected for the yield model (Table 1a) resulted in a model with 230 

slightly poorer fit and fewer explanatory variables (ΔAIC=163.17, R²m=14.97% and R²c =40.96%). Our 231 

results further suggested that neither insecticides nor herbicides had a direct significant effect on yield 232 

(Figs. 2a, b), but both strongly reduced gross margins (Figs. 2c, d). 233 

 234 

Figure 2: Relationship between insecticides, herbicides on yield (panels a and b) and gross margins (panels c and 235 
d), N=294. Solid lines show significant regressions and dashed lines non-significant regressions. Values for both 236 
herbicides and insecticides were centred/reduced. 237 

Effect of bees on yield and gross margin  238 

For yield, adding Lasioglossum spp. plus honeybees (i.e., the bee index) improved the model 239 

(Table 2). OSR yield increased with bees abundance (p-value=0.026, Table 2a), with a significant 240 

negative interaction between insecticides and bees (p-value=0.039, Table 2a). The model explained 241 

20.6% of the variance (p-value<0.01, Table 2a). Including bees removed the soil type effects from the 242 

previous model. Although these eliminations might be due to the smaller sample size (85 vs. 294), the 243 

removal of the soil type was probably due to the higher bee abundance for red soils (about 47% higher, 244 

although the difference was not significant, data not shown). Bee abundance and its interaction with 245 
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insecticide, accounted for about 70.4% of the total variance explained in the yield. Using total pollinator 246 

abundance (i.e. including wild bees plus honeybees) did not change the general pattern (electronic 247 

supplementary material, Table S4a).  248 

The larger field sizes and the presence of other OSR fields nearby may either attract bees or dilute 249 

the honeybee population, while Lasioglossum spp. may depend on nearby SNH. We thus tested whether 250 

including the field size, %OSR and %SNH in the surrounding landscape improved the model. The model 251 

that best fitted the data (R² = 22.1%, Table 2b) had a 250 m buffer width. Within this buffer, %OSR and 252 

%SNH had a positive effect on yield, although non-significant. All other buffers resulted in lower AIC 253 

(data not shown).  254 

For the GM, bee abundance was the only variable with a positive effect (p-value=0.0381, Table 255 

2c, Fig. 3a). Farming practices (potassium and herbicide) had a significantly negative effect, and also 256 

interacted with bees (Table 2c). Including %OSR and %SNH in the surrounding landscape did not 257 

change the effect of pollinators, although the %SNH had a direct significant positive effect for a 250m 258 

buffer (electronic supplementary material, Table S5).  259 

For average levels of inputs, yield was 0.31 t.ha-1 higher and gross margin was 119 €.ha-1 (i.e. 260 

16%) higher in fields with the high than fields with the low bee abundance using 0.1-0.9 quantile (Figs. 261 

3a, c). Keeping extreme values of bee abundance (i.e., the lowest compared to the highest) yielded a 262 

much larger increase of OSR yield (Fig. 3b; 0.77 t.ha-1) and GM (Fig. 3a; 289 €.ha-1). 263 
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 264 

Figure 3: Plot a) shows the effect of pest (blue dots) and bee (green dots) abundance on gross margins; plot b) 265 
shows the effect on yield; plot c) shows the effect of insecticides on bees and pests; plot d) shows the relation 266 
between pest and bee abundances. Abundances were centered/reduced. Solid lines show significant regressions 267 
and dashed lines non-significant regressions. Bee abundance includes honeybee plus Lasioglossum spp 268 

Trade-offs between pollinators, pesticides and pests to improve gross margins  269 

Since bee abundance had a consistently positive effect on yield and GM, and there was a negative 270 

interaction between bee abundance and the use of pesticides, we explored whether higher yields and 271 

GM could be obtained by reducing the use of agro-chemicals to increase bee abundance and their 272 

contribution to yield. All variables kept in the yield and GM models, except bee abundance, insecticides, 273 

herbicides and fungicides were set to their mean values (electronic supplementary material, Table S2). 274 

The interactions were visualized using 3D plots with the sum of herbicide, fungicide and insecticide 275 

TFIs (hereafter TFI pesticide) on the x-axis, bee abundance on the y-axis and yield or GM on the z-axis. 276 

This revealed antagonism between pesticide use and bee abundance, with the latter having a greater 277 

positive effect when the use of pesticides was low (Fig. 4). Assuming that the pest pressure remains 278 

constant, this antagonism between pesticide use and bee abundance shows that farmers could maximize 279 

yield through two opposite strategies: maximizing either pesticide use or bee abundance (Fig. 4a). These 280 

strategies, however, had a different effect on GM which was always higher when bee abundance was 281 

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 5, 2019. ; https://doi.org/10.1101/628123doi: bioRxiv preprint 

https://doi.org/10.1101/628123
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 

 

maximized (Fig. 4b). Additionally, although the use of insecticides reduced the abundance of insect 282 

pests (F1,70= 5.40, p-value=0.023, Fig. 3c), a higher abundance of pests would not significantly affect 283 

yield (F1,70= 0.08, p-value=0.78, Fig. 3b). On the other hand, higher abundance of bees had a strong 284 

positive effect on both yield (Fig. 3b) and GM (Fig. 3a). As bees and pests were positively related 285 

(though not significantly: rs= 0.23, p-value= 0.23; Fig. 3d), the increase in yield due to the higher bee 286 

abundance when insecticide use is reduced, was greater than loss of yield due to the increased abundance 287 

of pests.   288 

 289 

 290 

Figure 4: Effect of interaction between bee abundance and the combined herbicide and insecticide TFI on yield 291 
(a) and gross margins (b). The green surface shows regions where the yield or gross margin is higher and blue 292 
where it is lower. Coloured points represent the raw data points and the black ones predicted values from the 293 
model. Positive and negative differences between raw data and predicted values are indicated in blue and green. 294 
Bee abundance includes honeybee and Lasioglossum spp, and pesticide TFI is the sum of insecticide and herbicide 295 
TFIs. Both explanatory variables were centered/reduced before analysis. 296 

DISCUSSION 297 

Although ecological intensification appears to be a promising alternative to conventional 298 

agriculture (e.g. Pywell et al. [52]), there is no consensus on whether it is possible to replace 299 

agrochemicals by natural capital and ecological functions without major reductions in yields [53,54]. 300 

Insect pollination has been shown to increase OSR yields both in experimental [22,34] and on-farm 301 

studies [24,40], but the effect of interactions between pollinators and agricultural practices on yield and 302 

income remain largely unknown. Though, the practical implications for farmers, as decision-makers, 303 
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and for policy-makers are critical [55]. Based on a very large dataset spanning four and six years, this 304 

study provides a comprehensive analysis of synergy and antagonism between farming practices and 305 

biodiversity, and their effects on yield and income.  306 

Although farming practices overall accounted for about 24% of the variance of the yield, few 307 

practices showed significant positive effects. Phosphorous [56] and fungicides [57] were the only inputs 308 

with a significant positive effect on OSR yield. Phosphorus may increase OSR yield by increasing the 309 

number of pods per plant and seeds per pod [58]. Simultaneously insect pollination, was as well strong 310 

determinant of OSR yield, supporting previous experimental studies [23,24,34]. Taking into account 311 

farming practices, pollinator abundance explained 50% of the variance of the yield, increasing yields by 312 

0.77 t.ha-1 from the lowest abundance to the highest. This is consistent with previous studies that found 313 

increases in yield from 0.4 to 1.0 t.ha-1 [24,38]. Fertilizer, especially nitrogen, is a recognized driver of 314 

yield, but we failed to detect any direct effect of nitrogen fertilizer on OSR yield. Although surprising, 315 

the absence of an increase of yield with nitrogen input has already been reported [59,60], and other 316 

studies have even reported negative effects [61,62]. This is possibly explained by the ability of modern 317 

cultivars to achieve higher yields with lower nitrogen inputs [59]; indeed 93% of the farmers in our 318 

study used modern hybrid seed varieties. Our results suggest that, for the farms studied, OSR yield is 319 

limited by pollinators rather than nutrient availability [30].  320 

Agricultural practices had little effect on yield which meant that the GM was significantly reduced 321 

by nitrogen fertilizer and herbicide applications, as their costs were not recovered in the form of higher 322 

yields. Bee abundance was positively correlated with yield, and GM was 15-40% higher with the highest 323 

abundance compared with the lowest. This increase of GM assumes that no cost were associated, 324 

especially with the presence of hives in the landscapes (i.e. honeybees were dominant pollinator here). 325 

In some region, hive rental costs are supported by the farmers. For instance, apple pollination fees are 326 

about €40 per hive [63]. Assuming the similar fees per hive for OSR pollination, GM would still be 4%-327 

25% higher with two hives/ha. Very few experimental OSR studies have assessed the economic benefits 328 

of pollinators at the field level [26]. Accounting for average production costs per ha, Stanley et al. [25] 329 

estimated the effect of pollinators on yield in four experimental fields, and then extrapolated to the whole 330 

of Ireland to achieve an estimated benefit of €2.6 M.year-1. Bommarco et al. [23], in a pollination 331 
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exclusion experiment in ten fields along a landscape gradient, found a 20% increase in the market value 332 

of OSR. Our study is the first to assess the financial benefits from pollinators in real farming conditions 333 

over 85 fields located along a gradient of pollinator abundance.  334 

The benefits of ecosystem services for crop yield may be affected by agricultural practices such 335 

as agrochemical inputs [30,64]. In our study, we focused on the interactions between bee pollination and 336 

pesticides. These agrochemicals increase crop yield through decreased insect pests, fungi and weed 337 

pressure. However, they can also reduce the benefits of pollination by reducing bee abundance or 338 

efficiency, and decreasing the reserves of flowers. With constant insect pest pressure, our analysis 339 

showed that higher yields may be achieved by two opposite strategies: increasing agrochemicals 340 

(reducing pests) or increasing bee abundance (increasing fruiting success, [24]). But GM was only 341 

increased by increasing bee abundance, because insecticides reduced bee abundance and neither 342 

insecticides nor herbicides increased yields while their costs reduced gross margins. This result 343 

contradicts the dominant arguments about trade-offs between food production and conservation of 344 

biodiversity ([65], but see Pywell et al.  [52]) and shows that nature-based solution can yield to a win-345 

win strategy. 346 

There are two caveats that may limit this interpretation. Firstly, our model assumed constant insect 347 

pest and weed pressure, that is, reducing pesticides would not increase their abundances, whereas a 348 

reduction in yield may be expected when reducing pesticides [66]. We indeed found that insect pest 349 

abundance was lower in fields with high insecticide inputs than in those with low inputs. However, 350 

higher insect pest abundances did not translate into reduced yields as there was no relationship between 351 

insect pest abundance and OSR yield. It is possible that pest abundance is very low in our study region. 352 

For example, with similar trapping method and effort, more of 20 pests were caught in Germany or 353 

Estonia [67,68] while only six were caught in our site. It is also possible that OSR plants are able to 354 

overcompensate pest damage [69]. However, several recent studies in France have shown that reducing, 355 

to a certain extent, pesticides may not reduce yields, as found for herbicides in wheat [4] or for pesticides 356 

in general in arable crops [70]. Moreover, pollinators abundance strongly differs between study sites for 357 

a same crop type [71], and actually our study region has a particularly rich wild bee community, with 358 

more than 250 species [72]. The benefits thus depend on the local pollinator population, part of the 359 
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natural capital. Further research on the effects of variations in pollinators and farming practices on yields 360 

and profits is therefore needed in other agricultural conditions. 361 

New agricultural strategies must be developed to achieve sustainable crop production and reduce 362 

dependency on chemical inputs. This study provides a clear demonstration that agro-ecology, by 363 

promoting nature-based solutions for agricultural production can be an alternative to conventional 364 

agriculture for both food production and farm income. Based on a large-scale field survey, our results 365 

therefore support a “win-win-win” balance between crop production, farm income and the environment. 366 

The next challenge will be to assess non-market benefits from pollinators to define the value of this 367 

natural capital within a landscape, essential for policy-making and land-use planning. 368 
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Table 1.  Models of yield (a) and gross margin (b) as a function of farming practices and soil type 572 

and their interaction. Weight (w), estimated coefficient (β), 95% confidence intervals (CI) and p-value 573 

are given for each explanatory variable for the average yield and GM models. β and CI are not given for 574 

categorical variables. Significant terms with confidence intervals not including zero are in bold. All 575 

explanatory variables were centred/reduced before analysis.   576 

 577 

a) Yield 578 

  w β Lower CI Upper CI p-val 

Fungicides 0.34 0.081 0.0143 0.1479 0.0173 

Soil type 1.00    <0.0001 
 579 

b) Gross Margin 580 

  w β Lower CI Upper CI p-val 

Nitrogen 1.00 -132.02 -278.77 -136.84 0.0026 

Potassium 1.00 -65.75 -139.36 37.10 0.2051 

Phosphorus 1.00 20.093 -84.49 108.72 0.7402 

Herbicides 1.00 -79.61 -126.27 -66.69 <0.0001 

Insecticides 1.00 -30.52 -63.85 -6.97 0.0620 

Fungicides 1.00 -17.86 -30.93 23.03 0.2577 

Soil type 1.00  
 

 <0.0001 

Nitrogen x Soil type 1.00  
 

 >0.075 

Potassium x Soil type 1.00    >0.40 

Phosphorus x Soil type 1.00    >0.35 

  581 
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Table 2. Models of yield (a), and gross margins (c) as a function of farming practices, soil type, 582 

bee index and interactions, and including landscape variables (c). Weight (w), estimated coefficient 583 

(β), 95% confidence intervals (CI), and p-value are given for each explanatory variable for the averaged 584 

yield and GM. β and CI are not given for the categorical variables. Significant terms with confidence 585 

intervals not including zero are in bold. All explanatory variables were centred/reduced before analysis. 586 

Bees represents the bee index, i.e sum of honeybee and Lasioglossum spp. abundances.  587 

 588 

  w β Lower CI Upper CI p-val 

Bees 1.00 0.068 0.0081 0.1288 0.0262 

Nitrogen 0.07 0.038 -0.0824 0.1576 0.5388 

Phosphorus 0.43 0.102 -0.0322 0.2363 0.1363 

Potassium 0.24 -0.070 -0.1913 0.0522 0.2625 

Fungicides 0.84 0.129 0.0063 0.2525 0.0394 

Insecticides 0.55 0.047 -0.0682 0.1626 0.4231 

Bees x Insecticides 0.55 -0.054 -0.1035 -0.0047 0.0318 

Bees x Fungicides 0.11 0.028 -0.0215 0.0776 0.2665 

 589 

b) Yield, including landscape variables  590 

  w β Lower CI Upper CI p-val 

Bees 1.00 0.077 -0.020 0.215 0.0061 

Phosphorus 0.37 0.103 -0.026 0.231 0.1172 

Potassium 0.12 -0.073 -0.070 0.161 0.2296 

Fungicides 0.88 0.131 0.022 0.131 0.0305 

Insecticides 0.23 0.036 -0.079 0.151 0.5406 

%OSR 0.95 0.097 0.012 0.250 0.1044 

%SNH 0.17 0.045 -0.193 0.462 0.4424 

Bees x Insecticides 0.23 -0.047 -0.093 -0.954 0.0495 

Bees x %SNH 0.05 -0.038 -0.089 0.014 0.1500 

Bees x %OSR 0.63 -0.052 -0.112 0.009 0.0937 

 591 

c) Gross margin 592 

  w β Lower CI Upper CI p-val 

Bees 1.00 23.95 1.319 46.582 0.0381 

Nitrogen 0.16 -20.60 -35.714 4.619 0.4524 

Potassium 1.00 -69.80 -119.943 -19.647 0.0064 

Herbicides 1.00 -107.58 -157.332 -57.836 <0.0001 

Insecticides 0.25 -20.43 -12.615 39.125 0.4310 

Bees x Herbicides 0.46 -16.27 -37.733 5.200 0.1375 

Bees x Insecticides 0.09 -15.55 -74.317 33.124 0.1308 

Bees x Potassium 0.20 13.25 -71.288 30.419 0.3153 

a) Yield  
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