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Abstract 

Mechanical forces have long been recognized as fundamental drivers in biological processes, 
such as embryogenesis, tissue formation and disease regulation. The collagen gel contraction 
(CGC) assay has served as a classic tool in the field of mechanobiology to study cell-induced 
contraction of extracellular matrix (ECM), which plays an important role in inflammation and 
wound healing. In a conventional CGC assay, cell-laden collagen is loaded into a cell culture 
vessel (typically a well plate) and forms a disk-shaped gel adhering to the bottom of the vessel. 
The decrement in diameter or surface area of the gel is used as a parameter to quantify the degree 
of cell contractility. In this study, we developed a microscale CGC assay with an engineered well 
plate insert that uses surface tension forces to load and manipulate small volumes (14 µL) of 
cell-laden collagen. The system is easily operated with two pipetting steps and the microscale 
device moves dynamically as a result of cellular forces. We used a straightforward one-
dimensional measurement as the gel contraction readout. We adapted a conventional lung 
fibroblast CGC assay to demonstrate the functionality of the device, observing significantly more 
gel contraction when human lung fibroblasts were cultured in serum-containing media versus 
serum-free media (p≤0.01). We further cocultured eosinophils and fibroblasts in the system, two 
important cellular components that lead to fibrosis in asthma, and observed that soluble factors 
from eosinophils significantly increase fibroblast-mediated gel contraction (p≤0.01). Our 
microscale CGC device provides a new method for studying downstream ECM effects of 
intercellular cross talk using 7-35 fold less cell-laden gel than traditional CGC assays. 
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Introduction 

Fibroblasts are key mesenchymal cells in connective tissue which synthesize extracellular matrix 
(ECM) components and provide structural support for the extracellular environment (Kendall 
and Feghali-Bostwick, 2014). As part of the tissue self-repair mechanism, fibroblasts interact 
with surrounding ECM proteins through a variety of inflammatory mediators and differentiate 
into a more contractile phenotype known as myofibroblasts (Jeffery, 2001; Royce et al., 2012). 
However, overreactive myofibroblasts generate and deposit excessive ECM proteins in the 
interstitium, contributing to fibrotic diseases such as asthma and idiopathic pulmonary fibrosis 
(Grinell, 2003; Hinz et al., 2007). Therefore, understanding the mechanobiology of fibroblasts in 
ECM and the underlying signaling mechanisms is essential to developing therapies for diseases 
involving fibrosis. The goal for this study is to develop a microscale assay that captures and 
reflects dynamic fibroblast-ECM interactions. 

The fibroblast-induced collagen gel contraction (CGC) assay was established by Bell et al. to 
study fibroblast-matrix interactions (Bell et al., 1979) and has been modified and widely used 
over the past four decades. The traditional CGC assay is performed by embedding fibroblasts 
into a three-dimensional (3D) gel matrix, such as collagen or fibrin, on the bottom of a well plate, 
which is then manually separated from the well plate surface (for example by scraping a pipette 
tip around the perimeter of the well) to loosen the gel puck from the well plate walls and enable 
contraction (Dallon and Ehrlich, 2008; Mikami et al., 2016). The contractile forces generated by 
fibroblasts propagate throughout the collagen matrix and arrange collagen fibers to higher 
density structure with decreased matrix volume (Jonas and Duschl, 2010). As a result, measuring 
the decrease in size of a gel matrix puck by imaging and subsequent analysis provides a direct 
way to assess fibroblast contractility.  

Addressing some complications in the existing CGC assay workflow could help researchers meet 
a diverse set of experimental needs. For example, deformation of gel shape and ambiguous post-
contraction gel borders make the exact gel area difficult to define (Chen et al., 2013); the 
requirement of relatively large cell samples precludes the assay from use with limited primary 
cells (Redden and Doolin, 2003); large volumetric consumption of gels (>100 μL per replete in a 
96 well plate) is relatively expensive (Gullberg et al., 1990; Timpson et al., 2011); and the 
friction between gel and substrate upon gel contraction is not well defined, potentially adding 
variation to the data (Chen et al. 2008; Vernon and Gooden, 2002). Through the years, numerous 
tools and technologies have been developed to improve these shortcomings. For example, 
automated image analysis programs have been used to improve accuracies for the geometric gel 
shape readout (Jin et al., 2015; Chen et al., 2012). Leung et al. developed a high-throughput 
microscale aqueous two-phase droplet fabrication method in conventional 384-well plate which 
effectively reduced the gel droplet to 10-15 µL (Leung et al., 2015). Ilagan et al. used glass 
capillary to cast cell-laden collagen which was subsequently detached from the glass surface by 
pipetting force, significantly reducing friction and converting three-dimensional parameters into 
a single, linear measurement (Ilagan et al., 2009). The recent efforts to develop new CGC assay 
platforms have underscored the utility of the assay and motivated our work to develop a new 
microscale CGC assay that builds on past improvements and enables a combination of new 
experimental features. 
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Our goal was to create a microscale CGC assay that addresses the needs in objective gel shape 
quantification, reducing cell and gel consumption, minimizing friction between the plastic 
culture substrate and the gel, and enabling segregated coculture to study paracrine signaling. 
Here, we describe a microscale CGC platform based on 24 well plate insert that enables the 
study of dynamic cell-matrix interactions. The device is characterized by a two-step pipetting 
operation and a simple angle measurement as a contractility readout. We demonstrate a proof of 
concept use of this technology with a serum stimulation experiment. Further, we validate our 
device for coculture by testing the hypothesis that soluble factors secreted by eosinophils induce 
increased gel contraction by lung fibroblasts as has been previously observed using the 
traditional CGC assay (Zagai et al., 2004). In the future, we envision that we and other 
researchers could use our technology to address additional research questions relating to 
paracrine signaling in lung fibrosis as well as fibrosis in other organs such as the regulation of 
epithelial-to-mesenchymal transition in kidney fibrosis and the role of stellate cell activation in 
hepatic fibrosis. 

Materials and Methods 

Device fabrication 

Devices were fabricated using a Form 2 SLA 3D printer (Formlabs, Somerville, MA). 3D-
printed devices were designed with Solidworks and converted to .form files with PreForm 2.11.0 
(Formlabs) prior to being printed with Form 2 Clear V4 Resin (Formlabs). After printing, 
devices were sonicated in isopropanol (IPA) for 15 min, rinsed with fresh IPA, and UV-cured 
(Quans 20 W UV Lamp) for 2 hours. Original design files are included in the ESI.  

Cell culture 

Human fetal lung fibroblasts (HFL-1) were obtained from the American Type Culture Collection 
(Rockville, MD, USA). The cells were cultured in a T-75 tissue culture flask (Falcon; Franklin 
Lakes, NJ, USA) with F-12K Medium (Kaighn's Modification of Ham's F-12 Medium, 
ATCC® 30-2004) supplemented with 10% heat-inactivated fetal bovine serum (FBS; 
GIBCO&SOL; BRL Life Technologies), penicillin (100 units mL−1), and streptomycin (100 
μg/mL). Fibroblasts were used between the 4th and 10th passage. Confluent fibroblasts were 
trypsinized (Trypsin-EDTA; GIBCO/BRL Life Technologies, 0.05% trypsin 0.53 mM EDTA), 
resuspended in serum free F-12K medium at a working concentration of 3 x 106cells/mL, and 
kept on ice prior to use in the CGC assay. 

AML14.3D10 cells (cell line was generously provided by Cassandra Paul (Wright State 
University, Dayton, OH)), a differentiated human myeloid leukemic cell line that displays typical 
morphology and enzymatic activity of normal eosinophils (Ackerman et al., 2000; Baumann and 
Paul, 1997; Esnault et al., 1998), were grown in T-75 tissue culture flasks in RPMI 1640 media 
containing 8% fetal calf serum, supplemented with 2 mM L-glutamine, 1 mM sodium pyruvate, 
0.05 mg/ml gentamycin, and 5.5×10-5 M 2-mercaptoethanol. Eosinophil concentration was 
maintained between 1×105 - 1×106/mL in the flask. All cells were maintained in a 37 °C 
incubator with 5% carbon dioxide. 
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HFL-1 collagen gel contraction assay in the CGC device 

Two parts of HFL-1 in serum free F-12K media (3×106 cells/mL) were mixed together with one 
part of type I collagen (9.4 mg/mL; Corning, Corning, NY, USA ) and one part of 1×HEPES to a 
final concentration of 2.35 mg/ml of collagen, 1.5×106 fibroblasts/mL. CGC devices were 
assembled and inserted into 24 well plates. 14 μL of fibroblast-laden collagen was loaded into 
the loading channel, contacting the free-swinging arm head and swinging it into the loading 
channel (as shown in Figure 1). 40 μg of F-12 K media supplemented with 10% FBS (for all 
conditions) was pipetted into the retraction tube to contact the free-swinging arm (Figure 1); the 
media was then quickly withdrawn to pull the free-swinging arm back into the retraction tube 
(Figure 1). The plate was incubated for 15 min at 37 °C.  For monoculture experiments (Figure 
2), 2 mL F-12 K media with or without 10% FBS was gently loaded into each well of the 24 well 
plate; for coculture experiments (Figure 3), 7×105 eosinophils were resuspended with 2 mL of 
serum-free F-12K media then gently added into each well. The plate was incubated overnight. 

Measurement of CGC device angle 

The top view of each device was imaged using a MU1403B Microscope Camera mounted on an 
Amscope SM-3TZ-80S stereoscope (Amscope, Irvine, CA). Each device was imaged after setup 
and media addition (initial angle, �i) then placed into incubator, and imaged with the same setup 
(position, lighting condition, and same Amscope parameters) after 24 h (final angle, �f). The 
brightness of each image was adjusted with Fiji (ImageJ, version 2.0.0), and the CGC device 
angle was determined by the pivot point of the rotation axis and two side faces of collagen in 
contact with the device (as depicted in Figure 1b and Figure 2a). The initial and final angles were 
measured automatically with ImageJ for each device, respectively. 

Statistical analysis 

Data are presented as the percentage of the initial angle (i.e., �f /�i). Data are plotted as the mean 
of three independent experiments ± the standard error of the mean (SEM); each plotted point on 
the graphs in Figures 2 and 3 represents an independent biological experiment and is the mean of 
three devices within each experiment. Differences between two groups of data were evaluated 
using a two-tailed unpaired Student’s t-test (Prism, GraphPad Software). 

Results 

Device design and workflow 

The underlying principle of our device is that it moves dynamically in response to cell-induced 
collagen gel contraction. As shown in Figure 1A, the device is composed of two parts: a base 
insert (which contains the loading channel and retraction tube) and a free-swinging arm. The 
free-swinging arm rests on a pivot point that juts out from the base insert, which allows the arm 
to rotate freely inside the well. When mechanical force is applied by cell-mediated collagen gel 
contraction, the device is dynamically reconfigured via rotation of the free-swinging arm, as 
shown in Figure 1B. The movement of the device can then be used as a quantitative metric for 
cell contractility by measuring the change in CGC device angle as described below. To begin the 
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device workflow, cell-laden collagen gel precursor solution is pipetted into the loading channel 
of the device, where it flows through a closed tube to an opening that is positioned adjacent to 
the head of the free-swinging arm (Figure 1B(i)). As the gel precursor solution is added, it forms 
a droplet at this opening, which grows until it meets the head of the free-swinging arm. Surface 
tension then pulls the head of the arm into the droplet. In the next step, media is pipetted into the 
retraction tube of the device (Figure 1B(ii)). The media is pipetted in excess of the inner volume 
of the tube such that the media wets the tail of the free-swinging arm. Upon immediate 
withdrawal of the media in the retraction tube (which does not remove all of the media in the 
retraction tube), the wetted arm tail is pulled into the retraction tube by surface tension (Figure 
1B(iii)). The resulting surface tension force at the arm tail pulls the spherical droplet into a 
hyperboloid, or bridge, at the arm head. When the device is incubated at 37 °C, the collagen 
bridge gels, setting the three-dimensional geometry of the bridge, and the well is filled with 
media (Figure 1B(iv)). The surface tension force exerted by the media in the retraction tube is 
nullified because the surface that applies the force is submerged in media; this allows the device 
to move freely in response to the force that the cells exert when contracting the gel. Finally, the 
initial angle (�i) is measured (Figure 1B(v)), and the final angle (�f ) is measured after 24 hours 
of incubation (Figure 1B(vi)). 

Quantification of gel contraction in our assay is done by comparing the initial angle, �i (as shown 
in Figure 1B(v)), with the final angle, �f (as shown in Figure 1b(vi)), after a period of incubation 
(typically 24 h) during which the cells contract the collagen gel. Importantly, our device design 
maximizes the dynamic range of our CGC assay measurement by forming the hyperboloid 
collagen bridge (through the use of the retraction tube as discussed in Figure 1B(ii, iii)), which 
increases the initial angle (�i) that the device takes and increases the maximum potential change 
in angle that can occur due to cellular forces contracting the gel. Additionally, retraction of the 
collagen bridge is not affected by gel-substrate friction due to the dynamic nature of our device. 

Viability test 

We evaluated the viabilities of fibroblasts and eosinophils in the coculture system after 24 h of 
incubation. Images from a live/dead stain are included in the ESI (Figure S1(iii)). 

FBS augments fibroblast gel contraction in our device 

We used a simple fetal bovine serum (FBS) stimulation experiment as a proof-of-concept to 
validate that the microscale platform is capable of quantifying collagen gel contraction due to a 
known treatment; the comparison between fibroblast-mediated gel contraction under serum-free 
and serum-containing conditions is frequently used in macroscale CGC assays as a validation 
experiment (Lijnen et al., 2001, Zhu et al., 2001). Human fetal lung fibroblast (HFL-1)-laden 
collagen was loaded into the CGC device in both 10% FBS and serum-free media conditions. 
The initial angle of the CGC device (�i, as shown in Figure 1B(v)), was measured immediately 
after cell culture media was added into each well. After 24 h of incubation, the angle was 
measured again (�f, as shown in Figure 1B(vi)). The difference in the gel contraction can be 
clearly seen by eye (Figure 2A). In the absence and presence of FBS, the CGC device angle 
decreased to 69% and 41% of initial angle, respectively (Figure 2B). The gel contraction was 
reported as the average of three independent experiments performed on different days; the 
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presence of FBS in the media resulted in significantly more collagen gel contraction than in 
serum-free conditions. Collagen without fibroblasts was loaded into the device as a negative 
control, and there was no significant change in the angle (Figure S2). 

Eosinophils cocultured with fibroblasts augment collagen gel contraction in our device  

Following a similar CGC device loading workflow, we established an eosinophil-fibroblast 
coculture using our platform to test the hypothesis that soluble factors secreted from eosinophils 
increase fibroblast-mediated collagen gel contraction as observed in prior work by Zagai et al. 
(2004) using the traditional CGC assay. We used the eosinophil cell line model AML14.3D10, a 
differentiated human myeloid leukemic cell line that displays typical morphology and enzymatic 
activity of normal eosinophils (Ackerman et al., 2000, Baumann and Paul, 1997). Eosinophils 
were maintained in RPMI media supplemented as described in the Materials and Methods 
section (as recommended for this cell line) and resuspended into serum-free F-12K media prior 
to loading to the well plate for coculture (Figure 3A). Eosinophils were loaded into the culture 
media surrounding the device after the fibroblast-laden collagen was established in the device 
(Figure 3A (iv)); this setup allows us to study soluble-factor mediated signaling while keeping 
the eosinophils and fibroblasts physically separate from each other. The CGC device angle was 
measured at the starting point of the culture and after 24 h incubation as described previously. In 
the absence and presence of eosinophils, the CGC device angle decreased to 90% and 60% of 
initial angle, respectively (Figure 3B). The gel contraction was reported as the average of three 
independent experiments performed on different days; the presence of eosinophils resulted in 
significantly more collagen gel contraction than in monoculture. Differences were observed 
between the absolute values of percentage of initial angle in the monoculture serum-free 
conditions across Figures 2 and 3, likely due to higher passage number cells used in Figure 3; we 
discuss this further in the Discussion section. Collagen without fibroblasts was loaded into the 
device with the presence of eosinophils as a negative control for coculture, and there was no 
significant change in the angle (Figure S2).   

Discussion 

The 3D culture of fibroblasts in native type I collagen gels has enabled researchers to integrate 
cell behaviors with surrounding matrix components, capturing some key aspects of cell-
extracellular matrix interactions that are lost in simple 2D culture on plastic substrates (Duval et 
al., 2017; Bhatia and Ingber, 2014). Traditional CGC assays serve as a gold standard for cell 
contractility measurements, and we identified  three ways in which we could build on and 
improve traditional CGC assays with our dynamic microscale system: 1) reduced cell and gel 
consumption, 2) straightforward measurements of collagen gel contraction that are not dependent 
on quantifying irregular gel shapes, and 3) the ability to perform coculture experiments to study 
how paracrine signaling (soluble-factor mediated signaling) between fibroblasts and other cell 
types affects fibroblast contractility. In this study, we developed a dynamic microscale CGC 
platform that integrates these criteria through use of a small gel volume (14 µL in comparison to 
over 100 µL typically used in traditional CGC assays (Gullberg et al., 1990; Timpson et al., 
2011)), a simplified quantitative readout (CGC device angle), and compatibility with coculture.  
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Importantly, existing cell-based assays developed around the traditional CGC assay can be 
readily translated to our microscale CGC assay because both assays share similar protocols for 
cell-laden collagen preparation. Prior systems for microscale gel droplet fabrication have 
achieved impressive advances in terms of miniaturization, which often involve engineering with 
new biomaterials or reagents such as polyethylene glycol or dextran that allow for rapid 
polymerization of droplets and careful management of evaporation (Moraes et al., 2013; Leung 
et al., 2015). Since the gel polymerization conditions are pH-sensitive and thermally driven, the 
addition of new materials in the process requires intensive testing of precise gelling conditions 
(Forgacs et al., 2003). Moreover, washing steps are required to remove the additional materials 
from the droplet, increasing the time and labor involved in the fabrication process (Moraes et al., 
2013; Leung et al., 2015). Our CGC device serves as an alternative surface-tension driven 
method to manufacture microscale gel droplets (and ultimately stretch the droplets into 
hyperboloid bridges), eliminating the possible complications involved in adding new materials. 

Gel area quantification has been a hurdle to the accuracy and reproducibility of the CGC assay 
largely due to the difficulties in characterization of gel boundaries, as well as aberrancies in gel 
shape post-contraction (Chen et al., 2013; Chapuis and Agache, 1992). Although atomic force 
microscopy (AFM) and traction force microscopy (TFM) serve as alternative quantification 
methods for cell contraction force measurement bypassing the gel border delineation issue, the 
instruments are normally unfamiliar to common users in traditional biological laboratory settings 
(Schierbaum et al. 2019). The CGC device we present in the study measures the change in CGC 
device angle, which converts the 3D change in gel volume to single parameter that is 
straightforward to measure. Three reference points are clearly and easily identified in digital 
images of the device, and the angle is calculated automatically using image processing software 
(see Methods section and Figures 1B and 2A).  

Previous studies have identified a group of soluble factors including transforming growth factor-
� (TGF- �), that contribute to fibroblast myodifferentiation, leading to increased expression of 
�-smooth muscle actin and a contractile phenotype typified by increased collagen gel contraction 
(Kendall and Feghali-Bostwick, 2014; Hinz et al., 2007; Grinnell et al., 2000). 
Myodifferentiation and fibrosis are particularly important in airway remodeling and asthma as 
they can lead to exacerbated symptoms and progressive damage (Hinz et al., 2007; Grinnell et al., 
2000). To better understand how fibroblasts are affected by soluble factors from other types of 
cells in airway remodeling, researchers have conducted mixed coculture (embedding additional 
cell types into the fibroblasts-laden collagen), conditioned media coculture (feeding fibroblast-
laden gel matrix with supernatants collected from other types of cells), and segregated Transwell 
coculture CGC experiments (Wygrecka et al., 2013; Fredriksson et al., 2003; Margulis et al., 
2008; Zagai et al. 2007). These studies revealed that mast cells, red blood cells, and eosinophils 
can promote fibroblast contraction in mixed 3D coculture, or in conditioned media culture 
through paracrine signaling; whereas blood monocytes and lung epithelial cells attenuate 
fibroblast-mediated gel contractility, an important aspect of tissue repair (Sköld et al., 2000; Epa 
et al., 2015).  

Given the importance of paracrine signaling in myodifferentiation illuminated by prior work, we 
developed an eosinophil-fibroblast paracrine signaling coculture model to demonstrate the ability 
to conduct coculture experiments with our microscale CGC assay (Figure 3A). Our coculture 
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system enabled eosinophils, which settled to the bottom of the well plate physically separate 
from the fibroblast-laden gel suspended in our device above, to communicate with fibroblasts 
through shared media. In contrast to culture systems that involve transfer of conditioned media 
from one cell type to another, the shared media in our coculture model enables bidirectional 
signaling and signaling based on short-lived factors that may degrade in conditioned media 
studies (Ruth et al., 1999). Here, we cocultured HFL-1 with AML14.3D10, which is a well-
characterized mature eosinophil surrogate (Figure 3A) (Baumann and Paul, 1998). Previous 
studies have identified eosinophil cationic protein as an important biomarker for airway 
inflammation, which is largely released from mature eosinophils (Koh et al., 2007; Zagai et al., 
2004, 2007). Using our microscale CGC device, we found that the presence of eosinophils 
caused significantly increased fibroblast contractility (Figure 3B), which agreed with the 
previous mixed coculture experiments where eosinophils were mixed in with fibroblasts in 
collagen gel (Zagai et al., 2004).  

It is worth noting that we observed a decrease in HFL-1 contractility (in the monoculture, serum-
free condition) in the second set of experiments (Figure 3B, �f /�I = 90 ± 2%) compared to the 
first set of experiments (Figure 2B, �f /�I = 60 ± 3%), as the cells were at higher passage numbers 
in the second set of experiments. Thus, it is important to set up separate controls within each set 
of experiments (as we did in Figures 2 and 3); the comparison between the treatment and the 
control within experiments should be considered rather than the absolute value of the percentage 
of initial angle, which can vary across passage numbers. 

In conclusion, this paper presents a novel platform that translates a traditional CGC assay to a 
microscale assay, minimizing fibroblast and gel consumption. Utilizing surface tension, the 
device enables generation of a suspended cell-laden gel with two standard pipetting steps. Gel 
contraction quantification is simplified to a single angle measurement. Moreover, we established 
an eosinophil-fibroblast coculture model using the CGC device and showed that the platform 
sustained segregated coculture and paracrine signaling to recapitulate aspects of immune-
fibroblast-ECM interactions. Importantly, our platform captures bidirectional and time-sensitive 
paracrine signaling interactions which are sometimes lost in stepwise conditioned media studies 
due to decay of short-lived cytokines and other signaling molecules. Finally, our device fits 
within a standard well plate and cell culture incubator, increasing its translation to biology 
laboratories. 
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Figure captions 

Figure 1: Overview of device configuration and operation. (A) Schematic drawing of an 
assembled collagen gel contraction (CGC) device inserted in a 24-well plate. The CGC device 
consists of a collagen loading channel, a free-swing arm, and a retraction tube. (B) Top view of 
CGC device operation work flow. i) 14 �L of cell-laden collagen is loaded into the loading 
channel; after filling the loading channel, a collagen droplet is formed in between the loading 
channel and arm head. ii) and iii) 25 �L of cell culture media is pipetted in and out of retraction 
tube; the arm tail is pulled back into the retraction tube with the flow of the media, causing the 
collagen droplet to extend into a collagen bridge. iv) The system is incubated at 37 °C for 15 min 
for collagen to gel; cell culture media is loaded directly into the well plate from top. v) and vi) 
The top view of the device is captured to determine the angle at starting point (�i) and end point 
(�f), respectively. The change in � reflects cell contractility. Scale bars: 2 mm. 

 

Figure 2: CGC device characterization using fibroblast contraction in differential serum 
conditions. (A) Representative images showing the contracting angle, θ, of the same device 
immediately after loading the cell-laden gel and cell culture media (0 h, top) and after 24 h in 
culture (bottom), in both serum-free media (left) and media containing 10% FBS (right) (scale 
bars: 2 mm). (b) fibroblasts (HFL-1) cultured in media containing 10% FBS contract collagen 
gel more than fibroblasts cultured in serum-free media. Each data point represents the average of 
three devices from an independent experiment; three independent experiments were performed. 
Error bars: SEM of three independent experiments; ** indicates significantly different values 
according to a two-tailed unpaired Student's t-test (p ≤ 0.01). 

 

Figure 3: CGC device application in a coculture system with human fibroblast cells (HFL-1) and 
eosinophil model cell line (AML14.3D10) to evaluate the effect of soluble factor signaling from 
eosinophils on fibroblast gel contraction. (A) Schematics of the coculture configuration and 
workflow. i) Fibroblast-laden collagen is loaded into the CGC device in a 24-well plate. ii) and 
iii) Cell culture media is pipetted in and out of retraction tube and the arm tail is pulled back into 
the retraction tube. iv) The system is incubated for the collagen to gel; eosinophils are suspended 
in serum-free F-12K media at a concentration of 3.5 ×107 cells/mL; 2 mL of serum-free media 
(for monoculture) or cell suspension (for coculture) is added into each well. v) and vi) Top view 
image is taken to measure �i and �f, respectively. (B) Coculture of fibroblasts with eosinophils 
augments HFL-1 collagen gel contraction in serum-free media. Each data point represents the 
average of three devices from an independent experiment; three independent experiments were 
performed. Error bars: SEM of three independent experiments; ** indicates significantly 
different values according to a two-tailed unpaired Student's t-test (p ≤ 0.01). 
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