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Abstract 

Purpose: EVIDENCE, an automated interpretation system, has been developed to facilitate 

the entire process of whole exome sequencing (WES) analyses. This study investigated the 

diagnostic yield of EVIDENCE in patients suspected genetic disorders.  

Methods: DNA from 330 probands (age range, 0–68 years) with suspected genetic disorders 

were subjected to WES. Candidate variants were identified by EVIDENCE and confirmed by 

testing family members and/or clinical reassessments.   

Results: The average number of overlapping organ categories per patient was 4.5 ± 5.0. 

EVIDENCE reported a total 244 variants in 215 (65.1%) of the 330 probands. After clinical 

reassessment and/or family member testing, 196 variants were identified in 171 probands 

(51.8%), including 115 novel variants. These variants were confirmed as being responsible 

for 146 genetic disorders. One hundred-seven (54.6%) of the 196 variants were categorized 

as pathogenic or likely pathogenic before, and 146 (74.6%) after, clinical assessment and/or 

family member testing. Factors associated with a variant being confirmed as causative 

include rules, such as PVS1, PS1, PM1, PM5, and PP5, and similar symptom scores between 

that variant and a patient’s phenotype. 

Conclusion: This new, automated variant interpretation system facilitated the diagnosis of 

various genetic diseases with a 51% improvement in diagnostic yield. 

Key words: whole exome sequencing, automated interpretation system, variant, phenotypes, 

genetic disorders 
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Introduction  

Whole exome sequencing (WES) using massively parallel sequencing techniques has 

identified the specific genetic defects in over 1000 Mendelian disorders during the past 

decade. To date, more than 7000 genetic disorders involving more than 4000 genes have been 

identified, and the numbers continue to increase as the genetic defects in additional disorders 

were identified.1,2 The diagnostic rate of WES has been found to range from 30% to 40%, a 

variation that may be attributed to the numbers and phenotypes of enrolled patients and the 

various characteristics of study cohorts.3-10 

Whole genome studies such as WES are time-consuming and labor-intensive, requiring 

clinical geneticists and bioinformaticians to match large numbers of candidate variants with 

various clinical symptoms in each subject analyzed.11 Moreover, in the absence of supporting 

data, many variants remain “variants of uncertain significance” (VUS), limiting the ability to 

confirm genetic diagnoses.12 

Guidelines of the American College of Medical Genetics (ACMG) attempted to prioritize 

genetic variants and led to the development of several bioinformatic tools.13,14 These tools, 

however, have limited ability to accurately predict the pathogenicity of each variant. 

Phenotype-centric interpretation methods were developed using several computational tools, 

which automatically prioritized the genetic variants in each patient and ranked them, 

according to the biological function of each gene, the molecular impact of the variant, and the 

relationship of the variant to that patient’s phenotype.9,15,16 Although these approaches 

noticeably reduced the number of candidate variants responsible for the disease phenotype in 

each patient, these numbers varied among studies, without significantly improving genetic 

diagnosis rates, which have remained at about 30–35%.5,16 
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This study describes a new, streamlined, automated interpretation system, termed 

EVIDENCE (3Billion, Inc., Seoul, South Korea), which interprets over 100,000 variants 

according to ACMG guidelines17 and prioritizes variants based on each patient’s phenotype 

within a few minutes. A symptom suggestion system based on Human Phenotype Ontology 

(HPO) was created to capture most patient phenotypes. Finally, the EVIDENCE system was 

able to calculate similarity scores between the clinical phenotypes suggested by the candidate 

variants and actual patient phenotypes, to match this score with the genetic diseases listed in 

the OMIM database (www.omim.org). This pilot study found that EVIDENCE significantly 

improved the rate of diagnosis of a variety of genetic diseases. 

 

Materials and Methods 

Recruitment of patients 

The study enrolled 330 patients, clinically suspected of carrying a genetic disorder, from 330 

non-consanguineous unrelated families, who presented at the Medical Genetics Center, Asan 

Medical Center, Seoul, South Korea, from April 2018 to August 2019. Their detailed 

demographic and clinical characteristics were reviewed, including age and diagnosis at 

presentation, sex, family history, laboratory findings, radiologic findings, and genetic testing 

results.  

Patients aged ≥5 months were included if they were strongly suspected of having a genetic 

disease by medical geneticists and were undiagnosed, despite conventional genetic tests such 

as chromosome analyses, chromosome microarray, or single or targeted gene panel testing. 

Patients aged <5 months were included if they had a congenital anomaly in one or more 

major organs, including the brain, heart, or gastrointestinal, urological, or musculoskeletal 

systems, or if they were strongly suspected of having a genetic disease by medical geneticists 

or radiologists. 
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Informed consent was obtained from patients or their parents after genetic counseling 

regarding the WES test. The study was approved by the Institutional Review Board for 

Human Research of the Asan Medical Center (IRB numbers: 2018-0574 and 2018-0180).  

 

Whole exome sequencing, variant calling, and variant annotation 

Blood, saliva, or buccal swab samples were collected from each patient, and genomic DNA 

was extracted from each sample. All exon regions of all human genes (~22,000) were 

captured using Agilent SureSelect kits (version C2, December 2018) and sequenced using the 

NovaSeq platform (Illumina, San Diego, USA). Raw genome sequencing data were analyzed 

with an in-house software program; these analyses included alignment to the reference 

sequence (original GRCh37 from NCBI, Feb. 2009) and variant calling and annotation. The 

mean depth of coverage was 100 X (>10 X = 99.2%). 

 

EVIDENCE: Prioritization of variants and symptom suggestion system 

The streamlined variant interpretation software program, EVIDENCE, was developed in-

house to prioritize variants based on each patient’s phenotype and to interpret these variants 

accurately and consistently within approximately five minutes. This system has three major 

steps: variant filtration, classification, and similarity scoring for patient phenotype. In the first 

step, allele frequency was estimated in population genome databases, including gnomAD 

(http://gnomad.broadinstitute.org/), 1000 Genomes (http://www.internationalgenome.org/), 

ESP (https://evs.gs.washington.edu/EVS/), and 3Billion, Inc. Common variants with a minor 

allele frequency >5% were filtered out in accordance with rule BA1 of the ACMG 

guidelines.17 
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In the second step, evidence of the pathogenicity of variants was obtained from disease 

databases, including OMIM (www.omim.org), ClinVar 

(https://www.ncbi.nlm.nih.gov/clinvar/), and UniProt (https://www.uniprot.org/); these 

factors included the function of each gene, the domain of interest, the mechanism of disease 

development, and its inheritance pattern and clinical relevance. The predicted functional or 

splicing effect of each variant and its degree of evolutionary conservation were evaluated 

using several in silico tools, including REVEL, ada, and ra score.18,19 The pathogenicity of 

each variant was evaluated according to the recommendations of the ACMG guidelines.17 In 

the third step, the clinical phenotype of each proband was transformed to its corresponding 

standardized HPO term and was assessed to measure the similarity with each of ~7000 rare 

genetic diseases.20,21 The similarity score between each patient’s phenotype and symptoms 

associated with that disease, caused by prioritized variants according to ACMG guidelines, 

ranged from 0 to 10. The entire process of genetic diagnosis, including processing of raw 

genome data, determining variant prioritization, and measuring the similarity between each 

phenotype and disease, was integrated and automated into a computational framework.  

 

Variant interpretation and confirmation 

Relevant candidate variants, including VUS, based on EVIDENCE, were reviewed and 

selected by medical geneticists. After another examination in the outpatient clinic, the DNA 

of each patient and/or their parents was subjected to Sanger sequencing to confirm the initial 

variant.  

 

Statistical analysis  

All statistical analyses were performed with R studio software (version 3.5.1). Principal 

component analysis (PCA) of symptoms and genetic variations required construction of a 
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patient symptom matrix and a genetic variation matrix for each patient, with entries of 1 for 

patient j having symptom or variant i, and entries of 0 otherwise. All pathogenic variants 

aggregated from the entire patient cohort were used. Ten types of functional variations were 

treated separately, resulting in 1285 combinations of genetic and functional variants. The 

entries in both matrices were calculated using a custom-made program and an Eigen C++ 

linear algebra library, with P < 0.05 considered statistically significant. 

 

Results 

Patient demographics 

The demographic characteristics of the 330 patients are shown in Table 1. Mean ages at 

clinical presentation and at performance of WES were 5.9 ± 12.9 years (range, 0–68 years) 

and 11.9 ± 16.2 years (range, 0–70 years), respectively. Of the 330 patients, 246 (74.5%) 

were under 18 years of age. Patients manifested a broad range of phenotypes across organ 

systems. The average number of systems manifesting phenotypic abnormalities per patient 

was 4.5 ± 5.0. Abnormalities in the nervous system were the most frequent, observed in 60% 

of patients, followed by the musculoskeletal system (53.9%), the head and neck (43.3%), the 

cardiovascular system (26.9%), and the endocrine system and metabolism (24.2%) (Table 1). 

Of the total 16,000 HPO terms, 550 terms were identified in these 330 patients. These terms 

were broadly distributed throughout the genome, with the HPO terms matching patient 

symptoms colored red in the Cytoscape 3.7.1 visualized network (Figure 1). These findings 

indicate that the phenotypes of our patients cover almost the entire range of human disease 

phenotypes described to date. 

Of the 330 patients, 214 (64.8%) underwent genetic testing before WES. Thirty-eight patients 

underwent targeted exome sequencing (including 4813 OMIM genes), and six underwent 

array comparative genome hybridization, respectively, with none showing diagnostic variants. 
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Ninety-three patients underwent single gene testing for monogenic disorders. Other genetic 

tests included karyotyping and/or fluorescence in situ hybridization (n = 131), multiplex 

ligation-dependent probe amplification analyses for chromosomal microdeletion or 

duplication syndromes (n = 45), and mitochondrial full genome sequencing analysis (n = 20). 

All of the tests did not reveal a specific diagnosis in the patients tested. 

 

Diagnostic yield and classification of identified variants  

The number of patients with variants and the identity of these variants are summarized in 

Figure 2. EVIDENCE identified an average of 15.0 ± 8.7 variant-disease pairs per patient, 

according to ACMG guidelines and similarity scores. Medical geneticists and 

bioinformaticians evaluated each candidate variant and selected the variant most closely 

associated with each patient’s phenotype. 

EVIDENCE identified 244 variants, including 131 VUS, in 215 (65.1%) of the 330 patients. 

Among these, 180 variants from 154 patients (46.7%) were assessed by Sanger sequencing 

and familial segregation analysis, with 132 variants in 110 patients (33.3%) confirmed as 

causative. In addition, 64 variants from 61 patients (18.5%) were confirmed based on the 

function of the identified gene and the predicted pathogenicity of the variant, as well its 

frequency in the general population. In summary, 196 variants in 171 patients (51.8%), 

including 115 novel variants, were confirmed as responsible for 146 genetic disorders. The 

remaining 48 variants in 44 patients (13.3%) were not regarded as causative because they 

were inherited from an asymptomatic parent, and the putative gene represented a dominant 

disorder with expected high penetrance or was found in cis pattern in a recessive disorder. 

Rates of diagnosis did not differ significantly in patients who did and did not undergo genetic 

testing before WES (53.3% [114/214] vs. 49.1% [57/116], P = 0.491). 
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The inheritance pattern of identified variants in the 171 patients was autosomal dominant (n = 

120, 70.2%), autosomal recessive (n = 34, 19.9%), and X-linked (n = 17, 9.9%). Of the 196 

confirmed variants, 52 (26.5%) were regarded as de novo, and 39 (19.9%) were assumed to 

be de novo. Forty-seven variants from 25 patients inherited in an autosomal recessive manner 

were detected in a trans pattern.  

According to ACMG guidelines, nine (4.6%) variants were regarded as pathogenic, 98 (50%) 

as likely pathogenic, and 89 (45.4%) as of uncertain significance (Figure 3). After clinical 

assessment, including biochemical tests, imaging analysis and physical examination, 70 

(35.7%) variants were regarded as pathogenic, 48 (24.5%) as likely pathogenic, and 78 

(39.8%) as of uncertain significance, and then after family segregation analysis, 95 (48.5%) 

variants were regarded as pathogenic, 49 (25%) as likely pathogenic, and 52 (26.5%) as of 

uncertain significance. In total, 124 patients (37.6%) had pathogenic or likely pathogenic 

variants. The list of variants and diseases were described in Table S1. 

 

Characteristics of the confirmed variants  

The characteristics of 196 variants confirmed to be disease-causing and the other 48 variants 

regarded as not being disease-causing were compared based on ACMG guidelines and 

symptom similarity. Of the 113 pathogenic or likely pathogenic variants, 107 (95%) were 

confirmed as being causative compared with 89 (67%) of the 131 VUS. Of the 48 variants 

regarded as not being disease-causing, 42 (87.5%) were categorized as being of uncertain 

significance, whereas only six (12.5%) were regarded as likely pathogenic; these six variants 

were found in the asymptomatic parents of a child with an autosomal dominant disorder with 

expected high penetrance. 

Seven items in the ACMG guidelines, PS2, PS3, PS4, PM3, PM6, PP1, and PP4, can be 

checked after segregation analysis, functional determination, and physician assessment. Five 
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items, PVS1, PS1, PM1, PM5, PP2, and PP5, however, had relatively high confirmation rates 

of >90% each (Table 2). 

The average numbers of HPO items in patients without an identified variant, in those with a 

confirmed variant, and in those with a rejected variant were 6.4 ± 5.0, 7.4 ± 5.3, and 9.0 ± 4.9, 

respectively (P > 0.05). There was no significant difference in probability of confirmation of 

a certain variant identified by EVIDENCE among the affected organ types (Table S2). 

However, importantly, the confirmation rate was significantly higher when the similarity 

score of a variant was above than when it was below 5 points (P = 0.032, Figure 4).  

 

Genetic and phenotypic diversity of enrolled patients  

No significant differences were observed in the distribution of clinical symptoms between 

patients with and without a variant identified by EVIDENCE (by 2-dimensional 

Kolmogorov–Smirov test; Figure 5A). A similarity of principal component (PC1) value in 

symptom PCA of two patients implies a similarity in symptoms between these patients 

(Figure 5B). By visual inspection of Figure 5B, we divided patients with identified variants 

into two groups using a PC1 of 0.5 in symptom PCA value as a threshold. Of the 215 patients 

with identified variants, 100 (46.5%) were clustered together in PC1 of symptom PCA 

ranging from 0.5 to 0.93 (13% of total symptom PCA PC1 range). That is, the phenotypes of 

46.5% of the patients covered only 13% of the total symptom PCA space, with the remaining 

53.5% of patients covering the other 87%. The two patient groups had similar diversities of 

genetic variants, as shown by a Student’s t-test of PC1 values of genetic variation PCA (P = 

0.899). 

 

Discussion  
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The EVIDENCE automated interpretation system was found to be useful in the entire WES 

process, including raw data processing, variant prioritization, and measurement of phenotypic 

similarity between patients and suggested candidate diseases. The automated workflow 

provided by this system reduced the total amount of time required for diagnosis from ~20–40 

hours11 to less than 5 minutes.  

The diagnostic yield of EVIDENCE in the present study (51.8%) was higher than that 

previously reported for automated systems (30–35%).9,15,16 This finding was important, as the 

phenotypes of the enrolled patients were quite heterogeneous, broadly dispersed, and not 

limited to certain organ categories. Diagnosis rates over 50% have been reported in the 

absence of an automated system in patients with select disease phenotypes, including hearing 

loss, visual impairment, or abnormalities of the musculoskeletal system, as well as in patients 

in critical condition and in newborns presenting with symptoms.4,8,22 Moreover, in the 

absence of an automated system, a large amount of time was required to interpret a 

significant numbers of variants in each patient.6,11 The results presented here indicate that our 

automated system can diagnose various types of genetic diseases with comparable accuracy, 

but much greater speed, than non-automated analyses. 

The high rate of diagnosis achieved by the automated system may be due to its high 

performance efficiency. Based on the systemic analysis of each variant and the relationship of 

each variant to patient phenotype, the results of this analysis suggested an average of 15 

variants, putatively responsible for a patient’s phenotype. This reduction in variant number 

shortened the time required to select the variant most likely responsible for that patient’s 

phenotype, and it minimized the likelihood of missing the disease-causing variant. 

Another factor responsible for the high diagnostic rate of this automated system was that a 

substantial proportion of the variants suggested by the system were VUSs. These VUSs were 

subsequently tested in family member segregation analysis and phenotype reassessment, as it 
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is unclear whether VUSs are causative variants in the absence of segregation analysis and 

clinical reassessment. Updated information on variants in genome databases can result in 

VUSs being classified as pathogenic or benign.12,23,24 Before family testing and clinical 

reassessment, 28.8% of the patients in our study had variants classified as pathogenic or 

likely pathogenic; after family testing and reassessment, however, 37.6% of our patients had 

these variants. Following segregation analysis and clinical reassessment, 37 (41.6%) of 89 

VUSs were reclassified as pathogenic or likely pathogenic.  

Recently, the Clinical Genome Resource (ClinGen) recategorized variants according to 

ACMG guidelines by focusing on unique features of particular genes or genomic regions.25-30 

Our study applied rules of the ACMG guidelines, such as PVS1, PS1, PM1, and PM5, to 

variant interpretation, focusing on the characteristics of each variant, including the type of 

variant, gene function, and the role of gene domains. The value of applying the PP5 rule to 

the validation process remains unclear, but ACMG guidelines have not been updated to delete 

the PP5 rule.17,31 In our study, the PP5 rule was exclusively applied to those variants that 

were found in non-overlapping sources. Moreover, the elimination of this rule would not 

affect variant classification. 

In variant prioritizing systems, the score of the top-ranked variant increases when patient 

symptoms more precisely match those caused by the responsible gene, and when the number 

of HPO terms of a patient increases.32 The present study found no significant differences in 

the average numbers of HPO terms and organ types between patients in whom causative 

variants have and have not been identified. This finding was probably related to the wide 

range of phenotypes among our patients. By contrast, similarity scores were calculated as 

described with little modification.20,21 Maximal depth of the common ancestor node of two 

symptoms in the HPO tree structure was used instead of its information content because the 

latter depends on symptom-disease mapping data. Notably, we observed that scores ≥5 points 
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were associated with a significantly higher probability of confirmation of a certain variant as 

causative. Because the ancestor HPO term has relatively low accuracy, however, 

improvements in the determination of similarity scores and more detailed description of 

symptoms are required to enhance the accuracy of variant prioritizing systems. 

This study had several limitations. First, most of the patients were pediatric patients. Pediatric 

patients have a higher likelihood of genetic diseases than adults, which may have contributed 

to the relatively high rate of diagnosis in our patient cohort. Second, segregation analysis 

could not be performed in 60 of the 171 patients diagnosed with genetic diseases because 

samples from family members were unavailable. Family testing of all 60 of these patients 

may have altered the diagnosis rate between 33% and 54%. Third, the pathogenicity of VUS 

can be altered by updates in variant information. Finally, the actual causative variant may 

have been missed by the automated system. 

In conclusion, the rate of detection of variants by the automated system did not differ 

significantly in patients who did and did not undergo genetic testing before WES. This 

automated system achieved a high diagnostic yield in patients with a broad range of genetic 

diseases, suggesting that WES may be one of the first diagnostic methods used in patients 

suspected of having a genetic disease, and that the automated system can facilitate the 

diagnostic process. This new method will be available to others (December, 2019, 

https://3billion.io/) and more advanced and updated analytic tools will allow the efficiency of 

this system to be evaluated in a larger patient cohort. 
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Figure Legends 

Figure 1. Distribution of Human phenotype ontology (HPO) terms and patient symptoms in 

the 330 patients (green dots: 16,000 HPO terms; red dots: patient symptoms). 

Figure 2. Schematic diagram showing the number of patients with and without variant 

identification and segregation analysis. 

Figure 3. Distribution of the likely pathogenicity of identified variants by EVIDENCE before 

segregation analysis, after addition of PP4, and after segregation analysis.  

 Figure 4. Distribution of symptom similarity scores of patient phenotypes and genetic 

phenotypes suggested by the automated system.  

* P < 0.05 

Figure 5. (A) Distribution of patients in symptom space. (B) Distribution of patients with 

identified variants in symptom and genetic variation space. 
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Supplementary Table 1. Detailed information about the 196 confirmed variants in 171 

patients 

Supplementary Table 2. Confirmation rate according to the type of involved organ of patients 

with confirmed and rejected variant 
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