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Abstract: 

Background 

Therapeutic sleep deprivation (SD) rapidly induces robust, transient antidepressant effects in a large 

proportion of major mood disorder patients suffering from a depressive episode, but underlying 

biological factors remain poorly understood. Research suggests that these patients may have altered 

circadian molecular genetic ‘clocks’ and that SD functions through ‘resetting’ dysregulated genes; 

additional factors may be involved, warranting further investigation. Leveraging advances in 

microarray technology enabling the transcriptome-wide assessment of gene expression, this study 

aimed to examine gene expression changes accompanying SD and recovery sleep in patients 

suffering from an episode of depression.  

Methods 

Patients (N=78) and controls (N=15) underwent SD, with blood taken at the same time of day before, 

after one night of SD and after recovery sleep. A transcriptome-wide gene-by-gene approach was 

used, with a targeted look also taken at circadian genes. Furthermore, gene set enrichment, and 

longitudinal gene set analyses including the time point after recovery sleep, were conducted.  

Results 

Circadian genes were significantly affected by SD, with patterns suggesting that molecular clocks of 

responders and non-responders, as well as patients and controls respond differently to 

chronobiologic stimuli. Notably, gene set analyses revealed a strong widespread effect of SD on 

pathways involved in immune function and inflammatory response, such as those involved in 

cytokine and especially in interleukin signalling. Longitudinal gene set analyses showed that in 

responders these pathways were upregulated after SD; in non-responders, little response was 

observed.  

Conclusions 
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Our findings emphasize the close relationship between circadian, immune and sleep systems and 

their link to etiology of depression at the transcriptomic level.  
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Introduction: 

Therapeutic sleep deprivation (SD) rapidly induces robust antidepressant effects in a large proportion 

of major mood disorder patients suffering from a depressive episode (1-5) . The effects of the 

treatment are transient as relapse is usually observed after recovery sleep. The mechanisms through 

which SD exerts its antidepressant effects nevertheless offer important insights into the biological 

factors involved in depression and antidepressant response, and have been the focus of recent 

research (6-10).  Work in humans (11-14)as well as animals (15-17) consistently documents the 

effects of mistimed or insufficient sleep and sleep deprivation on circadian gene expression (such as 

CLOCK, ARNTL [BMAL1], PER1, PER2, PER3, etc.,) as well as on genes involved in related biological 

processes such as inflammatory, immune and stress response (18, 19).  A prominent hypothesis 

about the antidepressant mechanism underlying SD is that it restores circadian rhythmicity which is 

often dysregulated in depression, via resetting clock gene transcription (20, 21). The well-controlled 

nature and rapidity of response to SD treatment (22) renders it a promising context to investigate 

associated biological measures such as gene expression.  

While no systematic investigation of gene expression changes in depressed patients undergoing SD 

treatment has been conducted to date, the study of gene expression in major depressive disorder 

(MDD) has raised the idea that genes associated with MDD are enriched for inflammation and 

immune response pathways, which may be linked to the sleep disturbances observed in depression 

(23-25). Circadian rhythms are found in the majority of physiological processes and the immune 

system is no different, with alterations of these rhythms leading to disturbed immune responses (26). 

The immune system and circadian clock circuitry crosstalk, with immune challenges and mediators, 

such as cytokines, also feeding back to affect circadian rhythms (27). Cytokines, including chemokines, 

interferons and interleukins, are integral to sleep homeostat regulation and can modulate 

behavioural and physiological functions (28).   
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We recently conducted a naturalistic study which aimed to examine clinical and genetic factors 

predicting response to SD (29). This was conducted in a sample of major mood disorder inpatients 

experiencing a depressive episode (n=78) and healthy controls (n=15).  Briefly, 72% of patients 

responded to SD. Responders and non-responders did not differ in self/expert assessed symptom 

ratings or chronotype, but mood differed. Response was associated with lower age and later age at 

lifetime disease onset. Higher genetic burden of depression was observed in non-responders than 

healthy controls, with responders having intermediate risk scores.  

The present study now aimed to examine gene expression changes accompanying SD and recovery 

sleep during a depressive episode using a longitudinal design, looking at changes in peripheral blood 

gene expression in the same sample. Gene expression changes occurring after SD and recovery sleep, 

as well as associated with response and patient-control status, were explored. In a hypothesis-driven 

approach, expression patterns of circadian genes were investigated. For a systematic search, 

transcriptome-wide gene-by-gene and gene set enrichment analyses were performed, while 

longitudinal gene set analysis (30) explored dynamics in expression trajectories at the functional gene 

set level.  
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Methods and Materials:  

Participants: 

The present sample has been described elsewhere (29). Seventy-eight inpatients (34 females; age 

mean ± standard deviation = 43.54 ± 14.80 years) presenting with a depressive episode (unipolar, n = 

71; bipolar I, n = 6; and bipolar II, n = 1) and on stable medication for ≥ 5 days participated in this 

study. Depression was diagnosed according to ICD-10 criteria. Patients were recruited from 

consecutive admissions to the depression unit of the Department of Psychiatry and Psychotherapy of 

the Central Institute of Mental Health (CIMH), Mannheim, Germany. Prescribed medication included 

typical and atypical antidepressants, lithium, and adjunct therapies (anticonvulsants, antipsychotics 

and sleeping agents). Fifteen healthy controls (8 females; 40.53 ± 15.90 years) with no history of 

psychiatric/somatic disorders were recruited through an online advertisement on the CIMH website. 

The criteria for inclusion and exclusion were the same as the criteria for patients, except controls 

needed to lack psychiatric diseases, which was evaluated via Structured Clinical Interview for DSM-IV 

Axis II disorders (SCID-II) prior to SD. The investigation was carried out in accordance with the 

Declaration of Helsinki and approved by the CIMH ethics committee. All participants provided written 

informed consent following a detailed explanation of the study.  

 

Sleep Deprivation 

On Day 1, participants gave informed consent and entered the study (see Figure 1). SD was 

conducted from Day 2–Day 3, in small groups of 1-5 participants under staff supervision. Participants 

were free to move around during the night of the SD protocol and were supervised by staff and 

occupied with activities such as games and walks to ensure wakefulness. Resting in bed was not 

allowed and SD was carried out on the ward under regular ward lighting conditions (no bright or dim 

lighting). Food intake was not restricted and some patients consumed snacks (i.e. bread) during SD. 

Participants underwent the same protocol irrespective of habitual sleep/wake timing; patients 
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followed ward routines (i.e. lights on, lights out times) prior to inclusion to the study. Participants 

remained awake from ~0600hrs on Day 2 to 1800hrs on Day 3 (36 hours). On Day 3, participants 

underwent recovery sleep from 1800-0100hrs. Sleep phase advance was then carried out, shifting 

sleep one hour forward each day until the patient’s regular sleep pattern was reached. Controls 

participated alongside patients. Response was assessed by the senior clinical researcher using the 

Clinical Global Impression Scale for Global Improvement/Change in the afternoon on Day 3. 

 

Data Collection 

Blood samples were collected in RNA-stabilizing PAXgene tubes (Qiagen, Hilden, Germany), 

processed according to standard procedures, and stored at −80R°C until analysis. Blood was collected 

at the same time (between 0600–0730hrs) on Day 2 before SD (T1), on Day 3 after SD (T2) and on 

Day 4 (T3) (see Figure 1). The number of samples decreased over time points (Table 1) due to non-

participation.  

 

Sample preparation and analysis 

RNA and Microarray Analyses 

Laboratory analyses were performed using standard methods (see Supplementary Information, SI). 

 

Gene Expression Data Pre-processing 

A Custom CDF Version 20 with ENTREZ based gene definitions was used to annotate the Affymetrix 

GeneChip™ Human Gene 2.0 ST arrays used for gene expression profiling (31). The Raw fluorescence 

intensity values were normalized applying quantile normalization and RMA background correction 
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using SAS JMP11 Genomics, version 7(SAS Institute, Cary, NC, USA). The final dataset comprised 

mRNA expression targeting 24,733 unique genes for each time point per participant.  

 

Data Analysis 

Analyses were conducted in R (Microsoft R Open 3.4.2). Significance was set at FDR q < 0.05. 

Gene-based Analysis  

Analyses were conducted using lme4 (Version 1.1-17). Linear mixed effects models with random 

intercepts were fitted to examine gene expression differences between T1 and T2 (‘effect of time 

point’). Three main models were fitted: effect of time point in ‘all patients’ (M1), in ‘responders vs. 

non-responders’ (M2) and in ‘patients vs. controls’ (M3). In all analyses, age and sex were included as 

covariates. 

Models were specified as follows: for each transcript, likelihood ratio tests were calculated between 

two models (h1 vs h0). In both models, gene expression was specified as the dependent variable, 

covariates were specified as fixed effects and the individual was specified as a random effect. h1 

contained the comparison of interest specified as a fixed effect while h0 was a reduced model 

without it. That is, in M1, the ‘effect of time point’ was the only difference between h1 and h0, while 

in M2 and M3, the effect of interest was the interaction of the comparison group status (i.e. 

responder/non-responder, and patient/control) and ‘effect of time point’.  

Additionally, whether differences in expression levels at T1 ‘baseline’ were informative about 

response and disease status was examined using linear models, controlling for sex and age. 

 

Targeted Examination of Differential Expression of Circadian Genes 
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To determine differential expression of circadian genes, a list of genes comprising both traditional 

clock genes (in order of highest signal-to-noise ratio predicting circadian rhythmicity): PER1, 

NR1D2,PER3, NR1D1, PER2, ARNTL, NPAS2, CLOCK, CRY2, and CRY1 as well as other top genes shown 

to predict circadian rhythmicity in human blood (DDIT4, CLEC4E, FKBP5, DAAM2, TPST1, IL13RA1, 

SMAP2, HNRNPDL, FOSL2, PER1, FLT3, CDC42EP2, TMEM88, NR1D2, RBM3) in (32)  was used to take 

a focused look at results of the gene-based analysis. Using a Monte-Carlo approach, the probability 

of obtaining at least the observed number of significant associations (p < 0.05 uncorrected) in a 

random gene set of the same size was calculated.  

 

Gene Set Enrichment Analysis  

Gene Set Enrichment Analysis (GSEA)(33) was used to determine whether differentially expressed 

genes offered biologically meaningful insights about SD. Ranked lists were created based on results 

of models M1-M3, using a signed log10 transformed p-value with sign denoting direction of change, 

as described elsewhere(34). To allow a concise interpretation of the potentially widespread effects of 

SD interventions, the Hallmark gene set collection (35) (MSigDB Version 6.2), comprising 50 gene sets 

representing specific well-defined biological states/processes displaying coherent expression, was 

used. The heme metabolism gene set was excluded due to the globin interference artefact 

(communication with ThermoFisher).   

 

Longitudinal Gene Set Trajectory 

Time-course Gene Set Analysis (TcGSA)(30) (Version 0.12.1) was employed to examine gene 

expression dynamics over all three time points. TcGSA, employing mixed models, detects gene sets in 

which expression changes over time, taking between-gene and individual variability into account, 

with higher sensitivity and better interpretability than univariate individual gene analysis (for details, 
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see(30)). As above, the Hallmark gene set collection was used. Significance was set at FDR q < 0.05. 

TcGSA was employed separately for all patients, controls, responders and non-responders. Data at T3 

from two patients not following the recovery sleep protocol were excluded, while 8 participants had 

dropped out. 
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Results: 

Gene-based Analysis 

In all patients [M1], 4,071 (2,083 up, 1,988 down) genes were significantly differentially expressed 

after SD. Significant differential changes in gene expression after SD between responders and non-

responders [M2] were observed in 360 genes [150 up, 210 down] and in patients vs. controls [M3] in 

495 genes [248 up, 247 down].  

Table 2 shows top differentially expressed genes for these models. Tables S1.1-S1.3 show the 

number of genes differentially expressed, upregulated, and downregulated for all models, and 

detailed lists of differentially expressed genes.  

At baseline, no genes were significantly differentially expressed between patients/controls and 

responders/non-responders (Table S1.4).   

  

Target Examination of Differential Expression of Circadian Genes  

We observed significant differential expression of circadian genes in models M1, M2 and M3. (Table 

3, for more details, see Tables S2.1-3). Baseline differences in circadian genes between 

responders/non-responders, and patients/controls did not reach FDR q < 0.05, but achieved nominal 

significance (see Table S2.4). 

Monte Carlo simulations confirmed that significantly more circadian genes were differentially 

expressed than random gene sets of the same size (see SI). 

 

Gene Set Enrichment Analysis  

GSEA notably found enrichment in immune response related pathways (see Tables S3.1-3). 
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For M1, M2 and M3, 12, 23 and 11 gene sets were significantly positively enriched, respectively (FDR 

q < 0.05). The TNFα signalling via NFKβ gene set had the strongest positive enrichment in all models, 

while Inflammatory Response was also consistently among the significantly positively enriched gene 

sets. 

Given the enrichment observed in Tumor Necrosis Factor Alpha (TNFα) and immune pathways, 

selected genes prominent in immune processes(25) were further examined (Table S4). 

  

Time course Gene Set Analysis 

TcGSA results mirrored and extended gene-based analysis results:  

In responders, 48 gene sets varied significantly (the model for one gene set, G2M Checkpoint, did not 

converge) (see Figure 2a). Descriptively, in comparison to T1, responders showed a spectrum of 

differential gene expression at T2, with strong upregulation observed (TNFα Signalling via NFKβ, IL6-

JAK-STAT3-Signaling, Inflammatory Response, Angiogenesis) and maintained until T3. The Interferon 

Gamma Response and Interferon Alpha Response gene sets showed the strongest upregulation at T3. 

In non-responders, 44 gene sets varied significantly (the model for one gene set, Allograft Rejection, 

did not converge)(see Figure 2b), the majority of gene sets were downregulated at T2, with 

upregulation of the abovementioned gene sets only observed at T3.   

In patients, expression was observed to vary significantly in 49 gene sets (see Figure 2c). Descriptively, 

upregulation was observed in immune system related gene sets in two main patterns; (1) strong 

upregulation at T2, sustained but weakening at T3 (i.e. Inflammatory Response, IL6-Jak-Stat3-

Signalling and TNFα Signalling via NFKβ) and (2) light upregulation at T2 followed by stronger 

upregulation at T3 (e.g., Interferon Gamma Response, Interferon Alpha Response).  
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In controls, 21 gene sets varied significantly (see Figure 2d). Descriptively, at T3, 

immune/inflammation related gene sets were upregulated (e.g., Inflammatory Response, IL6-Jak-

Stat3-Signalling, TNFα Signalling via NFKβ). The majority of other gene sets were downregulated at T2, 

followed by upregulation at T3. 

Tables S5.1-4 list significant TcGSA gene sets. 
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Discussion: 

Here, we report the first longitudinal transcriptome-wide study of SD treatment in major mood 

disorder patients suffering from a major depressive episode. Widespread differential gene expression 

was observed after SD; circadian genes were differentially expressed, and enrichment in pathways 

related to immune function, inflammatory response and sleep regulation was observed.  

It has been hypothesized that SD exerts its antidepressant effect by resetting disturbed clock gene 

functioning thought to be a feature of depression (9). Consequently, we examined changes in 

expression of circadian genes. All individuals, i.e. patients and controls, showed significant 

differential expression of circadian genes after SD. In responders, many significant gene expression 

changes were observed while in non-responders only a few nominally significant changes were found. 

The following observation may be of interest: three circadian genes, PER1, CLEC4E and SMAP2 (FDR q 

= 0.083 approaching significance, 0.048, and 0.039, respectively) showed strong differential gene 

expression, i.e. increased expression, in responders versus non-responders after SD. While the roles 

of CLEC4E and SMAP2 are yet unexplored in this context (however, see below for additional 

discussion of CLEC4E), similar PER1-related findings have been previously reported; consistent with 

the present findings, PER1 expression is observed to be increased in SD responders and decreased in 

non-responders (9). Animal studies have shown that sleep deprivation or prolonged wakefulness 

enhanced Per1 expression in several brain regions (20, 36), and that quetiapine increased Per1 

expression in the amygdala (37).  

The present results are interesting in light of a study in human post-mortem brain tissue of ~12,000 

ranked genes according to robustness of circadian rhythmicity across 6 brain regions; the top ranked 

circadian genes in that study were ARNTL, PER2, PER3 and NR1D1 and dysregulation in MDD vs 

controls were observed in these genes (21).  The present study observed that these same genes were 

the most affected (of the traditional clock genes) as a result of SD, supporting the idea that SD may 

act on the dysregulation of these genes in depression.   
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The present findings cannot yet demonstrate that clock gene dysregulation/normalization is at the 

core of the SD mechanism. However, they suggest that (genes of) the molecular clocks of 

responders/non-responders, as well as patients/controls respond differently to chronobiologic 

stimuli, which may be associated with treatment outcomes.  

Among the top 10 genes most significantly differentially expressed after SD in patients [M1] were: i) 

KLF6, observed to be upregulated in individuals after experimental restriction in a genome-wide 

association study of sleep duration (38); (ii) SIPA1L1, expression of which was found to be increased 

in a study examining changes in military personnel at baseline and after improvement of sleep (39); 

(iii) NHSL2, the function of which is unknown, but which is located in a genomic region found to be 

differentially hydroxymethylated in a study of sleep deprivation in mice(40); (iv) TREM1, which has 

immune function(11); and (v) TSPAN2, of which a study looking for gene expression changes under 

fluoxetine in rats found hippocampal upregulation (41). Among the top 10 genes observed in 

responders vs non-responders [M2] is BECN1 (Beclin1) – which (together with FKBP5, see below) is 

shown to be involved in priming autophagic pathways to set the stage for antidepressant action (42, 

43). Circadian rhythms of autophagic proteins, including beclin1 have been linked to sleep 

disturbances (44). Also in the top 10 in M2 were DNER, and GSR which have functions related to 

immune response(45, 46). Between patients and controls [M3], top genes included EZH2, which is 

reported to have a close relationship to IL-6 (47).  ZBTB16 is implicated in human sleep duration(38) 

and sleep deprivation in animal studies (48) , and CISH is shown to be involved in immune related 

processes (49, 50). Among other differentially expressed genes are ones evidently associated with 

antidepressive intervention, such as FKBP5 (51) where we observed significant upregulation in 

patients vs. controls after SD (see Tables S1.1, S2.1). FKBP5 plays an important regulatory role in 

stress response (51-54); circadian rhythm abnormalities have been linked to the stress response 

system, and circadian clock genes can both regulate and be regulated by rhythms of glucocorticoid 

release (55).  
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Pathway analyses showed a global effect of SD on gene expression; immunological, inflammatory 

response and sleep regulation involved pathways were most strongly affected. These findings are of 

interest in light of previous gene expression studies linking immune function to MDD (56, 57); SD 

may affect pathways involved in the MDD etiology. In patients and especially responders, in the 

Inflammatory Response (genes related to cytokines, growth factors, cell differentiation markers and 

transcription factors)(35), IL6-JAK-STAT3-Signalling (aberrantly hyperactivated in patients with cancer 

and chronic inflammatory conditions)(58)  , and TNFα Signalling via NFKβ (cell proliferation, 

differentiation, apoptosis, neuroinflammation mediated cell death) gene sets, strong upregulation 

was observed at T2. Prior findings have shown associations between the immune system and 

depression, suggesting that causal pathways exist from immune dysregulation and inflammation to 

MDD (23, 24, 59-62). This raises the question of how SD and the immune system interact and 

whether SD counteracts and/or enhances depression-related immunological processes.  

Interestingly, and in contrast to responders, mainly weaker downregulation was observed at T2 in 

non-responders, with upregulation of immune related gene sets only observed at T3. This differential 

function of immune related processes (i.e. blunted system responsiveness) might be associated with 

non-response to treatment. This preliminary finding must be further explored in larger sample sizes.   

Of note, downregulation of MYC targets pathways after SD was consistently observed in both 

responders and non-responders but not controls. MYC, well known as an oncogene (63), acts as a 

mediator and coordinator of cell behaviour which also inversely modulates the impact of the cell 

cycle and circadian clock on gene expression (64). It has been shown that dysregulation of MYC 

disrupts the molecular clock by inducing dampened expression and oscillation of CLOCK-BMAL1 

master circadian transcription factor (65). Removal of clock repression by MYC may play a role in the 

interaction of SD with depression and further investigation of these potential mechanisms is 

warranted.  
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Sleep and immunity are connected by anatomical and physiological bases (66). The role of cytokines 

in the brain is complex and remains to be fully understood; while a full discussion of their roles is 

beyond the scope of this work, Table S4 shows cytokines and substances which have been implicated 

in both immune and sleep regulatory processes (25). The present findings, observing upregulation 

after SD, support reports linking levels of pro-inflammatory cytokines to depression and suggesting 

involvement in disease pathogenesis (25, 67, 68).  

One important clue to SD response may lie in the observed TNFα expression patterns. TNFα is a pro-

inflammatory cytokine controlling expression of inflammatory genetic networks; in addition to many 

immune-related functions in the brain, it influences whole organism function, including sleep 

regulation (25, 60). After SD, patients had significantly decreased expression of TNF compared to 

controls (FDR q = 0.01); upregulation was observed in controls and downregulation in patients. It 

should be noted here that the sample sizes were unbalanced, potentially introducing bias in the 

result, however, upregulated TNF in controls is consistent with reports of sleep deprivation-induced 

increases in TNFα levels in healthy people (69). The decrease observed in patients, and especially 

responders, may inform the mechanism of SD response- increased TNFα concentrations are reported 

to be a marker of depression and TNFα administration is reported to induce depressive symptoms 

(70).  

Sleep-wake cycles are accompanied by changes in circulating immune cell numbers and disturbing 

the circadian cycle affects immune response (71, 72).  Acute SD reportedly affects diurnal rhythmicity 

of cells, mirroring the immediate immune stress response (73, 74). Consistent with a stress-like 

response, upregulation of expression of IL6 and IL1B, thought to be involved in depression (75) and 

regulation of circadian rhythm/sleep homeostasis (12, 68, 76), was observed after SD. Given the tight 

coupling between circadian and immune systems, it may be that like the ‘resetting’ of circadian 

genes, the altered rhythmicity of the stress immune response system in depression is transiently 

normalized, leading to antidepressant effects; chronotherapeutic approaches that extend SD effects 

may be prolonging this normalization (20).  
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In support of the idea of involvement of stress response associated with SD is the fact that several of 

the differentially expressed genes are known to be driven by glucocorticoid signalling. One possibility 

is that differential expression observed has been induced by stress responses associated with SD; it is 

not possible in the present protocol to disentangle stress and SD. For example, while as indicated 

above CLEC4E is not explored in the SD context, it is known to be involved in immune function and 

also to be driven by glucocorticoids and is thus related to the stress response (77). Animal studies 

have shown that by removing glucocorticoid signalling via adrenalectomy, PER1, for example, was 

no-longer affected by SD, and responds to the stress induced by SD rather than SD itself (78).   

There are several limitations to our study. The sample sizes of non-responders and controls were 

limited, with less power potentially contributing to the lower number of significant genes. The 

differences in sample sizes might furthermore create bias in the analyses of differential gene 

expression. While the statistical approach (linear mixed models) used in the single-gene analysis and 

underlying TcGSA is robust against unbalancedness and missing data, caution should still be 

exercised when considering the comparative results, as mentioned above. Next, although blood was 

sampled once per day on three consecutive days, a significant but manageable load for patients, the 

amount of data is sparse for statistical estimation. To better leverage longitudinal data and methods, 

a denser sampling scheme (e.g. every few hours) will be required to attain a more refined 

understanding of underlying SD mechanisms. It should be noted that the recovery sleep episode was 

a total of 7 hrs in length (i.e. 1800 to 0100 hrs) after a 36 hr homeostatic buildup of sleep pressure; 

this may not be long enough for homeostasis to recover and thus SD could have still had an effect on 

gene expression at T3. To address this in more detail, however, a different experimental design 

would have been required. Also, while food intake was not given special emphasis in this study, food 

intake can be an entrainment signal for the circadian clock. In the present study, some participants 

had small or simple meals (i.e. bread) and food intake was not restricted; possible effects cannot be 

excluded in the present design. Another direction which would be informative about circadian phase 

would be to include a marker of the central clock phase, e.g. melatonin secretion, also sampled at 
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high temporal resolution.  The sample studied was a naturalistic sample recruited from consecutive 

admissions and treated following standardized clinical guidelines. Medication regimens were tailored 

to the individual based on specific need, resulting in a variety of therapies used. While the effects of 

particular medications were not examined, to control for effects on results of the study, as an 

inclusion criterion, it was stipulated that the patient had to be on stable medication for at least 5 

days prior to SD. Given the variety of medications used it was not possible to test for associations 

with drug response with sufficient statistical power.  However, there was no apparent difference in 

substance class across response status. Nevertheless, robust effects of SD were observed, perhaps in 

part attributable to the consistent methodology for applying SD treatment in a relatively large cohort 

for SD. Considering the fact that depression is a heterogeneous phenotype accompanied by a 

heterogeneous immunophenotype (60), means that even larger sample sizes will be needed to 

substantiate the present findings.  Finally, we investigated peripheral tissue transcriptome-wide 

expression changes; although an easily obtained, valuable proxy, the correlation of expression in the 

blood with expression in the brain, where depression is thought to act, is imperfect and requires 

further study (79).  On the other hand, it is precisely these cells that best represent the current status 

of the immune system and the inflammatory response, the gene expression of which appears at the 

centre of SD. In addition, the crosstalk of the organs and biorhythm tuning is also mediated via the 

blood system. 

Our findings affirm and emphasize the close relationship between circadian, immune and sleep 

systems in depression at the transcriptomic level, but the directionality of cause-effect remains 

unclear. Circadian, immune and sleep dysregulation may precede, accompany or come as a result of 

depression; they now represent targets for treatment which have the ability to influence clinical 

outcomes. Closer investigation of these systems with larger sample sizes and denser, longer-term 

sampling schemes will be key to disentangling and understanding the multi-level interactions 

occurring.  
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Figure Legends: 

Figure 1. Experimental Procedure. Patients entered the study on Day 1 and underwent sleep 

deprivation for ~ 36 hours from Day 2 to Day 3 before undergoing recovery sleep.  Response was 

assessed with the CGI-C in the afternoon of Day 3 before recovery sleep. Blood for gene expression 

was taken at the same time (0600-0730hrs) on Days 2, 3 and 4 (T1, T2, T3 respectively). 

Figure 2. Heatmaps of estimated dynamics from significant gene sets in A) responders, B) non-

responders, C) patients, and D) controls. The median gene expression over subjects is used for each 

trend.  Each trend is zeroed at T1 to represent baseline expression. Each row is a group of genes 

having the same trend inside a gene set, while the columns are time points. Trends are hierarchically 

clustered. Trends become red as median expression is upregulated or blue as it is downregulated 

compared to the baseline value at T1. The colour key represents the median of the standardized 

estimation of gene expression over the group of participants for a given trend in a significant gene 

set. Non-converging gene sets were excluded. For non-responders, the gene set for peroxisome was 

excluded from visualisation due to non-homogeneous expression within the set. 
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Table 1. Samples included for analysis at different time points. 

Time Point All Subjects Patients Responders Non-Responders Controls

T1 91 76 (43M/33F) 60 (36M/24F) 16 (7M/9F) 15 (7M/8F)

T2 87 72 (41M/31F) 56 (34M/22F) 16 (7M/9F) 15 (7M/8F)

T3 81 66 (38M/28F) 53 (32M/21F) 13 (6M/7F) 15 (7M/8F)

Total 259 214 (122M/92 F) 169 (102M/67F) 45 (20M/25F) 45 (21M/24F)
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Table 2. Top 10 Differentially Expressed Genes for Each Model (T1 vs. T2)

M1 Effect of Time Point in Patients M2 Response Status x Time Point M3 Patient-Control Status x Time Point 

Gene Symbol Estimate P-val FDR Gene Symbol Estimate P-val FDR Gene Symbol Estimate P-val FDR

TSPAN2 0,554523443 7,53143E-19 DNER 0,19414884 0,000170023 ERN1 0,30163938 0,003013102

KLF6 0,162981029 2,03907E-16 LPCAT2 0,32653286 0,000170023 EZH2 0,38906547 0,003013102

MAK 0,476984074 1,20412E-15 SLC10A5 -0,62752802 0,000170023 SLC44A1 0,27499289 0,003013102

ANTXR2 0,199530713 4,42924E-15 PCID2 -0,300504 0,000209042 MEMO1 0,43613957 0,003013102

TMEM43 0,19700767 5,80393E-15 TESC-AS1 -0,3069843 0,001180095 UTP11L 0,4553397 0,003013102

TREM1 0,300131404 1,1734E-14 BECN1 0,21458155 0,001180095 NSFL1C 0,2298895 0,003013102

LRRFIP1 0,178631499 1,1734E-14 IFT74 -0,43960958 0,001375265 PCTP 0,30731503 0,003013102

NHSL2 0,253418357 2,50255E-14 ZNF790 -0,29221374 0,002668032 ZBTB16 0,53874494 0,003013102

ARHGEF40 0,32560393 3,23301E-14 GSR 0,17871771 0,00297074 CISH -0,31446529 0,003456021

SIPA1L1 0,228865158 3,2956E-14 LINC01125 -0,16389193 0,00297074 TRAV4 -0,4598706 0,003456021

FDR = false discovery rate
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Table 3.  Differential Expression in Circadian Genes after SD

Patients [M1] Responders vs. Non-responders [M2] Patients vs. Controls [M3]

Gene T1 vs. T2 T1 vs. T2 T1 vs. T2

P-val(β) P-val(β) P-val(β)

PER1* NS 0.083 FDR  (0.27) 0.045 FDR (0.32)

NR1D2* NS NS NS

PER3 0.0063 FDR (-0.11) NS 0.065 FDR  (-0.22)

NR1D1 0.0014 FDR (-0.12) 0.035 unc (-0.14) 0.036 FDR (-0.27)

PER2 0.038 unc (-0.059) NS NS

ARNTL 0.017 FDR (0.059) 0.033 unc (0.096) NS

NPAS2 NS NS 0.0054 unc (-0.18)

CRY2 NS NS NS

CRY1 NS NS NS

CLOCK NS 0.029 unc (-0.15) NS

DDIT4 1.24e-04 FDR (-0.32) NS NS

CLEC4E 0.0023 FDR (0.20) 0.0483 FDR  (0.42) 0.018 FDR (0.48)

FKBP5 0.037 unc (0.088) NS 0.028 FDR (0.38)

DAAM2 0.037 FDR (0.069) 0.020 unc (0.14) NS

TPST1 1.85e-04 FDR (0.23) NS 0.025 FDR (0.44)

IL13RA1 NS 0.0047 unc (0.19) NS

SMAP2 1.16e-5 FDR (0.12) 0.0390 FDR  (0.18) 0.030 FDR (0.18)

HNRNPDL 1.32e-04 FDR (-0.10) 0.0173 unc (-0.13) 0.035 FDR (-0.18)

FOSL2 2.23e-06 FDR (0.19) 0.0046 unc (0.22) 0.0046 unc (0.22)

FLT3 NS NS NS

CDC42EP2 4.19e-04 FDR (0.18) 0.0071 unc (0.26) NS

TMEM88 9.50e-05 FDR (0.21) NS 0.023 unc (0.23)

RBM3 7.12e-11 FDR (-0.21) NS 0.024 unc (-0.14)

Traditional Clock 

Genes

Circadian 

Genes

*PER1 and NR1D2 are also on the list of circadian genes identified in Hughey et al.  2017.

FDR = false discovery rate, NS = not significant; unc = uncorrected

Blue = downregulation, Red = upregulation

Bold text indicates FDR q < 0.05
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