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SUMMARY. Longitudinal phenotypes have been increasingly available in genome-wide 

association studies (GWAS) and electronic health record-based studies for identification of 

genetic variants that influence complex traits over time. For longitudinal binary data, there 

remain significant challenges in gene mapping, including misspecification of the model for the 

phenotype distribution due to ascertainment. Here, we propose L-BRAT, a retrospective, 

generalized estimating equations-based method for genetic association analysis of longitudinal 

binary outcomes. We also develop RGMMAT, a retrospective, generalized linear mixed model-

based association test. Both tests are retrospective score approaches in which genotypes are 

treated as random conditional on phenotype and covariates. They allow both static and time-

varying covariates to be included in the analysis. Through simulations, we illustrated that 

retrospective association tests are robust to ascertainment and other types of phenotype model 

misspecification, and gain power over previous association methods. We applied L-BRAT and 

RGMMAT to a genome-wide association analysis of repeated measures of cocaine use in a 

longitudinal cohort. Pathway analysis implicated association with opioid signaling and axonal 

guidance signaling pathways. Lastly, we replicated important pathways in an independent 

cocaine dependence case-control GWAS. Our results illustrate that L-BRAT is able to detect 

important loci and pathways in a genome scan and to provide insights into genetic architecture of 

cocaine use. 

KEY WORDS: Ascertainment; Genome-wide association studies; Model misspecification; 

Robustness; Score test. 
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1. Introduction 

Genome-wide association studies (GWAS) have successfully discovered many disease 

susceptibility loci and provided insights into the genetic architecture of numerous human 

complex diseases and traits. In some genetic epidemiological studies, longitudinally collected 

phenotype data are available. This is the case for many electronic health record (EHR)-based 

studies. As many of these studies continue to follow enrolled subjects (e.g. the UK Biobank 

(UKB) and the Million Veteran Program (MVP)), longitudinal phenotypes will be increasingly 

available with the passage of time, providing new data resources that require appropriate 

analytical tools for optimal analysis. Standard association tests that consider one time point or 

collapse repeated measurements into a single value such as an average do not capture the 

trajectory of phenotypic traits over time and may result in a loss of statistical power to detect 

genetic associations. In addition, the effects of time-varying covariates cannot be easily 

incorporated in such analyses. Recently, methodological developments for GWAS have 

proliferated to make full use of the available longitudinal data. For population cohorts, methods 

that account for dependence among observations from an individual include mixed effects 

models (Furlotte et al. 2012; Sikorska et al. 2013), generalized estimating equations (GEE) 

(Sitlani et al. 2015), growth mixture models (Das et al. 2011; Londono et al. 2013), and 

empirical Bayes models (Meirelles et al. 2013). Most of these approaches are prospective 

analyses and have been successfully applied to quantitative phenotypes. 

As many diseases are rare, efficient designs, such as the case-control design, are commonly 

applied in epidemiological studies to recruit study subjects. Despite the enhanced efficiency in 

the study sample, non-random ascertainment can be a major source of model misspecification 

that may lead to inflated type I error and/or power loss in association analysis. The linear mixed 

model and the logistic mixed model do not perform well when the case-control ratio is 
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unbalanced in large-scale genetic association studies (Zhou et al. 2018). Prospective analysis in 

which a population-based model is used ignores ascertainment bias and can result in 

compromised statistical inference. Furthermore, in the ascertained sample, the prospective 

approach conditional on the genotype and covariates may lose information when the joint 

distribution of the genotype and covariates carries additional information on whether the 

phenotype is associated with the genotype (Jiang et al. 2015). In this regard, several retrospective 

association methods have been proposed for analyzing ascertained population-based case-control 

studies (Hayeck et al. 2015; Jiang et al. 2016), family-based studies of continuous traits 

(Jakobsdottir and McPeek 2013), family-based case-control studies (Zhong et al. 2016; Hayeck 

et al. 2017), and family-based longitudinal quantitative traits (Wu and McPeek 2018). Compared 

to prospective tests, retrospective tests conditional on the phenotype and covariates are more 

robust to misspecification of the trait model (Jiang et al. 2015). 

To generalize case-control sampling, outcome-dependent sampling designs have become 

popular for binary data in longitudinal cohort studies (Schildcrout and Heagerty 2008; 

Schildcrout et al. 2018a,b). However, association tests for longitudinally measured binary data 

are less well developed in GWAS. Here, we propose L-BRAT, a retrospective, GEE-based 

method for genetic association analysis of longitudinal binary outcomes. It requires specification 

of the mean of the outcome distribution and a working correlation matrix for repeated 

measurements. L-BRAT is a retrospective score approach in which genotypes are treated as 

random conditional on the phenotype and covariates. Thus, it is robust to ascertainment and trait 

model misspecification. It allows both static and time-varying covariates to be included in the 

analysis. We note that GMMAT, a recently proposed prospective test using the logistic mixed 

model to control for population structure and cryptic relatedness in case-control studies (Chen et 

al. 2016), can be adapted for repeated binary data. For comparison, we also develop RGMMAT, 
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a retrospective, generalized linear mixed model (GLMM)-based association test for longitudinal 

binary traits. 

We performed simulation studies to evaluate the type I error and power of L-BRAT and 

RGMMAT, and compared them to the existing prospective methods. The results demonstrate 

that the retrospective association tests have better control of type I error when the phenotype 

model is misspecified, and are robust to various ascertainment schemes. Moreover, they are more 

powerful than the prospective tests. Finally, we applied L-BRAT and RGMMAT to a genome-

wide association analysis of repeated measurements of cocaine use in a longitudinal cohort, the 

Veterans Aging Cohort Study (VACS), and replicated the results using data from an independent 

cocaine dependence case-control GWAS. 

2. Methods 

Suppose a binary trait is measured over time on a study population of 𝑛𝑛 individuals. We have 

their genome-wide measures of genetic variation. A set of covariates, static or dynamic, are also 

available. Let 𝑛𝑛𝑖𝑖 be the number of repeated measures on individual 𝑖𝑖 and 𝑁𝑁 = ∑ 𝑛𝑛𝑖𝑖𝑛𝑛
𝑖𝑖=1  be the 

total number of observations. For individual 𝑖𝑖, let 𝑿𝑿𝑖𝑖𝑖𝑖 and 𝑌𝑌𝑖𝑖𝑖𝑖 be the 𝑝𝑝-dimensional covariate 

vector, assumed to include an intercept, and the binary response at time 𝑡𝑡𝑖𝑖𝑖𝑖, respectively. In this 

setting, individuals are permitted to have measurements at different time points and different 

number of observations. We let 𝒀𝒀 denote the outcome vector of length 𝑁𝑁, and let 𝑿𝑿 denote the 

𝑁𝑁 × 𝑝𝑝 covariate matrix. Here, we focus on the problem of testing for association between a 

genetic variant and the longitudinal binary outcomes. Let 𝑮𝑮 denote the vector of genotypes for 

the 𝑛𝑛 individuals at the variant to be tested, where 𝐺𝐺𝑖𝑖 = 0, 1, or 2 is the number of minor alleles 

of individual 𝑖𝑖 at the variant. 

2.1. GEE-based Model 
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We consider a GEE approach in which the mean of the outcome distribution, given the 

genotype and covariates, is specified as 

𝐸𝐸�𝑌𝑌𝑖𝑖𝑖𝑖  � 𝑮𝑮,𝑿𝑿� = 𝜇𝜇𝑖𝑖𝑖𝑖 ,   logit �𝜇𝜇𝑖𝑖𝑖𝑖� = 𝑿𝑿𝑖𝑖𝑖𝑖𝑇𝑇 𝜷𝜷 + 𝐺𝐺𝑖𝑖𝛾𝛾,   𝑖𝑖 = 1, … ,𝑛𝑛;  𝑗𝑗 = 1, … ,𝑛𝑛𝑖𝑖 ,              (1) 

where 𝜷𝜷 is a 𝑝𝑝-dimensional vector of covariate effects and 𝛾𝛾 is a scalar parameter of interest 

representing the effect of the tested variant. Writing in a matrix form, we have the mean model 

𝐸𝐸(𝒀𝒀 | 𝑮𝑮,𝑿𝑿) = 𝝁𝝁,   logit (𝝁𝝁) = 𝑿𝑿𝑿𝑿 + 𝑩𝑩𝑩𝑩𝛾𝛾,                                     (2) 

where 𝑩𝑩 is an 𝑁𝑁 × 𝑛𝑛 matrix representing the measurement clustering structure, and its (𝑙𝑙, 𝑖𝑖)th 

entry 𝐵𝐵𝑙𝑙𝑙𝑙 is an indicator of the 𝑙𝑙th entry of 𝒀𝒀 being a measurement on individual 𝑖𝑖. Here, the 

vector 𝑩𝑩𝑩𝑩 is the vertically expanded genotype vector that maps the genotype data 𝑮𝑮 from the 

individual level to the measurement level. The covariance structure of 𝒀𝒀 is given by 

Var(𝒀𝒀 | 𝑮𝑮,𝑿𝑿) = 𝚪𝚪1/2𝚺𝚺𝚪𝚪1/2,                                                 (3) 

where 𝚪𝚪 = diag�𝜇𝜇1,1�1 − 𝜇𝜇1,1�, … , 𝜇𝜇1,𝑛𝑛1�1 − 𝜇𝜇1,𝑛𝑛1�, … , 𝜇𝜇𝑛𝑛,1�1 − 𝜇𝜇𝑛𝑛,1�, … , 𝜇𝜇𝑛𝑛,𝑛𝑛𝑛𝑛�1 − 𝜇𝜇𝑛𝑛,𝑛𝑛𝑛𝑛�� is 

an 𝑁𝑁-dimensional diagonal matrix and 𝚺𝚺 is an 𝑁𝑁 × 𝑁𝑁 correlation matrix. The covariance 

specification in Eq. (3) ensures that the variance of the dichotomous response 𝑌𝑌𝑖𝑖𝑖𝑖 depends on its 

mean in a way that is consistent with the Bernoulli distribution. To apply the GEE method, a 

working correlation structure such as independent, exchangeable, and first-order autoregressive 

(AR(1)) must be specified. For a given within-cluster correlation matrix 𝚺𝚺(𝜏𝜏), which may depend 

on some parameter 𝜏𝜏, the estimating equations for the unknown parameters (𝜷𝜷, 𝛾𝛾) are written as 

𝑼𝑼 = �
𝑼𝑼(𝜷𝜷)
𝑈𝑈(𝛾𝛾)� = � 𝑿𝑿𝑇𝑇𝚪𝚪1/2𝚺𝚺−1𝚪𝚪−1/2(𝒀𝒀 − 𝝁𝝁)

(𝑩𝑩𝑩𝑩)𝑇𝑇𝚪𝚪1/2𝚺𝚺−1𝚪𝚪−1/2(𝒀𝒀 − 𝝁𝝁)
�. 

To detect association between the genetic variant and the phenotype, we consider a score 

approach to test 𝐻𝐻0: 𝛾𝛾 = 0 against 𝐻𝐻1: 𝛾𝛾 ≠ 0. The null estimate of 𝜷𝜷, denoted by 𝜷𝜷�0, is the 

solution to a system of estimating equations 𝑼𝑼(𝜷𝜷) = 0 under the constraint 𝛾𝛾 = 0, which can be 
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computed iteratively between a Fisher scoring algorithm for 𝜷𝜷 and the method of moments for 𝜏𝜏 

until convergence. Then, the score function for 𝛾𝛾 is 

𝑈𝑈0 = 𝑈𝑈(𝛾𝛾)|𝜷𝜷�0,0,𝜏𝜏�0 = (𝑩𝑩𝑩𝑩)𝑇𝑇𝚪𝚪�0
1/2𝚺𝚺�0−1𝚪𝚪�0

−1/2(𝒀𝒀 − 𝝁𝝁�0),                             (4) 

where 𝝁𝝁�0, 𝚪𝚪�0 and 𝚺𝚺�0 are 𝝁𝝁, 𝚪𝚪 and 𝚺𝚺 evaluated at (𝜷𝜷,𝛾𝛾, 𝜏𝜏) = �𝜷𝜷�0, 0, 𝜏̂𝜏0�. 

In the GEE approach, the prospective score statistic for testing 𝐻𝐻0: 𝛾𝛾 = 0 takes the form 

𝑇𝑇𝐺𝐺𝐺𝐺𝐺𝐺 = 𝑈𝑈02

Var0�𝑈𝑈0 � 𝑮𝑮,𝑿𝑿� =
�(𝑩𝑩𝑩𝑩)𝑇𝑇𝚪𝚪�0

1/2𝚺𝚺�0−1𝚪𝚪�0
−1/2(𝒀𝒀−𝝁𝝁�0)�

2

(𝑩𝑩𝑩𝑩)𝑇𝑇𝑸𝑸𝑸𝑸𝑸𝑸
 ,                             (5) 

where the null variance of 𝑈𝑈0 is evaluated using a robust sandwich variance estimator, 

conditional on the genotype and covariates. Here 𝑸𝑸 = 𝑽𝑽 − 𝑽𝑽𝑽𝑽(𝑿𝑿𝑇𝑇𝑽𝑽𝑽𝑽)−1𝑿𝑿𝑇𝑇𝑽𝑽, where 𝑽𝑽 =

𝚪𝚪�0
1/2𝚺𝚺�0−1𝚪𝚪�0

−1/2Cov� (𝒀𝒀)𝚪𝚪�0
−1/2𝚺𝚺�0−1𝚪𝚪�0

1/2 and the sample covariance of 𝒀𝒀, Cov� (𝒀𝒀), is estimated by 

(𝒀𝒀 − 𝝁𝝁�0)(𝒀𝒀 − 𝝁𝝁�0)𝑇𝑇. Under the null hypothesis, the 𝑇𝑇𝐺𝐺𝐺𝐺𝐺𝐺  test statistic has an asymptotic 𝜒𝜒12 

distribution. 

In what follows, we introduce a new GEE-based association testing method, L-BRAT 

(Longitudinal Binary-trait Retrospective Association Test). The L-BRAT test statistic is also 

based on the score function 𝑈𝑈0 in Eq. (4). In contrast to the prospective GEE score test, L-BRAT 

takes a retrospective approach in which the variance of 𝑈𝑈0 is assessed using a retrospective 

model of the genotype given the phenotype and covariates. An advantage of the retrospective 

approach is that the analysis is less dependent on the correct specification of the phenotype 

model. We assume that under the null hypothesis of no association between the genetic variant 

and the phenotype, the quasi-likelihood model of 𝑮𝑮 conditional on 𝒀𝒀 and 𝑿𝑿 is 

𝐸𝐸0(𝑮𝑮 | 𝒀𝒀,𝑿𝑿) = 2𝑝𝑝𝟏𝟏𝑛𝑛,   Var0(𝑮𝑮 | 𝒀𝒀,𝑿𝑿) = 𝜎𝜎𝑔𝑔2𝚽𝚽,                                   (6) 

where 𝑝𝑝 is the minor allele frequency (MAF) of the tested variant, 𝟏𝟏𝑛𝑛 is a vector of length 𝑛𝑛 with 

every element equal to 1, 𝜎𝜎𝑔𝑔2 is an unknown variance parameter, and 𝚽𝚽 is an 𝑛𝑛 × 𝑛𝑛 genetic 
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relationship matrix (GRM) representing the overall genetic similarity between individuals due to 

population structure. Because 𝑩𝑩𝟏𝟏𝑛𝑛 = 𝟏𝟏𝑁𝑁, which is the first column of 𝑿𝑿 that encodes an 

intercept, and 𝚪𝚪�0
1/2𝚺𝚺�0−1𝚪𝚪�0

−1/2(𝒀𝒀 − 𝝁𝝁�0), the 𝑁𝑁-dimensional vector of transformed null phenotypic 

residuals, is orthogonal to the column space of 𝑿𝑿, then the null mean model of 𝑮𝑮 in Eq. (6) 

ensures that 

𝐸𝐸0(𝑈𝑈0 | 𝒀𝒀,𝑿𝑿) = 𝐸𝐸0(𝑨𝑨𝑇𝑇𝑮𝑮 | 𝒀𝒀,𝑿𝑿) = 2𝑝𝑝𝑨𝑨𝑇𝑇𝟏𝟏𝑛𝑛 = 0, 

where 𝑨𝑨 = 𝑩𝑩𝑇𝑇𝚪𝚪�0
1/2𝚺𝚺�0−1𝚪𝚪�0

−1/2(𝒀𝒀 − 𝝁𝝁�0) is the individual-level transformed phenotypic residual 

vector of length 𝑛𝑛. 

In model (6), the GRM 𝚽𝚽 can be obtained using genome-wide data, given by 

𝚽𝚽 =
1
𝐾𝐾
�

�𝑮𝑮(𝑘𝑘) − 2𝑝̂𝑝𝑘𝑘��𝑮𝑮(𝑘𝑘) − 2𝑝̂𝑝𝑘𝑘�
𝑇𝑇

2𝑝̂𝑝𝑘𝑘(1 − 𝑝̂𝑝𝑘𝑘)

𝐾𝐾

𝑘𝑘=1

 , 

where 𝐾𝐾 is the total number of genotyped variants, 𝑮𝑮(𝑘𝑘) is the genotype vector at the 𝑘𝑘th variant, 

and 𝑝̂𝑝𝑘𝑘 is the estimated MAF, for example, 𝑝̂𝑝𝑘𝑘 = 𝐺̅𝐺𝑘𝑘/2, the sample MAF at the 𝑘𝑘th variant. For 

the variant of interest, let 𝑝̂𝑝 = 𝐺̅𝐺/2 be its sample MAF. Under Hardy-Weinberg equilibrium, the 

variance of the genotype is estimated by 𝜎𝜎�𝑔𝑔2 = 2𝑝̂𝑝(1 − 𝑝̂𝑝). Or we can use a more robust variance 

estimator (Jakobsdottir and McPeek 2013) given by 

𝜎𝜎�𝑔𝑔2 = (𝑛𝑛 − 1)−1𝑮𝑮𝑇𝑇𝑾𝑾𝑾𝑾, 

where 𝑾𝑾 = 𝚽𝚽−1 −𝚽𝚽−1𝟏𝟏𝑛𝑛(𝟏𝟏𝑛𝑛𝑇𝑇𝚽𝚽−1𝟏𝟏𝑛𝑛)−1𝟏𝟏𝑛𝑛𝑇𝑇𝚽𝚽−1. Finally, the L-BRAT test statistic can be 

defined as 

L-BRAT = 𝑈𝑈02

Var0�𝑈𝑈0 � 𝒀𝒀,𝑿𝑿� = �𝑨𝑨𝑇𝑇𝑮𝑮�
2

Var0�𝑨𝑨𝑇𝑇𝑮𝑮 � 𝒀𝒀,𝑿𝑿� = �𝑨𝑨𝑇𝑇𝑮𝑮�
2

𝜎𝜎�𝑔𝑔2𝑨𝑨𝑇𝑇𝚽𝚽𝚽𝚽
 .                         (7) 

Under regularity conditions, L-BRAT asymptotically follows a 𝜒𝜒12 distribution under the null 

hypothesis. 
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2.2. GLMM-based Model 

The Generalized linear Mixed Model Association Test (GMMAT) was originally designed to 

use random effects in logistic mixed models to account for population structure and cryptic 

relatedness in case-control studies (Chen et al. 2016). To extend the GMMAT method for case-

control analysis to repeated binary data, we consider the following logistic mixed model: 

logit �𝜇𝜇𝑖𝑖𝑖𝑖� = 𝑿𝑿𝑖𝑖𝑖𝑖𝑇𝑇 𝜷𝜷 + 𝐺𝐺𝑖𝑖𝛾𝛾 + 𝑎𝑎𝑖𝑖 + 𝑟𝑟𝑖𝑖𝑖𝑖,   𝑖𝑖 = 1, … ,𝑛𝑛;  𝑗𝑗 = 1, … ,𝑛𝑛𝑖𝑖 ,                            (8) 

where 𝜇𝜇𝑖𝑖𝑖𝑖 = 𝑃𝑃�𝑌𝑌𝑖𝑖𝑖𝑖 = 1 � 𝐺𝐺𝑖𝑖 ,𝑿𝑿𝑖𝑖𝑖𝑖 ,𝑎𝑎𝑖𝑖, 𝑟𝑟𝑖𝑖𝑖𝑖� is the probability of a binary response at time 𝑡𝑡𝑖𝑖𝑖𝑖 for 

individual 𝑖𝑖, conditional on his/her genotype, covariates, and random effects 𝑎𝑎𝑖𝑖 and 𝑟𝑟𝑖𝑖𝑖𝑖, 𝜷𝜷 and 𝛾𝛾 

are the same as defined in model (1), 𝑎𝑎𝑖𝑖 is the individual random effect, and 𝑟𝑟𝑖𝑖𝑖𝑖 is the individual-

specific time-dependent random effect. The two random effects were used to capture the 

correlation among repeated measures in gene-based association test for longitudinal traits (Wang 

et al. 2017). Here, 𝑎𝑎𝑖𝑖 's are assumed to be independent and 𝑎𝑎𝑖𝑖 ∼ 𝑁𝑁(0,𝜎𝜎𝑎𝑎2). The vector of time-

dependent random effects 𝒓𝒓𝑖𝑖 = (𝑟𝑟𝑖𝑖1, … , 𝑟𝑟𝑖𝑖,𝑛𝑛𝑖𝑖) has a multivariate normal distribution, 𝒓𝒓𝑖𝑖 ∼

𝑀𝑀𝑀𝑀𝑀𝑀(𝟎𝟎,𝜎𝜎𝑟𝑟2𝑹𝑹𝑖𝑖), where an AR(1) structure is assumed for the correlation matrix 𝑹𝑹𝑖𝑖, in which 𝜏𝜏 is 

the unknown parameter. The binary responses 𝑌𝑌𝑖𝑖𝑖𝑖 are assumed to be independent given the 

random effects 𝑎𝑎𝑖𝑖 and 𝑟𝑟𝑖𝑖𝑖𝑖. 

To construct a score test for the null hypothesis 𝐻𝐻0: 𝛾𝛾 = 0 vs. the alternative 𝐻𝐻1: 𝛾𝛾 ≠ 0, we 

use the penalized quasi-likelihood method (Breslow and Clayton 1993) to fit the null logistic 

mixed model and obtain the null estimates of 𝜷𝜷,𝜎𝜎𝑎𝑎2,𝜎𝜎𝑟𝑟2 and 𝜏𝜏, denoted by 𝜷𝜷�0,𝜎𝜎�𝑎𝑎2,𝜎𝜎�𝑟𝑟2 and 𝜏̂𝜏0 

(Chen et al. 2016). Similarly, the best linear unbiased predictor (BLUP) of random effects, 𝒂𝒂� and 

𝒓𝒓�, can be obtained. Then, the resulting score function for 𝛾𝛾 is 

𝑆𝑆0 = 𝑆𝑆(𝛾𝛾)|𝜷𝜷�0,0,𝜎𝜎�𝑎𝑎2,𝜎𝜎�𝑟𝑟2,𝜏𝜏�0,𝒂𝒂�,𝒓𝒓� = (𝑩𝑩𝑩𝑩)𝑇𝑇(𝒀𝒀 − 𝝁𝝁�0),                                         (9) 

where 𝝁𝝁�0 = logit−1(𝑿𝑿𝜷𝜷�0 + 𝑩𝑩𝒂𝒂� + 𝒓𝒓�) is a vector of fitted values under 𝐻𝐻0. 
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In GMMAT, the null variance of the score 𝑆𝑆0 is evaluated prospectively (Chen et al. 2016), 

i.e., Var0(𝑆𝑆0 | 𝑮𝑮,𝑿𝑿) = (𝑩𝑩𝑩𝑩)𝑇𝑇𝑷𝑷𝑷𝑷𝑷𝑷, where 𝑷𝑷 = 𝚿𝚿−1 −𝚿𝚿−1𝑿𝑿(𝑿𝑿𝑇𝑇𝚿𝚿−1𝑿𝑿)−1𝑿𝑿𝑇𝑇𝚿𝚿−1, and 𝚿𝚿 =

𝚪𝚪�0−1 + 𝜎𝜎�𝑎𝑎2𝑩𝑩𝑩𝑩𝑇𝑇 + 𝜎𝜎�𝑟𝑟2𝑹𝑹�. Here 𝚪𝚪�0 and 𝑹𝑹� are 𝚪𝚪 and 𝑹𝑹 evaluated at (𝜷𝜷,𝛾𝛾,𝜎𝜎𝑎𝑎2,𝜎𝜎𝑟𝑟2, 𝜏𝜏) =

�𝜷𝜷�0, 0,𝜎𝜎�𝑎𝑎2,𝜎𝜎�𝑟𝑟2, 𝜏̂𝜏0�, where 𝚪𝚪 is the same as defined in Eq. (3) and 𝑹𝑹 = diag{𝑹𝑹1, … ,𝑹𝑹𝑛𝑛} is a block 

diagonal matrix. The GMMAT test statistic can be written as 

𝑇𝑇𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = 𝑆𝑆02

Var0�𝑆𝑆0 � 𝑮𝑮,𝑿𝑿� = �(𝑩𝑩𝑩𝑩)𝑇𝑇(𝒀𝒀−𝝁𝝁�0)�
𝟐𝟐

(𝑩𝑩𝑩𝑩)𝑇𝑇𝑷𝑷𝑷𝑷𝑷𝑷
 .                                         (10) 

Like L-BRAT, we can construct a retrospective test to assess the significance of the GLMM 

score function of Eq. (9), which we call RGMMAT, based on the quasi-likelihood model of 𝑮𝑮 in 

Eq. (6). Thus, we define the RGMMAT statistic by 

RGMMAT = 𝑆𝑆02

Var0�𝑆𝑆0 � 𝒀𝒀,𝑿𝑿� = �𝑪𝑪𝑇𝑇𝑮𝑮�
2

Var0�𝑪𝑪𝑇𝑇𝑮𝑮 � 𝒀𝒀,𝑿𝑿� = �𝑪𝑪𝑇𝑇𝑮𝑮�
2

𝜎𝜎�𝑔𝑔2𝑪𝑪𝑇𝑇𝚽𝚽𝑪𝑪
 ,                              (11) 

where 𝑪𝑪 = 𝑩𝑩𝑇𝑇(𝒀𝒀 − 𝝁𝝁�0) is the 𝑛𝑛-dimensional vector of phenotypic residuals at the individual 

level by summing over all time points for an individual, and the phenotypic residuals are 

obtained by fitting the null logistic mixed model. Both the GMMAT and RGMMAT test 

statistics are assumed to have 𝜒𝜒12 asymptotic null distributions. 

3. Simulation Studies 

We performed simulation studies to evaluate the type I error and power of the two 

retrospective tests we propose, and compared them to the prospective GEE and GMMAT 

methods. We also assessed sensitivity of L-BRAT and RGMMAT in the presence of model 

misspecification and ascertainment. In the simulations, we considered two different trait models 

and three different ascertainment schemes. Because both the L-BRAT and GEE methods require 

specification of a working correlation matrix, we implemented three working correlation 

structures: (1) independent, (2) AR(1), and (3) a mixture of exchangeable and AR(1). 
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To generate genotypes, we first simulated 10,000 chromosomes over a 1 Mb region using a 

coalescent model that mimics the linkage disequilibrium (LD) and recombination rates of the 

European population (Schaffner et al. 2005). We then randomly selected 1,000 non-causal single 

nucleotide polymorphisms (SNPs) with MAF > 0.05. In addition, we generated two causal SNPs 

that were assumed to influence the trait value with epistasis. In the type I error simulations, we 

tested association at the 1,000 non-causal SNPs. In each simulation setting, we generated 1,000 

sets of phenotypes at five time points. Putting together, 106 replicates were used for the type I 

error evaluation. In the power simulations, we tested the first of the two causal SNPs and 

empirical power was assessed using 1,000 simulation replicates. In all tests considered, the 

genotypes at the untested causal SNP(s) were assumed to be unobserved. 

3.1. Trait Models 

We simulated two types of binary trait models at five time points, in which the two unlinked 

causal SNPs were assumed to act on the phenotype epistatically. The first type is a logistic mixed 

model, given by 

𝑌𝑌𝑖𝑖𝑖𝑖|𝑿𝑿𝑖𝑖𝑖𝑖,𝐺𝐺𝑖𝑖(1),𝐺𝐺𝑖𝑖(2),𝑎𝑎𝑖𝑖, 𝑟𝑟𝑖𝑖𝑖𝑖 ∼ Bernoulli �𝜇𝜇𝑖𝑖𝑖𝑖�, 

logit �𝜇𝜇𝑖𝑖𝑖𝑖� = −2.5 + 0.2(𝑗𝑗 − 1) + 0.5𝑋𝑋𝑖𝑖𝑖𝑖(1) + 0.5𝑋𝑋𝑖𝑖(2) + 𝜃𝜃1�𝐺𝐺𝑖𝑖(1)>0,𝐺𝐺𝑖𝑖(2)>0� + 𝑎𝑎𝑖𝑖 + 𝑟𝑟𝑖𝑖𝑖𝑖 , 

where 𝑋𝑋𝑖𝑖𝑖𝑖(1) is a continuous, time-varying covariate generated independently from a standard 

normal distribution, 𝑋𝑋𝑖𝑖(2) is a binary, time-invariant covariate taking values 0 or 1 with a 

probability of 0.5, 𝐺𝐺𝑖𝑖(1) and 𝐺𝐺𝑖𝑖(2) are the genotypes of individual 𝑖𝑖 at the two causal SNPs, 𝜃𝜃 is a 

scalar parameter encoding the effect of the causal SNPs, 1�𝐺𝐺𝑖𝑖(1)>0,𝐺𝐺𝑖𝑖(2)>0� is an indicator function 

that takes value 1 when individual 𝑖𝑖 has at least one copy of the minor allele at both the causal 

SNPs, 𝑎𝑎𝑖𝑖 and 𝑟𝑟𝑖𝑖𝑖𝑖 are the individual-level time-independent and time-dependent random effects, 

respectively. Here we assume 𝑎𝑎𝑖𝑖 ∼ 𝑁𝑁(0,  𝜎𝜎𝑎𝑎2) and 𝒓𝒓𝑖𝑖 = (𝑟𝑟𝑖𝑖1, … , 𝑟𝑟𝑖𝑖5) ∼ 𝑀𝑀𝑀𝑀𝑀𝑀(𝟎𝟎,𝜎𝜎𝑟𝑟2𝑹𝑹), where 𝑹𝑹 is 
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a 5 × 5 correlation matrix specified by the AR(1) structure with a correlation coefficient 𝜏𝜏. The 

two causal SNPs are assumed to be unlinked with MAFs 0.1 and 0.5, respectively. The variance 

components are set to 𝜎𝜎𝑎𝑎2 = 𝜎𝜎𝑟𝑟2 = 0.64 and 𝜏𝜏 = 0.7. 

The second type of trait model we considered is a liability threshold model in which an 

underlying continuous liability determines the outcome value based on a threshold. Specifically, 

the phenotype 𝑌𝑌𝑖𝑖𝑖𝑖 is given by 

𝑌𝑌𝑖𝑖𝑖𝑖 = 1 if 𝐿𝐿𝑖𝑖𝑖𝑖 > 0, 

with 𝐿𝐿𝑖𝑖𝑖𝑖 = −2.0 + 0.2(𝑗𝑗 − 1) + 0.5𝑋𝑋𝑖𝑖𝑖𝑖(1) + 0.5𝑋𝑋𝑖𝑖(2) + 𝜃𝜃1�𝐺𝐺𝑖𝑖(1)>0,𝐺𝐺𝑖𝑖(2)>0� + 𝑎𝑎𝑖𝑖 + 𝑟𝑟𝑖𝑖𝑖𝑖 + 𝑒𝑒𝑖𝑖𝑖𝑖 , 

where 𝐿𝐿𝑖𝑖𝑖𝑖 is the underlying liability for individual 𝑖𝑖 at time 𝑡𝑡𝑖𝑖𝑖𝑖, and 𝑒𝑒𝑖𝑖𝑖𝑖 ∼ 𝑁𝑁(0,𝜎𝜎𝑒𝑒2) represents 

independent noise, with 𝜎𝜎𝑒𝑒2 = 0.64. All other parameters are the same as those in the logistic 

mixed model. 

In both models, we included a time effect and assumed that the mean of the outcome 

increases with time. The effect of the causal SNPs was set to 𝜃𝜃 = 0.34 in the type I error 

simulations. For the power evaluation, we considered a range of values for 𝜃𝜃, where we set 𝜃𝜃 = 

0.3, 0.32, 0.34, 0.36, and 0.38. At the given parameter values, the prevalence of the event of 

interest ranges from 12.8% to 27.7% over time. The proportion of the phenotypic variance 

explained by the two causal SNPs ranges from 0.69% to 1.10% in the logistic mixed model, and 

from 0.49% to 0.78% in the liability threshold model. 

3.2. Sampling Designs 

We considered three different sampling designs. In the “random” sampling scheme, the 

sample contains 2,000 individuals that were randomly selected from the population regardless of 

their phenotypes. Thus, ascertainment is population based. In the “baseline” sampling scheme, 

we sampled 1,000 case subjects and 1,000 control subjects according to their outcome value at 
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baseline only. In the “sum” sampling scheme, individuals were stratified into three strata (1, 2, 

and 3) based on a total count that sums each subject’s response over time, where samples in 

stratum 1 never experienced the event of interest, i.e., ∑ 𝑌𝑌𝑖𝑖𝑖𝑖𝑗𝑗 = 0, samples in stratum 2 

sometimes experienced the event, i.e., 0 < ∑ 𝑌𝑌𝑖𝑖𝑖𝑖𝑗𝑗 < 𝑛𝑛𝑖𝑖, and samples in stratum 3 always 

experienced the event, i.e., ∑ 𝑌𝑌𝑖𝑖𝑖𝑖𝑗𝑗 = 𝑛𝑛𝑖𝑖. Following the outcome-dependent sampling design for 

longitudinal binary data (Schildcrout et al. 2018b), we selected 100, 1,800, and 100 individuals 

from the three strata respectively to oversample subjects who have response variation over the 

course of the study. 

3.3. Simulation Results 

To assess type I error, we tested for association at unlinked and unassociated SNPs. Table 1 

gives the empirical type I error of the L-BRAT, RGMMAT, GEE, and GMMAT tests, based on 

106 replicates, at the nominal type I error level 𝛼𝛼, for 𝛼𝛼 = 0.05, 0.01, 0.001, and 0.0001. In all 

simulations, the type I error of the two retrospective tests, L-BRAT and RGMMAT, exhibited no 

inflation at any of the nominal levels considered. In contrast, the prospective GEE tests, 

regardless of the choice of working correlation, had inflated type I error at most of the nominal 

levels in all settings. This is likely due to the fact that the asymptotic distribution of robust 

sandwich variance estimators used in GEE are not well calibrated. The inflated type I error was 

also reported in longitudinal GWAS with quantitative traits using GEE (Sitlani et al. 2015). In 

GMMAT, the type I error was much lower than the nominal level when 𝛼𝛼 = 0.05, 0.01, 0.001, 

and 0.0001. These results demonstrate that the two retrospective tests, L-BRAT and RGMMAT, 

are robust to trait model misspecification and ascertainment, whereas GEE has type I error 

inflation and GMMAT is overly conservative. Overall, the choice of the working correlation 

matrix does not have much impact on the type I error of the L-BRAT method. 
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To compare power, we considered five effect sizes at the two causal SNPs, and tested 

association between the trait and the first causal SNP. Empirical power was calculated at the 

significance level 10-3, based on 1,000 simulated replicates. Figure 1 demonstrates the power 

results for each method. In all the simulation settings, the retrospective tests consistently had 

higher power than the prospective tests. The L-BRAT association tests under three different 

working correlation structures had similar power. The RGMMAT method also achieved high 

power. In contrast, the prospective GEE methods had the lowest power in all settings except 

under the baseline sampling and the liability threshold model, in which GMMAT performed the 

worst in power. Overall, we found that the baseline sampling scheme generated the highest 

power under different trait models, while the sum sampling scheme had a power gain over the 

random sampling scheme under the logistic mixed model, but was less powerful under the 

liability threshold model. These results suggest that L-BRAT and RGMMAT outperform the 

prospective tests, and the power of L-BRAT is not sensitive to the choice of the working 

correlation structure. 

4. Analysis of Longitudinal Cocaine Use Data from VACS 

We illustrated the utility of our proposed methods by analyzing a GWAS dataset of cocaine 

use from VACS (Justice et al. 2006). VACS is a multi-center, longitudinal observational study of 

HIV infected and uninfected veterans whose primary objective is to understand the risk of 

alcohol and other substance abuse in individuals with HIV infection. We analyzed longitudinal 

cocaine use in patient surveys collected at six clinic visits on 2,470 participants. Among them, 

69.8% are African Americans (AAs), 19.3% are European Americans (EAs), and 10.9% are of 

other races. We considered the responses at each visit as 0 if individuals had never tried cocaine 

or had not used cocaine in the last year, and as 1 if individuals had used cocaine in the last year. 
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The proportion of case subjects at each visit ranges from 13.7% (𝑛𝑛 = 192) to 24.3% (𝑛𝑛 = 526), 

and the missing rate at each visit ranges from 3.0% to 44.2%. 

All samples were genotyped on the Illumina OmniExpress BeadChip. After data cleaning, 

there are 2,458 individuals available for genotype imputation. IMPUTE2 (Howie et al. 2009) was 

used for imputation using the 1000 Genomes Phase 3 data as a reference panel. We excluded 

subjects who did not meet either of the following criteria: (1) completeness (i.e., proportion of 

successfully imputed SNPs) > 95% and (2) empirical self-kinship < 0.525 (i.e., empirical 

inbreeding coefficient < 0.05). Based on the above criteria, 2,231 individuals were retained in the 

analysis, with 2,114 males and 117 females, of whom 1,557 are AAs, 431 are EAs, and 243 are 

of other races. There are 1,433 individuals who had never used cocaine during the study period, 

639 individuals who sometimes used cocaine, i.e., exhibited response variation, and 159 

individuals who had used cocaine at least once every year over the course of the study. SNPs that 

satisfied all of the following quality-control conditions were included in the analysis: (1) call 

rate > 95%, (2) Hardy-Weinberg 𝜒𝜒2 statistic P-value > 10-6, and (3) MAF > 1%. All together 

there are a final set of 10,215,072 SNPs retained in the analysis. 

4.1. Association Analysis 

Genome-wide association testing for longitudinal cocaine use was performed using L-BRAT, 

RGMMAT, and the prospective GEE and GMMAT tests in the entire VACS sample. Sex, age at 

baseline, HIV status, and time were included as covariates in the analysis. The top ten principal 

components (PCs) that explained 89.4% of the total genetic variation were included as covariates 

to control for population structure. We considered two working correlation structures: 

independent and AR(1). For the L-BRAT and RGMMAT methods, the GRM was calculated 

using the LD pruned SNPs with MAF > 0.05. 
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To compare the performance of longitudinal association analysis with that of univariate 

analysis on the summary metrics of cocaine use in VACS, we considered two alternative cocaine 

phenotypes: baseline and trajectories. Longitudinal cocaine use trajectories were obtained using a 

growth mixture model that clusters longitudinal data into discrete growth trajectory curves 

(Muthén 2004). We fit a logistic model with a polynomial function of time. The number of 

groups was chosen based on the Bayesian information criterion (BIC). Each individual was then 

assigned to the trajectory with the highest probability of membership. Figure 2 shows the four 

cocaine use trajectory groups identified in the VACS sample. They were labeled as mostly never 

(0, 𝑛𝑛 = 1,682), moderate decrease (1, 𝑛𝑛 = 296), elevated chronic (2, 𝑛𝑛 = 86), and mostly 

frequent (3, 𝑛𝑛 = 167). We used CARAT, a case-control retrospective association test (Jiang et al. 

2016), for the analysis of cocaine use at baseline, adjusted for sex, age at baseline, and HIV 

status. Cumulative logit model was used to test for association between the four ordered cocaine 

use trajectory groups and each of the SNPs, with adjustment for sex, age at baseline, HIV status, 

and the top ten PCs. 

None of the retrospective tests exhibited evidence of inflation in the quantile-quantile (Q-Q) 

plot (Web Figure 1). The genomic control inflation factors were 0.993 and 0.991 for the L-

BRAT genome scan under the independent and AR(1) working correlation, respectively, and 

0.984 for the RGMMAT analysis. The prospective GEE tests showed some evidence of deflation 

in the Q-Q plot. The genomic control factors were 0.938 and 0.937 for the GEE tests under the 

independent and AR(1) working correlation. The most conservative test was GMMAT, with a 

genomic control factor 0.802. 

Table 2 reports the results for SNPs for which at least one of the longitudinal tests gives a P-

value < 2 × 10−7. Among them, the L-BRAT tests produced the smallest P-values, RGMMAT 
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and the trajectory-based analysis had comparable results, while GEE, GMMAT, and CARAT 

generated much larger P-values. The Manhattan plot of the smallest P-value from these tests in 

the VACS cocaine use data is shown in Web Figure 2. Among the top SNPs listed in Table 2, 

there are two SNPs, rs551879660 and rs150191017, located at 3p12 and 13q12 respectively, that 

reach the genome-wide significance (P = 2.00 × 10−8 and 3.77 × 10−8, respectively). Each of 

these SNPs was reported to have MAF < 1% in the 1000 Genomes (MAF = 0.68% and 0.98%, 

respectively). The MAFs of the two SNPs were 1.2% and 1.1% in the entire VACS sample, 

respectively, and were slightly higher in the AA sample (MAF = 1.6% and 1.5%, respectively). 

Although both SNPs have MAF > 1%, given the small sample size of VACS, there is limited 

information on them. SNP rs150191017 is located 31.5 kb from the gene AL161616.2 which was 

reported to be associated with venlafaxine treatment response in a generalized anxiety disorder 

GWAS (Jung et al. 2017). A cluster of five SNPs in LD, rs76386683, rs114386843, 

rs186274502, rs376616438, and rs187855416, located at 9q33, showed association with 

longitudinal cocaine use (P = 1.85 × 10−7 −  1.93 × 10−7). They are near OR1L4, an olfactory 

receptor gene that was reported to be associated with major depressive disorder (Wong et al. 

2017). A cluster of olfactory receptor genes between OR3A1 and OR3A2 that belong to the 

olfactory receptor gene family were identified in a recent GWAS of cocaine dependence and 

related traits (Gelernter et al. 2014). The other three SNPs, rs188222191, rs1014278, 

rs75132056, are located at 5q21 (P = 1.28 × 10−7, 1.43 × 10−7 and 8.92 × 10−8, respectively), 

close to the gene EFNA5, which was identified in several GWAS to be associated with bipolar 

disorder and schizophrenia (Wang et al. 2010). There was also evidence of association with 

rs114629793 (P = 8.65 × 10−8). This SNP is in an intron of the gene encoding PSD3, located at 

8p22. Recently, two schizophrenia GWAS have identified association between PSD3 and 
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schizophrenia (Goes et al. 2015; Li et al. 2017b), and one study has shown that PSD3 is 

associated with paliperidone treatment response in schizophrenic patients (Li et al. 2017a). Gene 

network analysis revealed that PSD3 is one of the differentially expressed hub genes that involve 

dysfunction of brain reward circuitry in cocaine use disorder (Ribeiro et al. 2017). 

We further analyzed the data separately in each population, adjusted for the top ten PCs 

obtained within the group, and then combined the results from the three groups by meta-analysis 

using the optimal weights for score statistics that have essentially the same power as the inverse 

variance weighting (Zhou et al. 2011). Web Table 1 gives the results in the 1,557 AA samples. 

All the top twelve SNPs listed in Table 2 had a P-value < 5 × 10−5 in at least one of the 

longitudinal tests in AAs. L-BRAT consistently gave the smallest P-values among all the 

longitudinal tests. The results from the three groups (AAs, EAs and other races) were combined 

by meta-analysis. The meta-analysis P-values were of the same order of magnitude as that 

obtained from the entire sample adjusted for population structure for each longitudinal test 

(Table 3). All the top twelve SNPs listed in Table 2 had a meta-analysis P-value < 8 × 10−7 in 

at least one of the longitudinal tests. Among them, the L-BRAT test with either an independent 

or AR(1) working correlation gave the smallest meta-analysis P-values. 

4.2. Pathway Analysis 

We then performed pathway analysis on the top SNPs for which at least one of the 

longitudinal tests had a P-value < 5 × 10−5 using the Ingenuity Pathway Analysis (IPA). We 

identified two significant canonical pathways that belong to the neurotransmitters and nervous 

system signaling. The first one is the opioid signaling pathway (P = 1.41 × 10−4, adjusted P = 

0.010), which plays an important role in opioid tolerance and dependence. Studies have shown 

that chronic administration of cocaine and opioids are associated with changes in dopamine 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 17, 2019. ; https://doi.org/10.1101/628180doi: bioRxiv preprint 

https://doi.org/10.1101/628180


19 
 

transporters and opioid receptors in various brain regions (Le Merrer et al. 2009; Soderman and 

Unterwald 2009). The second significant pathway is the axonal guidance signaling pathway (P =

2.54 × 10−4, adjusted P = 0.012), which is critical for neural development. The mRNA 

expression levels of axon guidance molecules have been found to be altered in some brain 

regions of cocaine-treated rats, which may contribute to drug abuse-associated cognitive 

impairment (Bahi and Dreyer 2005; Jassen 2006). Each of the two pathways remained significant 

when we performed pathway analysis, using the same P-value cutoff value to select top SNPs, 

based on the L-BRAT results generated under the independence and AR(1) working correlation, 

respectively. In contrast, only the opioid signaling pathway was significant based on the results 

from the GEE analysis using the independent working correlation, and only the axonal guidance 

signaling pathway was significant based on the RGMMAT results, whereas neither of them 

remained significant based on the GMMAT results and that from the GEE analysis with an 

AR(1) working correlation. These results demonstrate that L-BRAT provides more informative 

association results to help identify biological relevant pathways. 

4.3. eQTL Enrichment Analysis 

Lastly, we performed an enrichment analysis to see whether the top SNPs in our analysis are 

more likely to regulate brain gene expression. We considered the local expression quantitative 

trait loci (cis-eQTLs) reported in 13 human brain regions from the Genotype-Tissue Expression 

(GTEx) project (GTEx Consortium 2013, 2017), including amygdala, anterior cingulate cortex, 

caudate, cerebellar hemisphere, cerebellum, cortex, frontal cortex, hippocampus, hypothalamus, 

nucleus accumbens, putamen, spinal cord, and substantia nigra. Fisher’s exact test was used to 

assess the enrichment of eQTLs (FDR < 0.05) in the top 2,778 SNPs for which at least one of the 

longitudinal tests had a P-value < 10−4 in the VACS sample. Among the 13 brain regions, 
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amygdala is the only region in which eQTLs showed significant enrichment in our top SNP list 

(odds ratio = 2.06, P = 3.0 × 10−5). 

4.4. Replication of Top Findings 

We used an independent cocaine dependence case-control GWAS from the Yale-Penn study 

(Gelernter et al. 2014) to replicate the top findings from our longitudinal analysis results in 

VACS. The summary statistics from the Yale-Penn cocaine dependence GWAS were obtained. 

Note that the lifetime cocaine dependence diagnosis was made using the Semi-Structured 

Assessment for Drug Dependence and Alcoholism (SSADDA) (Pierucci-Lagha et al. 2005) 

which is different from the outcome used in VACS, and there were no longitudinal phenotype 

measures in Yale-Penn. Nevertheless, we performed pathway analysis using the SNP summary 

statistics of Yale-Penn to replicate the two pathways identified in the VACS sample. Among the 

top 2,778 SNPs for which at least one of the longitudinal tests had a P-value < 10−4, we were 

able to retrieve 2,602 SNP summary statistics from Yale-Penn. Pathway analysis was conducted 

on the top 84 SNPs that had a P-value < 0.05. Although none of the top twelve SNPs in Table 2 

had a P-value < 0.05 in the Yale-Penn AA sample, each of the two pathways remained 

significant: the opioid signaling pathways (P = 5.67 × 10−4, adjusted P = 3.77 × 10−3) and the 

axonal guidance signaling (P = 2.89 × 10−4, adjusted P = 2.97 × 10−3). 

5. Discussion 

Longitudinal data can be used in GWAS to improve power for identification of genetic 

variants and environmental factors that influence complex traits over time. In this study, we have 

developed L-BRAT, a retrospective association testing method for longitudinal binary outcomes. 

L-BRAT is based on GEE, thus it requires assumptions on the mean but not the full distribution 

of the outcome. Correct specification of the covariance of repeated measurements within each 
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individual is not required, instead, a working covariance matrix is assumed. The significance of 

the L-BRAT association test is assessed retrospectively by considering the conditional 

distribution of the genotype at the variant of interest, given phenotype and covariate information, 

under the null hypothesis of no association. Features of L-BRAT include the following: (1) it is 

computationally feasible for genetic studies with millions of variants, (2) it allows both static and 

time-varying covariates to be included in the analysis, (3) it allows different individuals to have 

measurements at different time points, and (4) it has correct type I error in the presence of 

ascertainment and trait model misspecification. For comparison, we also propose a retrospective, 

logistic mixed model-based association test, RGMMAT, which requires specification of the full 

distribution of the outcome. Random effects are used to model dependence among observations 

for an individual. Like L-BRAT, RGMMAT is a retrospective analysis in which genotypes are 

treated as random conditional on the phenotype and covariates. As a result, RGMMAT is also 

robust to misspecification of the model for the phenotype distribution. 

Through simulation, we demonstrated that the type I error of L-BRAT was well calibrated 

under different trait models and ascertainment schemes, whereas the type I error of the 

prospective GEE method was inflated relative to nominal levels. In the GLMM-based methods, 

GMMAT, a prospective analysis, was overly conservative, whereas the retrospective version, 

RGMMAT, was able to maintain correct type I error. We further demonstrated that the two 

retrospective tests, L-BRAT and RGMMAT, provided higher power to detect association than 

the prospective GEE and GMMAT tests under all the trait models and ascertainment schemes 

considered in the simulations. The choice of the working correlation matrix in L-BRAT resulted 

in little loss of power. We applied L-BRAT and RGMMAT to longitudinal association analysis 

of cocaine use in the VACS data, where we identified six novel genes that are associated with 

cocaine use. Moreover, our pathway analysis identified two significant pathways associated with 
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longitudinal cocaine use: the opioid signaling pathway and the axonal guidance signaling 

pathway. We were able to replicate both pathways in a cocaine dependence case-control GWAS 

from the Yale-Penn study. Lastly, we illustrated that the top SNPs identified by our methods are 

more likely to be the amygdala eQTLs in the GTEx data. The amygdala plays an important role 

in the processing of memory, decision-making, and emotional responses, and contributes to drug 

craving that leads to addiction and relapse (Hyman and Malenka 2001; Warlow et al. 2017). 

These findings verify that L-BRAT is able to detect important loci in a genome scan and to 

provide novel insights into the disease mechanism in relevant tissues. 

The L-BRAT and RGMMAT methods are designed for single-variant association analysis of 

longitudinally measured binary outcomes. However, single-variant association tests in general 

have limited power to detect association for low-frequency or rare variants in sequencing studies. 

We have previously developed longitudinal burden test and sequence kernel association test, 

LBT and LSKAT, to analyze rare variants with longitudinal quantitative phenotypes (Wang et al. 

2017). Both tests are based on a prospective approach. To extend L-BRAT and RGMMAT to 

rare variant analysis with longitudinal binary data, we could consider either a linear statistic or a 

quadratic statistic that combines the retrospective score test at each variant in a gene region. In 

addition, the genetic effect in L-BRAT and RGMMAT is assumed to be constant. We could 

consider an extension to allow for time-varying genetic effect so that the fluctuation of genetic 

contributions to the trait value over time is well calibrated. 
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SUPPORTING INFORMATION 

Additional supporting information referenced in Section 4 may be found online in the Supporting 

Information section at the end of the article. R package implementing L-BRAT and RGMMAT 

can be found at https://github.com/ZWang-Lab/LBRAT. 
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Table 1. Empirical type I error of L-BRAT, RGMMAT, GEE, and GMMAT, based on 106 
replicates. Rates that are significantly larger than the nominal levels are in bold. Texts in the 
brackets following test statistics denote the working correlation structure. Specifically, L-
BRAT(ind) and GEE(ind) denote the L-BRAT and GEE tests with an independent working 
correlation; L-BRAT(AR1) and GEE(AR1) denote the L-BRAT and GEE tests with an AR(1) 
working correlation; L-BRAT(mix) and GEE(mix) denote the L-BRAT and GEE tests with a 
mixture of exchangeable and AR(1) working correlation structure. 

Analysis 
Type Test 

Nominal 
Level 

Logistic Mixed Model Liability Threshold Model 
Random Baseline Sum Random Baseline Sum 

Prospective 

GEE(ind) 

0.05 5.38 × 10-2 5.08 × 10-2 5.27 × 10-2 5.36 × 10-2 5.19 × 10-2 5.38 × 10-2 
0.01 1.18 × 10-2 1.04 × 10-2 1.13 × 10-2 1.17 × 10-2 1.07 × 10-2 1.17 × 10-2 
0.001 1.32 × 10-3 1.16 × 10-3 1.23 × 10-3 1.37 × 10-3 1.14 × 10-3 1.37 × 10-3 
0.0001 1.67 × 10-4 1.28 × 10-4 1.43 × 10-4 1.34 × 10-4 1.36 × 10-4 1.76 × 10-4 

GEE(AR1) 

0.05 5.36 × 10-2 5.02 × 10-2 5.26 × 10-2 5.34 × 10-2 5.17 × 10-2 5.37 × 10-2 
0.01 1.16 × 10-2 1.04 × 10-2 1.12 × 10-2 1.16 × 10-2 1.06 × 10-2 1.17 × 10-2 
0.001 1.31 × 10-3 1.13 × 10-3 1.21 × 10-3 1.36 × 10-3 1.14 × 10-3 1.36 × 10-3 
0.0001 1.73 × 10-4 1.19 × 10-4 1.37 × 10-4 1.32 × 10-4 1.35 × 10-4 1.78 × 10-4 

GEE(mix) 

0.05 5.34 × 10-2 5.07 × 10-2 5.26 × 10-2 5.34 × 10-2 5.19 × 10-2 5.37 × 10-2 
0.01 1.17 × 10-2 1.04 × 10-2 1.13 × 10-2 1.16 × 10-2 1.07 × 10-2 1.17 × 10-2 
0.001 1.29 × 10-3 1.17 × 10-3 1.22 × 10-3 1.38 × 10-3 1.14 × 10-3 1.36 × 10-3 
0.0001 1.70 × 10-4 1.29 × 10-4 1.37 × 10-4 1.31 × 10-4 1.30 × 10-4 1.70 × 10-4 

GMMAT 

0.05 3.89 × 10-2 3.53 × 10-2 4.76 × 10-2 4.80 × 10-2 4.89 × 10-2 4.91 × 10-2 
0.01 6.07 × 10-3 5.24 × 10-3 9.08 × 10-3 9.29 × 10-3 9.51 × 10-3 9.33 × 10-3 
0.001 4.29 × 10-4 3.74 × 10-4 7.84 × 10-4 8.63 × 10-4 8.96 × 10-4 8.33 × 10-4 
0.0001 2.20 × 10-5 2.20 × 10-5 6.80 × 10-5 6.30 × 10-5 9.10 × 10-5 8.80 × 10-5 

Retrospective 

L-BRAT(ind) 

0.05 4.93 × 10-2 4.91 × 10-2 4.98 × 10-2 5.01 × 10-2 4.99 × 10-2 4.98 × 10-2 
0.01 9.45 × 10-3 9.60 × 10-3 9.84 × 10-3 9.90 × 10-3 9.75 × 10-3 9.55 × 10-3 
0.001 8.30 × 10-4 9.78 × 10-4 9.24 × 10-4 9.55 × 10-4 9.45 × 10-4 8.78 × 10-4 
0.0001 7.20 × 10-5 9.50 × 10-5 8.20 × 10-5 8.20 × 10-5 9.40 × 10-5 9.20 × 10-5 

L-BRAT(AR1) 

0.05 4.93 × 10-2 4.88 × 10-2 4.97 × 10-2 4.99 × 10-2 4.98 × 10-2 4.97 × 10-2 
0.01 9.48 × 10-3 9.72 × 10-3 9.78 × 10-3 9.84 × 10-3 9.76 × 10-3 9.55 × 10-3 
0.001 8.26 × 10-4 9.62 × 10-4 9.22 × 10-4 9.17 × 10-4 9.47 × 10-4 8.48 × 10-4 
0.0001 8.80 × 10-5 9.60 × 10-5 8.20 × 10-5 7.10 × 10-5 1.02 × 10-4 8.90 × 10-5 

L-BRAT(mix) 

0.05 4.93 × 10-2 4.91 × 10-2 4.99 × 10-2 5.01 × 10-2 4.98 × 10-2 4.98 × 10-2 
0.01 9.57 × 10-3 9.61 × 10-3 9.86 × 10-3 9.88 × 10-3 9.79 × 10-3 9.54 × 10-3 
0.001 8.35 × 10-4 9.86 × 10-4 9.26 × 10-4 9.57 × 10-4 9.37 × 10-4 8.78 × 10-4 
0.0001 8.20 × 10-5 1.01 × 10-4 8.60 × 10-5 7.40 × 10-5 9.70 × 10-5 8.90 × 10-5 

RGMMAT 

0.05 4.72 × 10-2 4.91 × 10-2 4.98 × 10-2 4.93 × 10-2 4.99 × 10-2 4.98 × 10-2 
0.01 8.76 × 10-3 9.64 × 10-3 9.85 × 10-3 9.63 × 10-3 9.78 × 10-3 9.55 × 10-3 
0.001 7.20 × 10-4 9.52 × 10-4 9.09 × 10-4 9.12 × 10-4 9.43 × 10-4 8.75 × 10-4 
0.0001 6.80 × 10-5 8.90 × 10-5 8.20 × 10-5 7.70 × 10-5 9.10 × 10-5 9.30 × 10-5 
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Table 2. SNPs with P-value < 2×10−7 in at least one of the longitudinal tests in the entire VACS sample. The smallest P-value among 
all tests at the given SNPs are in bold. a CARAT applied to cocaine use at baseline, b Cumulative logit model applied to the four 
ordered cocaine use trajectory group. 

Chr Gene 
Region SNP Position MAF GEE 

(ind) 
GEE 

(AR1) GMMAT L-BRAT 
(ind) 

L-BRAT 
(AR1) RGMMAT CARATa 

(BL) 
CLb 

(traj) 

3 NIPA2P2 rs551879660 75,146,492 0.012 1.87 × 10
-4

 7.14 × 10
-4

 9.07 × 10
-4

 2.00 × 10
-8

 3.19 × 10
-6

 4.13 × 10
-5

 5.78 × 10
-4

 3.35 × 10
-5

 

5 EFNA5 rs188222191 105,411,547 0.042 6.86 × 10
-6

 1.65 × 10
-5

 8.87 × 10
-5

 1.28 × 10
-7

 4.17 × 10
-7

 2.69 × 10
-6

 8.95 × 10
-5

 2.72 × 10
-5

 

  rs1014278 105,471,506 0.057 1.02 × 10
-5

 1.10 × 10
-5

 1.24 × 10
-4

 1.50 × 10
-7

 1.43 × 10
-7

 4.88 × 10
-6

 5.94 × 10
-5

 3.00 × 10
-5

 

  rs75132056 105,480,442 0.05 1.05 × 10
-5

 2.42 × 10
-5

 1.89 × 10
-4

 8.92 × 10
-8

 2.89 × 10
-7

 8.55 × 10
-6

 2.59 × 10
-4

 2.31 × 10
-5

 

8 PSD3 rs114629793 18,403,754 0.012 3.12 × 10
-4

 4.73 ×10
-4

 1.44 × 10
-4

 8.65 × 10
-8

 3.60 × 10
-7

 2.82 × 10
-6

 5.12 × 10
-4

 3.06 × 10
-6

 

9 OR1L4 rs76386683 125,467,023 0.012 1.48 × 10
-4

 9.15 × 10
-5

 2.86 × 10
-4

 1.03 ×10
-6

 1.93 × 10
-7

 5.92 × 10
-6

 4.80 × 10
-4

 3.30 × 10
-6

 

  rs114386843 125,469,425 0.012 1.47 × 10
-4

 9.05 × 10
-5

 2.82 × 10
-4

 1.01 × 10
-6

 1.88 × 10
-7

 5.78 × 10
-6

 4.75 × 10
-4

 3.22 × 10
-6

 

  rs186274502 125,471,416 0.012 1.47 × 10
-4

 9.05 × 10
-5

 2.82 × 10
-4

 1.01 × 10
-6

 1.88 × 10
-7

 5.78 × 10
-6

 4.75 × 10
-4

 3.22 × 10
-6

 

  rs376616438 125,472,267 0.012 1.44 × 10
-4

 8.95 × 10
-5

 2.77 × 10
-4

 9.79 × 10
-7

 1.85 × 10
-7

 5.62 × 10
-6

 4.79 × 10
-4

 3.20 × 10
-6

 

  rs187855416 125,474,459 0.012 1.44 × 10
-4

 8.95 × 10
-5

 2.77 × 10
-4

 9.79 × 10
-7

 1.85 × 10
-7

 5.62 × 10
-6

 4.79 × 10
-4

 3.20 × 10
-6

 

11 AP000851.1 rs139780693 102,509,700 0.03 2.60 × 10
-5

 1.04 × 10
-5

 2.78 × 10
-4

 5.83 × 10
-7

 1.26 × 10
-7

 1.35 × 10
-5

 1.06 × 10
-4

 2.00 × 10
-6

 

13 AL161616.2 rs150191017 31,962,649 0.011 4.26 × 10
-5

 9.72 × 10
-5

 7.32 × 10
-5

 3.77 × 10
-8

 3.09 × 10
-7

 7.87 × 10
-7

 3.74 × 10
-4

 5.48 × 10
-7
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Table 3. Meta-analysis results of the top twelve SNPs from Table 2 in the VACS data. The 
smallest P-value among all tests at the given SNPs are in bold. 

Chr Gene 
Region SNP Position GEE 

(ind) 
GEE 

(AR1) GMMAT L-BRAT 
(ind) 

L-BRAT 
(AR1) 

RGMMA
T 

3 NIPA2P2 rs551879660 75,146,492 1.81 × 10-4 5.86 × 10-4 8.98 × 10-4 5.26 × 10-8 6.41 × 10-6 6.49 × 10-5 

5 EFNA5 rs188222191 105,411,547 7.57 × 10-6 1.28 × 10-5 1.80 × 10-4 2.55 × 10-7 5.52 × 10-7 1.10 × 10-5 

  rs1014278 105,471,506 1.26 × 10-5 8.44 × 10-6 3.15 × 10-4 1.03 × 10-6 5.59 × 10-7 2.44 × 10-5 

  rs75132056 105,480,442 1.31 × 10-5 2.00 × 10-5 4.24 × 10-4 7.31 × 10-7 1.27 × 10-6 3.56 × 10-5 

8 PSD3 rs114629793 18,403,754 2.92 × 10-4 4.31 × 10-4 1.66 × 10-4 1.79 × 10-7 7.98 × 10-7 6.83 × 10-6 

9 OR1L4 rs76386683 125,467,023 1.44 × 10-4 8.78 × 10-5 3.75 × 10-4 2.32 × 10-6 5.12 × 10-7 1.46 × 10-5 

  rs114386843 125,469,425 1.42 × 10-4 8.62 × 10-5 3.68 × 10-4 2.25 × 10-6 4.97 × 10-7 1.41 × 10-5 

  rs186274502 125,471,416 1.42 × 10-4 8.62 × 10-5 3.68 × 10-4 2.25 × 10-6 4.97 × 10-7 1.41 × 10-5 

  rs376616438 125,472,267 1.39 × 10-4 8.51 × 10-5 3.60 × 10-4 2.18 × 10-6 4.86 × 10-7 1.37 × 10-5 

  rs187855416 125,474,459 1.39 × 10-4 8.51 × 10-5 3.60 × 10-4 2.18 × 10-6 4.86 × 10-7 1.37 × 10-5 

11 AP000851.1 rs139780693 102,509,700 1.15 × 10-5 4.16 × 10-6 1.07 × 10-4 4.04 × 10-7 6.05 × 10-8 4.41 × 10-6 

13 AL161616.2 rs150191017 31,962,649 3.55 × 10-5 6.77 × 10-5 1.26 × 10-4 6.68 × 10-8 5.80 × 10-7 3.12 × 10-6 
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Figure 1. Empirical power of L-BRAT, RGMMAT, GEE, and GMMAT. Power is based on 
1,000 simulated replicates at five time points with 𝛼𝛼 = 10 −3. In the upper panel, the trait is 
simulated by the logistic mixed model, and in the lower panel, it is by the liability threshold 
model. Power results are demonstrated in samples of 2,000 individuals according to three 
different ascertainment schemes: random, baseline, and sum. This figure appears in color in the 
electronic version of this article. 
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Figure 2. Group-based cocaine use trajectories in VACS. Dashed lines represent the estimated 
trajectories, solid lines represent the observed mean cocaine use for each trajectory group. Time 
is the number of years since the baseline visit. 
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