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Abstract

Complex brain networks are increasingly characterized at different scales, including global

summary statistics, community connectivity, and individual edges. While research relating

brain networks to demographic and behavioral measurements has yielded many insights into

brain-phenotype relationships, common analytical approaches only consider network infor-

mation at a single scale, thus failing to incorporate rich information present at other scales.

Here, we designed, implemented, and deployed Multi-Scale Network Regression (MSNR), a

penalized multivariate approach for modeling brain networks that explicitly respects both

edge- and community-level information by assuming a low rank and sparse structure, both

encouraging less complex and more interpretable modeling. Capitalizing on a large neu-

roimaging cohort (n = 1, 051), we demonstrate that MSNR recapitulates interpretable and

statistically significant association between functional connectivity patterns with brain de-

velopment, sex differences, and motion-related artifacts. Notably, compared to single-scale

methods, MSNR achieves a balance between prediction performance and model complexity,

with improved interpretability. Together, by jointly exploiting both edge- and community-
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level information, MSNR has the potential to yield novel insights into brain-behavior rela-

tionships.

Keywords: multivariate analysis, network neuroscience, functional connectivity

1. Introduction

Studying brain-phenotype relationships in high-dimensional connectomics is an active

area of research in neuroscience (Bassett and Sporns 2017; Bzdok et al. 2016). The advent

of large neuroimaging datasets that provide measures of brain connectivity for unprecedented

numbers of subjects have yielded novel insights into development and aging, cognition, and

neuropsychiatric illnesses (Biswal et al. 2010; Van Essen et al. 2012; Bzdok and Yeo 2017;

Schumann et al. 2010; Jernigan et al. 2016). As the availability of datasets with rich neural,

genetic, and behavioral measurements from large numbers of subjects continues to increase,

there is a growing need for statistical methods that are tailored for the discovery of complex

relationships between brain networks and phenotypes (Craddock, Tungaraza, and Milham

2015; Varoquaux and Craddock 2013).

A typical brain network consists of hundreds of nodes that denote brain regions, and

tens of thousands of edges that indicate connections between pairs of nodes (Rubinov and

Sporns 2009). The network can be viewed on the micro-scale, meso-scale, or macro-scale.

The micro-scale of the network can be characterized by features of its edges. The macro-

scale of the network can be characterized by global features such as characteristic path length

and global efficiency (Rubinov and Sporns 2009). The meso-scale falls in between the micro-

scale and macro-scale, and includes the communities that make up the network (Sporns and

Betzel 2016; Betzel, Medaglia, and Bassett 2018). A community refers to a collection of

nodes that are highly connected to each other and have little connection to nodes outside

of the community. Prior work has demonstrated that brain network architecture present on

these different scales is associated with development and aging (Power et al. 2010; Gu et

al. 2015; Betzel et al. 2014), cognition (Crossley et al. 2013; Park and Friston 2013; Bressler
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and Menon 2010), and neuropsychiatric diseases (Yu et al. 2019; Braun et al. 2016; Fornito,

Zalesky, and Breakspear 2015; Grillon et al. 2013; Bassett, Xia, and Satterthwaite 2018;

Xia et al. 2018; Kernbach et al. 2018).

Despite increasing appreciation that multi-scale organization of the brain may be respon-

sible for some of its major functions (Betzel and Bassett 2017; Bassett and Siebenhühner

2013), thus far, common strategies for studying the relationship between brain connectivity

and phenotypes tend to consider network features at a single scale (Craddock, Tungaraza,

and Milham 2015; Varoquaux and Craddock 2013). For example, a popular single-scale

strategy focuses on group-level comparisons of individual connections in brain networks

(Grillon et al. 2013; Fornito, Zalesky, and Breakspear 2015; Bressler and Menon 2010). This

approach typically involves performing a statistical test on each network edge. While this

procedure is easy to implement, several drawbacks limit its effectiveness (Bzdok and Ioan-

nidis 2019). Two main limitations are the need to account for multiple comparisons, and a

lack of interpretability (Craddock, Tungaraza, and Milham 2015; Varoquaux and Craddock

2013). To achieve high power while minimizing the risk of false positives, alternative edge-

based methods have been developed, such as the network-based statistic (Zalesky, Fornito,

and Bullmore 2010) and multivariate distance matrix regression (Zapala and Schork 2012).

While these strategies have yielded important insights, they nonetheless focus exclusively

on the micro-scale, often producing results that are difficult to interpret and that do not

exploit the multi-scale information present in the brain networks.

Given the importance of community structure in brain networks and its interpretability in

the context of neural and cognitive computations (Sporns and Betzel 2016; Betzel, Medaglia,

and Bassett 2018), it might be tempting to conduct a mass-univariate analysis at the meso-

scale, considering within- and between-community connectivity as the input features (Yu

et al. 2019; Betzel et al. 2014; Gu et al. 2015; Braun et al. 2016). Such an approach

dramatically reduces the dimensionality of the data, which in turn decreases the burden of

multiple comparisons correction. A community-based approach also has the added benefit of

not having to deconstruct the connectivity matrix into vectors, as in an edge-based approach,

which inevitably disrupts the innate data structures. However, summarizing thousands of
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edges as one single number to represent the connection within or between communities can

be problematic, especially for large communities such as the default mode network, whose

edges are spatially distributed across the anterior and posterior portions of the brain as well

as across both medial and lateral surfaces (Raichle 2015). Stated differently, extracting the

mean connectivity at the community level risks mixing disparate signals.

In this paper, we introduce Multi-Scale Network Regression (MSNR), which simultane-

ously incorporates information across multiple scales in order to reveal associations between

high-dimensional connectomic data and phenotypes of interest. We first describe the MSNR

model and introduce an algorithm to estimate the parameters. Next, we capitalize on one

of the largest neurodevelopmental imaging cohorts, the Philadelphia Neurodevelopmental

Cohort (PNC), to empirically assess the ability of MSNR in delineating brain connectivity

patterns that are associated with a wide variety of phenotypes. Importantly, we conduct

head-to-head comparisons between MSNR and common edge- and community-based anal-

yses that are based on single-scale strategies, and show that MSNR achieves a balance

between prediction performance and interpretability by considering information at multiple

network scales.

2. Statistical Methodology

2.1. A Statistical Model for Multi-Scale Network Regression

Given n subjects, let A1, . . . , An ∈ Rp×p denote the adjacency matrices corresponding

to their brain networks, where p is the number of nodes. For instance, Ai
jj′ could represent

the Pearson correlation of the mean activation timeseries of two brain regions, a common

measure of functional connectivity, between the j-th and j′-th nodes for the i-th subject.

Furthermore, we assume that the p nodes can be partitioned into K distinct communities

C1, . . . , CK that are known a priori : ∪K
k=1Ck = {1, . . . , p}, Ck ∩ Ck′ = ∅ if k 6= k′. The

notation j ∈ Ck indicates that the j-th node is in the k-th community. Moreover, for each

subject, q covariates have been measured, so that Xi =
(
X1

i X2
i . . . Xq

i

)T
∈ Rq is a

covariate vector for the i-th subject, i = 1, . . . , n.
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In what follows, we consider the model

Ai
jj′ = Θjj′ +

q∑
f=1

Xf
i ·

(
K∑
k=1

K′∑
k′=1

Γf
kk′1(j∈Ck,j′∈Ck′ )

)
+ εijj′ , i = 1, . . . , n, j, j′ = 1, . . . , p, (1)

where εijj′ is a mean-zero noise term, and εijj′ = εij′j. The matrix Θ is a symmetric p×p matrix

that summarizes the mean connectivity (across all of the subjects) of each pair of nodes, in

the absence of covariates. Finally, for f = 1, . . . , q, Γf is a symmetric K ×K matrix that

quantifies the association between the f -th feature and the connectivity between each pair

of communities. For instance, a one-unit increase in Xf
i is associated with a Γf

kk′ increase in

the mean connectivity between nodes in the k-th and k′-th communities.

We now define a p×K matrix W for which Wjk = 1(j∈Ck), where 1(·) denotes an indicator

variable. As such, (1) can be re-written as

Ai = Θ +

q∑
f=1

Xf
i ·
(
WΓfW T

)
+ εi, i = 1, . . . , n. (2)

In order to fit the model (2), we make two assumptions about the structures of the unknown

parameter matrices Θ and Γ1, . . . ,Γq.

Assumption 1: Θ has low rank (Smith et al. 2015; Leonardi et al. 2013; Li et al. 2009).

That is, Θ = V V T where V is a p × d matrix, for a small positive constant d. This

means that the p nodes effectively reside in a reduced subspace of d dimensions. The

mean connectivity between any pair of nodes is simply given by their inner product in

this low-dimensional subspace.

Assumption 2: Γ1, . . . ,Γq are sparse (Meunier, Lambiotte, and Bullmore 2010; New-

man 2006; Xia et al. 2018). That is, most of their elements are exactly equal to zero. If

Γf
kk′ = 0, then the value of the f -th feature is unassociated with the mean connectivity

between nodes in the k-th and k′-th communities.

We note that Assumption 1 is closely related to the random dot product graph model and
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Figure 1: A schematic for Multi-Scale Network Regression. Under model (2), Ai is the adjacency
matrix for the i-th subject, Θ is a low-rank matrix representing the mean connectivity across all subjects,
Γ1, . . . ,Γq are sparse matrices representing the community-level connectivity associated with the covariates
(X1

i , . . . , X
q
i ), and εi is the noise.

similar models (Fosdick and Hoff 2015; Durante, Dunson, and Vogelstein 2017; Durante and

Dunson 2018; Tang et al. 2017; Young and Scheinerman 2007), whereas Assumption 2 is

a standard sparsity assumption for high-dimensional regression (Tibshirani 1996; Hastie et

al. 2015; Hastie, Tibshirani, and Friedman 2008). Under these two assumptions, a schematic

of the model (2) can be seen in Fig. 1.

Model (2) is closely related to both the stochastic block model (Choi, Wolfe, and Airoldi

2012) and the random dot product graph model (Young and Scheinerman 2007). In par-

ticular, if Θ = 0, q = 1, and X1
i = 1 for i = 1, . . . , n, then (2) reduces to a stochastic

block model with known communities C1, . . . , CK . And if Γ1 = . . . = Γq = 0 and As-

sumption 1 holds, then (2) reduces to a random dot product graph model. However, unlike

those two models, model (2) explicitly allows for the mean of the adjacency matrix to be a

function of covariates, and effectively incorporates both edge- and community-level network

information.

2.2. Optimization Problem

We now consider the task of fitting model (2), under Assumptions 1 and 2. It is natural

to consider the optimization problem

minimize
Θ,Γ1,...,Γq


n∑

i=1

∥∥∥∥∥Ai −

(
Θ +

q∑
f=1

Xf
i ·
(
WΓfW T

))∥∥∥∥∥
2

F

+ λ1rank(Θ) + λ2

q∑
f=1

‖Γf‖0

}
, (3)
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where the notation ‖ · ‖2
F indicates the squared Frobenius norm of a matrix, i.e. ‖D‖2

F =∑p
j=1

∑p
j′=1 D

2
jj′ , and the notation ‖ · ‖0 indicates the element-wise cardinality (or `0 norm)

of a matrix, i.e. ‖D‖0 =
∑p

j=1

∑p
j′=1 1(Djj′ 6=0). In (3), λ1 and λ2 are non-negative tuning

parameter values that control the rank of Θ and the sparsity of Γ1, . . . ,Γq, respectively.

Unfortunately, due to the presence of the rank and `0 penalties, the optimization problem

(3) is highly non-convex, and no efficient algorithms are available to solve it. Thus, in what

follows, we will consider an alternative to (3), which results from replacing the non-convex

rank and `0 penalties in (3) with their convex relaxations. This reformulation of the objective

function leads to the optimization problem

minimize
Θ,Γ1,...,Γq


n∑

i=1

∥∥∥∥∥Ai −

(
Θ +

q∑
f=1

Xf
i ·
(
WΓfW T

))∥∥∥∥∥
2

F

+ λ1‖Θ‖∗ + λ2

q∑
f=1

‖Γf‖1

}
. (4)

In (4), the notation ‖ · ‖∗ indicates the nuclear norm of a matrix, i.e. the sum of its singular

values (Fazel 2002; Recht, Fazel, and Parrilo 2010; Bien and Witten 2016). The nuclear

norm is a convex surrogate for the rank of a matrix. The notation ‖ · ‖1 indicates the

element-wise `1 norm of a matrix, i.e. ‖D‖1 =
∑p

j=1

∑p
j′=1 |Djj′|; this is a convex relaxation

of the `0 norm (Tibshirani 1996; Hastie et al. 2015; Hastie, Tibshirani, and Friedman 2008).

In (4), the non-negative tuning parameters λ1 and λ2 encourage Θ and Γ1, . . . ,Γq to be

low-rank and sparse, respectively.

Importantly, the optimization problem (4) is convex, and so fast algorithms are available

to solve it for the global optimum. In Section 2.3, we derive a block coordinate descent

algorithm for solving (4).

2.3. Block Coordinate Descent Algorithm to Solve (4)

We now derive a block coordinate descent algorithm for solving (4) (Tseng 2001; Hastie,

Tibshirani, and Friedman 2008; Bien and Witten 2016; Friedman et al. 2007). Roughly

speaking, we will cycle through the parameters Θ and Γ1, . . . ,Γq, and minimize the objective

(4) with respect to each one in turn, holding all others fixed. Because the loss function is

differentiable and the penalties are separable with respect to each block of parameters, this
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approach is guaranteed to reach the global optimum. The algorithm is as follows:

1. Initialize a p× p matrix Θ̂, and K ×K matrices Γ̂1, . . . , Γ̂q.

2. Iterate until convergence:

(a) Update Θ by minimizing (4) with respect to Θ, holding Γ̂1, . . . , Γ̂q fixed:

Θ̂← argmin
Θ


n∑

i=1

∥∥∥∥∥Ai −

(
Θ +

q∑
f=1

Xf
i ·
(
W Γ̂fW T

))∥∥∥∥∥
2

F

+ λ1‖Θ‖∗

 . (5)

(b) For f = 1, . . . , q, update Γf by minimizing (4) with respect to Γf , holding Θ̂ and

Γ̂1, . . . , Γ̂f−1, Γ̂f+1, . . . , Γ̂q fixed:

Γ̂f ← argmin
Γf


n∑

i=1

∥∥∥∥∥∥Ai −

Θ̂ +
∑
f ′ 6=f

Xf ′

i ·
(
W Γ̂f ′

WT
)

+Xf
i ·
(
WΓfWT

)∥∥∥∥∥∥
2

F

+ λ2‖Γf‖1

 .

(6)

Both (5) and (6) are convex optimization problems, for which closed form solutions are

available, as detailed in the following propositions. These propositions make use of the

soft-thresholding operator, defined as

S(a, b) = max (|a| − b, 0) sign(a), (7)

and applied to each element of the matrix.

Proposition 1.

Ãi ≡ Ai −
q∑

f=1

Xf
i ·
(
W Γ̂fW T

)
,

and let UDV T denote the singular value decomposition of 1
n

∑n
i=1 Ã

i: that is, 1
n

∑n
i=1 Ã

i =

UDV T , where U and V are p × p matrices, UTU = UUT = V TV = V V T = I, and D is

a diagonal matrix with non-negative elements on the diagonal. Then, the solution to the

optimization problem (5) is

Θ̂ = US(D,λ1/(2n))V T ,
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where the soft-thresholding operator defined in (7) is applied element-wise.

Let pk ≡ |Ck|, the cardinality of the kth community; note that
∑K

k=1 pk = p.

Proposition 2.

Let Wj denote the jth row of the matrix W . For f = 1, . . . , q, define

A
i

jj′ ≡ Ai
jj′ − Θ̂jj′ −

∑
f ′ 6=f

Xf ′

i ·
(
W T

j Γ̂f ′
Wj′

)
,

ỹfkk′ ≡
∑

j∈Ck

∑
j′∈Ck

∑n
i=1 A

i

jj′ ·X
f
i∑n

i=1

(
Xf

i

)2

pkpk′
,

and

λ̃fkk′ ≡
λ2∑n

i=1

(
Xf

i

)2

pkpk′
.

Then, the solution to the optimization problem (6) is of the form

Γ̂f
kk′ = S

(
ỹfkk′ , λ̃

f
kk′/2

)
.

Proofs of Propositions 1 and 2 are provided in the Appendix.

2.4. Code Availability

An implementation of the algorithm described above is available in R at bitbucket.

org/rshinohara/networkregression.

3. Methods

3.1. Philadelphia Neurodevelopmental Cohort

Resting-state functional magnetic resonance imaging (rs-fMRI) datasets were acquired

as part of the Philadelphia Neurodevelopmental Cohort (PNC), a large community-based

study of brain development (Satterthwaite et al. 2014). In total, 1601 participants completed

the cross-sectional neuroimaging protocol. Of these participants, 154 were excluded for
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meeting any of the following criteria: gross radiological abnormalities, history of medical

problems that might affect brain function, history of inpatient psychiatric hospitalization,

use of psychoactive medications at the time of data acquisition. Of the remaining 1447

participants, 51 were excluded for low quality or incomplete FreeSurfer reconstruction of

T1-weighted images. Of the remaining 1396 participants, 381 were excluded for missing

rs-fMRI, voxelwise coverage or excessive motion, which is defined as having an average

framewise motion of more than 0.20mm and more than 20 frames exhibiting over 0.25mm

movement (using calculation from (Jenkinson et al. 2002)). These exclusions produced a final

sample consisting of 1015 youth (mean age 15.78, SD = 3.34; 461 males and 554 females).

3.2. Imaging Acquisition

Structural and functional imaging data were acquired on a 3T Siemens Tim Trio scanner

with a 32-channel head coil (Erlangen, Germany), as previously described (Satterthwaite et

al. 2014; Satterthwaite et al. 2016). High-resolution structural images were acquired in order

to facilitate alignment of individual subject images into a common space. Structural images

were acquired using a magnetization-prepared, rapid-acquisition gradient-echo (MPRAGE)

T1-weighted sequence (TR = 1810ms; TE = 3.51ms; FoV = 180×240mm; resolution 0.9375×

0.9375×1mm). Approximately 6 minutes of task-free functional data were acquired for each

subject using a blood oxygen level-dependent (BOLD-weighted) sequence (TR = 3000ms;

TE = 32ms; FoV = 192×192mm; resolution 3mm isotropic; 124 volumes). Prior to scanning,

in order to acclimatize subjects to the MRI environment and to help subjects learn to

remain still during the actual scanning session, a mock scanning session was conducted

using a decommissioned MRI scanner and head coil. Mock scanning was accompanied by

acoustic recordings of the noise produced by gradient coils for each scanning pulse sequence.

During the mock scanning sessions, feedback regarding head movement was provided using

the MoTrack motion tracking system (Psychology Software Tools, Inc, Sharpsburg, PA).

To further minimize motion, prior to data acquisition subjects’ heads were stabilized in the

head coil using one foam pad over each ear and a third over the top of the head. During

the resting-state scan, a fixation cross was displayed as images were acquired. Subjects were
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Figure 2: A schematic for MSNR model training and evaluation. a) MSNR is designed to study
the brain connectivity-phenotype relationship by taking into account both edge- and community-level in-
formation. The model takes in a n × p × p matrix, where n is the number of subjects and where p is the
number of nodes in each symmetric adjacency matrix. The nodes belong to K communities, determined a
priori. b) 20% (n = 202) of the total sample (n = 1, 015) were randomly selected as the left-out validation
data. We conducted five-fold cross-validation to select the values of the tuning parameters λ1 and λ2, which
were applied to the nuclear norm penalty on the mean connectivity matrix (Θ) and the `1 norm of the
community-level connectivity-covariate relationship matrices (Γ1, . . . ,Γq), respectively. c) The model was
then trained using the tuning parameters determined in b) on the 80% (n=813) of the total data not in the
left-out validation set. Out-of-sample prediction error was then calculated as the Frobenius norm of the dif-
ference between the known and estimated connectivity matrices on the validation set. d) We also evaluated
the final model through a permutation procedure, where we broke the linkage between brain connectivity
and covariate data to generate a null distribution of out-of-sample prediction error.

instructed to stay awake, keep their eyes open, fixate on the displayed crosshair, and remain

still.

3.3. Structural Pre-Processing

A study-specific template was generated from a sample of 120 PNC subjects balanced

across sex, race, and age using the buildTemplateParallel procedure in ANTs (Avants

et al. 2011a). Study-specific tissue priors were created using a multi-atlas segmentation
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procedure (Wang et al. 2013). Next, each subject’s high-resolution structural image was

processed using the ANTs Cortical Thickness Pipeline (Tustison et al. 2014). Following

bias field correction (Tustison et al. 2010), each structural image was diffeomorphically

registered to the study-specific PNC template using the top-performing SyN deformation

(Klein et al. 2009). Study-specific tissue priors were used to guide brain extraction and

segmentation of the subject’s structural image (Avants et al. 2011b).

3.4. Functional Pre-Processing

Task-free functional images were processed using the XCP Engine (Ciric et al. 2017),

which was configured to execute a top-performing pipeline for removal of motion-related

variance (Ciric et al. 2018). Preprocessing steps included (1) correction for distortions in-

duced by magnetic field inhomogeneities using FSL’s FUGUE utility, (2) removal of the 4

initial volumes of each acquisition, (3) realignment of all volumes to a selected reference

volume using mcflirt (Jenkinson et al. 2002), (4) removal of and interpolation over in-

tensity outliers in each voxel’s time series using AFNI’s 3Ddespike utility, (5) demeaning

and removal of any linear or quadratic trends, and (6) co-registration of functional data to

the high-resolution structural image using boundary-based registration (Greve and Fischl

2009). Confounding signals in the data were modelled using a total of 36 parameters, in-

cluding the 6 framewise estimates of motion, the mean signal extracted from eroded white

matter and cerebrospinal fluid compartments, the mean signal extracted from the entire

brain, the derivatives of each of these 9 parameters, and the quadratic terms of each of the

9 parameters and their derivatives. Both the BOLD-weighted time series and the artefac-

tual model time series were temporally filtered using a first-order Butterworth filter with a

passband between 0.01 and 0.08 Hz (Hallquist, Hwang, and Luna 2013).

3.5. Network Construction

We used a common parcellation of cortical and subcortical tissue into 264 regions (Power

et al. 2011). The functional connectivity between any pair of brain regions was opera-

tionalised as the Pearson correlation coefficient between the mean activation timeseries ex-

tracted from those regions. We encoded the pattern of functional connectivity in a formal
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network model in which nodes represent regions and edges represent functional connections.

We assigned each region to one of 13 a priori communities (Power et al. 2011) that were

delineated using the Infomap algorithm (Rosvall and Bergstrom 2008) and replicated in

an independent sample. We excluded 28 nodes that were not sorted into any community,

therefore resulting in the final p = 236 and K = 13. This parcellation was selected for our

analysis as it has been previously used for studying individual differences in brain connectiv-

ity, including those related to brain development (Gu et al. 2015; Satterthwaite et al. 2012),

sex differences (Satterthwaite et al. 2015b), and in-scanner motion (Ciric et al. 2017).

3.6. Cross-Validation

We first randomly selected 20% of the total sample (n = 1, 015) to serve as the left-out

validation set (n = 202). We then performed five-fold cross validation on the remaining 80%

of the sample (n = 813) in order to select the values of the tuning parameters λ1 and λ2 for

MSNR (James et al. 2013). In each fold, the independent variables (Xn×q) were centered

to a mean of zero and scaled by each column’s standard deviation. The prediction error

used in cross-validation was the Frobenius norm of the difference between estimated and

true connectivity matrices in the test set, ‖Ai− Âi‖2
F . We ensured that the prediction error

was independent of the sample size by using the average prediction error over all subjects

in the test set.

3.7. Permutation Procedure

To estimate the distribution of the prediction error under the null hypothesis of no

association between functional connectivity and phenotype, we permuted the rows of the

covariate matrix Xn×q. For each permutation, we tuned λ1 and λ2 using cross-validation,

and calculated the prediction error in the left-out validation set. The p-value was defined to

be the proportion of prediction errors among the 1, 000 permuted datasets that are smaller

than the prediction error on the observed data,

ppermutation =

∑1000
i=1 1(ei≤ē)

1000
, (8)
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where e1, . . . , e1000 denote the prediction errors on the 1, 000 permuted data sets, and ē

denotes the prediction error on the original data. Here, 1(A) is an indicator variable that

equals 1 if the event A holds, and 0 otherwise.

3.8. Comparison to Single-Scale Approaches

We compared the performance of MSNR to two of the most commonly used single-scale

network regression analyses, namely the individual edge model (Grillon et al. 2013; Lewis

et al. 2009) and the community mean model (Yu et al. 2019; Betzel et al. 2014; King

et al. 2018; Yan et al. 2019). These two approaches have been commonly used to study

connectivity-phenotype relationships (Craddock, Tungaraza, and Milham 2015; Varoquaux

and Craddock 2013) and differ primarily in the scale at which the brain network is examined

(Fig.3). We describe each model in detail below.

Individual edge model . We vectorized the upper triangle of the adjacency matrix Ai

for the i-th subject, i = 1, . . . , n, in order to create a n × p(p − 1)/2 matrix. For

each of the p(p − 1)/2 columns of this matrix, we fit a linear regression in order to

model that column using three covariates: age, sex, and in-scanner motion (Fig.3a).

Specifically, we built a linear model for each edge using the mgcv package in R, with

the formula edge ∼ age + sex+ motion (Wood 2017) (Fig.3b). The model included

a penalization on roughness, and we recast the problem as a mixed effect model in

order to estimate the penalty parameter via restricted maximum likelihood, or REML

(Wood 2011; Wood, Pya, and Säfken 2016). We corrected the results for multiple

comparisons using the false discovery rate (FDR, q < 0.05, (Storey 2002) and reshaped

the p(p−1)/2 columns to a p×p matrix in order to visualize significant coefficients. To

calculate out-of-sample prediction error, we used linear models fit for all edges. The

prediction error was calculated in the same way as in MSNR.

Community mean model . Community-based linear models were built with mean

within- and between-community connectivity as the dependent variables. The within-
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community connectivity is defined as ∑
j,j′∈Ck

Ai
jj′

|Ck| × (|Ck| − 1)
, (9)

where Ai
j,j′ is the weighted edge strength between node j and node j′, both of which

belong to the same community Ck, for the i-th subject. The cardinality of the commu-

nity assignment vector, |Ck|, represents the number of nodes in the k-th community.

The between-community connectivity is defined as∑
j∈Ck,j′∈Ck′

Ai
jj′

|Ck| × |Ck′|
, (10)

where Ck and Ck′ represent two different communities, and |Ck| and |C ′k| are the

number of nodes in each community, respectively.

By applying (9) and (10) to each subject, we created a n × [K(K − 1)/2 + K] matrix.

For each of the K(K−1)/2+K columns of this matrix, we fit a linear model to predict that

column using three covariates: age, sex, and in-scanner motion. Similar to the edge-based

model, we built a linear model for each edge using the mgcv package in R, with the formula

community ∼ age + sex+ motion (Wood 2017) and with roughness penalty estimation

performed by REML (Wood 2011; Wood, Pya, and Säfken 2016) (Fig.3b). We corrected

the results for multiple comparisons using the false discovery rate (FDR, q < 0.05, (Storey

2002)) and reshaped the K(K − 1)/2 +K columns to a K ×K matrix in order to visualize

significant coefficients. To calculate out-of-sample prediction error, we used linear models

fit for all communitinies. The prediction error was calculated in the same way as in MSNR.

3.9. Simulation Study

We used the Brain Connectivity Toolbox (Rubinov and Sporns 2009) to create random

modular small-world adjacency matrices of dimension p×p with specified community assign-

ments (K = 4) representing the edge-level information. These adjacency matrices were then
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Figure 3: Benchmarking MSNR against common single-scale approaches. (a) On the PNC data, we
considered prediction of out-of-sample connectivity matrices from age, sex, and in-scanner motion. Specif-
ically, input network data were n × p × p connectivity matrices of n subjects with p nodes sorted a priori
into K communities. Additionally, covariate data were a n× q matrix of q measurements, with each column
centered with zero mean and scaled by its standard deviation. (b) Specifically, we compared MSNR to two
common network analysis approaches that only consider informtion present on a single scale. Linear mod-
els were fit for each edge or community connectivity for the individual edge and community mean model,
respectively.

used as the ground truth mean connectivity in simulated data, Θ0. We also created sparse

K ×K matrices Γ1
0, . . . ,Γ

q
0, representing ground truth community-level brain-phenotype re-

lationships. We constructed the ground truth adjacency matrix for the ith observation as

Ai
0 = Θ0 + γ

∑q
f=1X

f
i · (WΓf

0W
T ), where the elements Xf

i were independently generated

from a normal distribution, scaled by a factor of γ to represent the effect size. Then, we

generated the observed connectivity matrix Ai = Ai
0 + εi for a noise matrix εi.

We created synthetic data with varying characteristics, such as different numbers of nodes

(p ∈ {32, 64, 128}), sample sizes (n ∈ {50, 100, 150}), effect sizes (γ ∈ {0, 0.1, 0.5, 1}), and

noise levels (ε ∈ {0.1, 0.5, 1}), for a total of 108 combinations of these parameters. For each

combination, we generated three equally-sized sets, for training, testing, and validation.
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Tuning parameters λ1 and λ2 were selected using the training and testing sets, and the

out-of-sample prediction error was computed on the validation set.
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Figure 4: Tuning parameter selection and model evaluation of MSNR in a real-world large neu-
roimaging dataset. a) We used five-fold cross-validation to estimate the test prediction error associated
with various values of λ1 and λ2. b) After the initial search, we conducted another search on a finer scale,
focusing on the range of λ1 and λ2 indicated by the dashed-line box. c) The optimal tuning parameter
values were found to be λ1 = 5.76 and λ2 = 135. No boundary effect was observed in the grid search,
revealing a smooth convex landscape for the objective, also visualized in d), with warmer color indicating
lower prediction error. e) The permutation procedure indicated that MSNR fit to the original data signifi-
cantly outperformed MSNR fit to permuted data, with a out-of-sample prediction error about six standard
deviations below the mean of the null distribution (p < 0.001).

4. Results

4.1. MSNR Shows High Accuracy in a Large Developmental Sample

We applied MSNR to data from the Philadelphia Neurodevelopmental Cohort (PNC)

(Satterthwaite et al. 2014) in order to delineate known meaningful brain-phenotype relation-

ships. In total, we studied n = 1, 015 participants aged 8-22 who completed resting state

functional neuroimaging as part of the PNC. We constructed functional connectivity matri-

ces from a commonly-used parcellation scheme (p = 236 nodes) and community membership

assignment (K = 13 communities) (Power et al. 2011) (Fig.2A). We first randomly selected

20% of the total sample as the left-out validation set (n = 202), with which we assessed
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the prediction performance of all subsequent models (Fig.2B). The prediction performance

was defined as the Frobenius norm of the difference between the observed and estimated

adjacency matrices in the validation set (Fig.2C). For this proof-of-concept empirical study,

we examined the association of functional connectivity with age, sex, and in-scanner mo-

tion. On the remaining 80% of the observations, we selected tuning parameters, λ1 and

λ2, through five-fold cross-validation (Fig.2B). We iteratively refined the cross-validation

grid (Fig.4A-C) in order to obtain the optimal tuning parameter values. Importantly, no

boundary effect was observed during successive grid searches, revealing a smooth convex

landscape for the objective (Fig.4D).
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Figure 5: MSNR describes meaningful individual differences in brain connectivity. a) More
within-community, rather than between-community, connectivity strengthened as the age increased. Con-
versely, more between-community, rather than within-community, connectivity weakened over age. b)
Stronger within-community than between-community connectivity was more representative of male func-
tional brain networks, whereas stronger between-community than within-community connectivity was more
representative of female functional brain networks. c) Coefficient for in-scanner motion was negatively
correlated with the average Euclidean distance between communities (p < 0.001).

We subsequently evaluated the model’s out-of-sample prediction error on the validation

set. The prediction error on the unseen data was comparable to the average error in the

cross-validation procedure, indicating MSNR did not overfit to the training data (Fig.4E). In

addition, to determine the statistical significance of the model, we performed a permutation

test to compare the model’s prediction error to the distribution of prediction errors under

the null hypothesis of no association between brain networks and the predictors (Fig.4E).

Specifically, we permutted the rows of the covariate data matrix 1000 times, which disrupted

the linkage between functional connectivity and phenotypes, while preserving the covariance
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structure of the covariates. For each permutation, we repeated the process of selecting tuning

parameter values by cross-validation. The permutation procedure indicated that MSNR fit

to the original data significantly outperformed MSNR fit to permuted data, with a out-

of-sample prediction error of about six standard deviations below the mean of the null

distribution (p < 0.001).

4.2. MSNR Recapitulates Known Individual Differences in Functional Connectivity

Next, we investigated the connectivity-phenotype relationships that are summarized in

the matrices Γ1, Γ2, and Γ3 of the MSNR model. We counted the number of positive

and negative coefficients within each estimated matrix; these represent, respectively, posi-

tive and negative associations between community pair connectivity with age, sex, and in-

scanner motion (Fig.5). Consistent with the previous literature (Satterthwaite et al. 2013;

Gu et al. 2015), we found that as age increased, there were more within-, rather than

between-community pairs that strengthened connectivity with age (Fig.5A). Conversely, as

age increased, there were more between-, rather than within-community pairs that weak-

ened with age. This pattern of results suggests that functional brain networks tend to

segregate during normative brain development. Replicating findings from a previous report

using mass-univariate analyses (Satterthwaite et al. 2015a), here we observed that stronger

within-community connectivity, rather than between-community connectivity, was more rep-

resentative of functional brain networks in males; whereas stronger between-community

connectivity, rather than within-community, was more representative of functional brain

networks in females (Fig.5B). Finally, following on prior studies, we evaluated the degree

to which the association between in-scanner motion and connectivity varied by inter-node

distance, defined as the Euclidean distance between two spherical brain parcellations in the

MNI space (Brett, Johnsrude, and Owen 2002) (Fig.5C). As expected, the MSNR coefficients

for in-scanner motion in relation to functional connectivity were negatively correlated with

the distances between pairs of communities. In other words, when two brain regions were

close together, the presence of in-scanner motion was typically associated with an increase

in their connectivity. This finding is consistent with prior reports that in-scanner motion in-
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Figure 6: MSNR achieves a balance between out-of-sample prediction performance and model
interpretability compared to common single-scale mass-univariate approaches. a) We compared
out-of-sample prediction performance of MSNR to edge- and community-based single-scale approaches. The
community-based approach performed poorly, while the edge-based approach and MSNR had similar out-of-
sample prediction error. All models fitted in mass-univariate approaches were used to calculate prediction
error. b) MSNR coefficients in Γ1, Γ2, Γ3, correspond to age, sex, and in-scanner motion, respectively.
Warm colors indicate increased connectivity and cold colors indicate decreased connectivity as the covariate
increased. White color indicates zero values. Results from single-scale models were visualized in c) for
edge-based and in d) for community-based approaches. Multiple comparisons were corrected using FDR.
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duces a distance-dependent bias in the estimation of functional connectivity (Satterthwaite

et al. 2012; Ciric et al. 2017).

4.3. Comparison With Typical Mass-Univariate Single-Scale Strategies

Next, we compared MSNR to common single-scale mass-univariate approaches that make

use of linear models at the edge-level or at the community-level (Fig.6). We computed the

out-of-sample performance of two single-scale approaches using the left-out validation set.

The prediction error of the community-based model on the validation set was poor, whereas

that of the edge-based model was similar to MSNR (Fig.6A). Our estimation of predic-

tion error for edge- and community-based models were likely to be overly optimistic, since

we used all fitted models for the purpose of out-of-sample prediction. Next, we examined

the interpretability of coefficients obtained in each model after applying FDR correction to

control for multiple comparisons in single-scale approaches. We found that while the edge-

based model and MSNR achieved similar out-of-sample prediction, coefficients estimated in

MSNR (Fig.6B) were more interpretable than the coefficients estimated from edge-based

models (Fig.6C). The number of coefficients in edge-based models for each covariate ex-

ceeded that of MSNR by three orders of magnitude. On the other hand, at the expense of

higher prediction error, community-based models exhibited a level of interpretability that

was similar to that exhibited by MSNR (Fig.6D).

4.4. MSNR Behaves As Expected In Simulation Studies

To understand the ability of MSNR to uncover brain-phenotype relationships, we gener-

ated adjacency matrices that have a known relationship with randomly-generated covariates

(Rubinov and Sporns 2009). Specifically, we simulated adjacency matrices with modular

small-world community structures that span a range of number of nodes (p), sample sizes

(n), effect size of the covariates (γ), and magnitude of the noise (ε). We found that MSNR

achieved the lowest out-of-sample prediction error when the ratio between the number of

subjects and the number of nodes was the largest (n = 150, p = 32) (Fig.7). In addition,

the amount of noise impacted MSNR’s prediction performance in a graded fashion, with a
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Figure 7: Performance of MSNR in a simulation study. We simulated data with varying numbers of
observations (n) and nodes (p), effect size (γ) of Γ1 . . .Γq, and noise levels (ε). As expected, the performance
of MSNR improved as the ratio of n to p increased, and as the signal-to-noise ratio increased. In contrast,
MSNR was less sensitive to the varying levels of γ, which represents the effect size of the community level
relationship of the covariates.

three-fold difference between the lowest noise level (0.1) and the highest noise level (1). In

contrast, MSNR was less sensitive to the varying levels of γ, which represents the effect size

of the community level relationship of the covariates. These results were to be expected, as

when the model is well specified in the sense that the data is generated according to the

model, the more observations available or the smaller the noise means one can estimate the

model parameters more accurately.

5. Discussion

In the past decade, the neuroscience community has begun to complement the study of

localized regions of the brain towards studying inter-regional relationships, or connectivity

(Bassett and Sporns 2017; Bzdok et al. 2016). The association of network architecture with

development and aging throughout the lifespan (Power et al. 2010; Gu et al. 2015; Betzel

et al. 2014), cognition (Crossley et al. 2013; Park and Friston 2013; Bressler and Menon

2010), and neuropsychiatric disorders (Yu et al. 2019; Braun et al. 2016; Fornito, Zalesky,

and Breakspear 2015; Grillon et al. 2013; Bassett, Xia, and Satterthwaite 2018; Xia et

al. 2018; Kernbach et al. 2018) is of profound interest to the burgeoning network neuroscience
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literature. These brain-phenotype associations can be studied on the scale of individual edges

(micro-scale), communities (meso-scale), or the network as a whole (macro-scale), with most

existing approaches for analyzing networks, such as mass-univariate analyses, operate on a

single scale.

In recent years, interest has centered on multi-scale modeling approaches (Li et al. 2013;

Li et al. 2011; Jenatton et al. 2012), which aim to integrate information across homoge-

neous regions in the brain while still modeling data on finer scales. These methods have

mainly focused on the problem of smoothing without prior knowledge of anatomical or func-

tional parcellations of the brain, and have been adapted for both classification (Romberg

et al. 2000) and regression (Li et al. 2011) as well as extended to longitudinal settings (Li

et al. 2013).

Building upon these recent work, we developed MSNR to study relationships between

high-dimensional brain networks and variables of interest. Specifically, our approach mod-

eled the connectivity matrix for each subject by integrating both micro- and meso-scale

network information. By applying a low-rank assumption to the mean connectivity network

(Smith et al. 2015; Leonardi et al. 2013; Li et al. 2009) and a sparsity assumption to the

community-level network (Xia et al. 2018; Meunier, Lambiotte, and Bullmore 2010; Newman

2006), we substantially decreased the number of parameters and encourage the detection of

interpretable brain-phenotype relationships. Leveraging a large neuroimaging dataset of

over one thousand youth, we demonstrated that MSNR recapitulated known individual dif-

ferences in functional connectivity, including those related to development (Satterthwaite et

al. 2013; Gu et al. 2015), sex differences (Satterthwaite et al. 2015a), and in-scanner motion

(Satterthwaite et al. 2012; Ciric et al. 2017). Notably, compared to common single-scale

mass-univariate regression methods, MSNR achieved a balance between prediction perfor-

mance and model complexity, with improved interpretability. Together, MSNR represents

a new method for identifying individual differences in high-dimensional brain networks.

Several limitations of the MSNR approach should be noted. First, the term scale does

not have a single definition. In fact, as pointed out by (Betzel, Medaglia, and Bassett 2018),

scale can represent at least three different entities depending on the context: multi-scale
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topological structure, multi-scale temporal structure, and multi-scale spatial structure. In

MSNR, we only considered multi-scale topological structure. Incorporating additional infor-

mation from multiple scales beyond those germane to network topology will likely generate

more nuanced and richer models for brain networks. Second, while we carefully conducted

a permutation test to assess the statistical significance of the entire model, we did not pro-

vide an inferential procedure for determining the association between brain networks and

each variable of interest. In particular, MSNR makes no claim regarding the statistical

significance of the coefficients in the matrices Γ1, . . . ,Γq, which describe the community-

level relationships with the covariates. Due to the inclusion of penalty terms in the MSNR

framework, making such inferential statements is a challenging open problem.

In summary, by explicitly modeling variability both at the edge and community levels,

we developed a multi-scale network regression approach that achieved a balance between the

trade-off of prediction and model complexity, potentially offering enhanced interpretability.

Empirically, we demonstrated its advantages over alternative methods and illustrated its

ability to uncover meaningful signals in a large neuroimaging dataset. Approaches such

as MSNR have the potential to yield novel insights into brain-behavior relationships that

incorporate realistic multi-scale network architecture.
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Appendix

Proof of Proposition 1.

Given the definition of Ãi, (5) reduces to the optimization problem

minimizeΘ

{
n∑

i=1

∥∥∥Θ− Ãi
∥∥∥2

F
+ λ1‖Θ‖∗

}
. (11)

We notice that

n∑
i=1

∥∥∥Θ− Ãi
∥∥∥2

F
= n

(
‖Θ‖2

F − 2trace

[
Θ

(
n∑

i=1

Ãi/n

)])
+ C

= n

∥∥∥∥∥Θ−
n∑

i=1

Ãi/n

∥∥∥∥∥
2

F

+ C ′

where C and C ′ are not a function of Θ. Therefore, (11) can be re-written as

minimizeΘ


∥∥∥∥∥Θ−

n∑
i=1

Ãi/n

∥∥∥∥∥
2

F

+ (λ1/n) ‖Θ‖∗

 . (12)

The result follows directly from Lemma 1 of (Mazumder et al. 2010).
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Proof of Proposition 2.

We wish to solve the problem

minimizeΓf


n∑

i=1

∥∥∥∥∥Ai −

(
Θ̂ +

∑
f ′ 6=f

Xf ′

i ·
(
W Γ̂f ′

W T
)

+Xf
i ·
(
WΓfW T

))∥∥∥∥∥
2

F

+ λ2‖Γf‖1

 .

Given the definition of Āi, this amounts to solving

minimizeΓf

{
n∑

i=1

∥∥∥Āi −Xf
i ·
(
WΓfW T

)∥∥∥2

F
+ λ2‖Γf‖1

}
. (13)

So, for k = 1, . . . , K and k′ = 1, . . . , K, we must solve the problem

minimizeΓf

kk′


n∑

i=1

∑
j∈Ck

∑
j′∈Ck′

(
Āi

jj′ −X
f
i Γf

kk′

)2

+ λ2|Γf
kk′|

 . (14)

And note that

n∑
i=1

∑
j∈Ck

∑
j′∈Ck′

(
Āi

jj′ −X
f
i Γf

kk′

)2

= C − 2

 n∑
i=1

∑
j∈Ck

∑
j′∈Ck′

Āi
jj′X

f
i

Γf
kk′ + pkpk′

n∑
i=1

(
Xf

i

)2 (
Γf
kk′

)2

where C is not a function of Γf . So the problem of interest amounts to minimizing

−2

(∑n
i=1

∑
j∈Ck

∑
j′∈Ck′

Āi
jj′X

f
i

)
pkpk′

∑n
i=1

(
Xf

i

)2 Γf
kk′ +

(
Γf
kk′

)2

+
λ2

pkpk′
∑n

i=1

(
Xf

i

)2 |Γ
f
kk′|

with respect to Γf
kk′ . Thus, the minimizer is

S

∑n
i=1 X

f
i

∑
j∈Ck

∑
j′∈Ck′

Āi
jj′

pkpk′
∑n

i=1

(
Xf

i

)2 ,
λ2

2pkpk′
∑n

i=1

(
Xf

i

)2

 .
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