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ABSTRACT  1	

Background: Asymmetry during cellular division, both in the uneven 2	
partitioning of damaged cellular components and of cell volume, is a cell 3	
biological phenomenon experienced by many unicellular organisms. 4	
Previous work based on a deterministic model claimed that such asymmetry 5	
in the partitioning of cell volume and of aging-associated damage confers a 6	
fitness benefit in avoiding clonal senescence, primarily by diversifying the 7	
cellular population. However, clonal populations of unicellular organisms 8	
are already naturally diversified due to the inherent stochasticity of 9	
biological processes.  10	

Results: Applying a model of aging cells that accounts for natural cell-to-cell 11	
variations across a broad range of parameter values, here we show that the 12	
parameters directly controlling the accumulation and repair of damage are 13	
the most important factors affecting fitness and clonal senescence, while 14	
the effects of both segregation of damaged components and division 15	
asymmetry are frequently minimal and generally context-dependent.  16	

Conclusions: We conclude that damage segregation and division asymmetry, 17	
perhaps counterintuitively, are not necessarily beneficial from an 18	
evolutionary perspective. 19	

 20	

 21	

BACKGROUND 22	

Even though the somatic cells of multicellular organisms accumulate significant 23	
amounts of aging-related damage throughout the lifetime of the organism, their 24	
young progeny generally start with low levels of protein damage. A number of 25	
mechanisms have been proposed to explain this phenomenon, generally involving 26	
some special way of eliminating damage in germ cells, or elimination of damaged 27	
germ cells [1–5]. A major hallmark of aging in higher organisms is the depletion or 28	
dysfunction of stem cells, which accumulate various forms of molecular damage 29	
during the aging process [6–8]. For unicellular organisms such as the budding yeast 30	
Saccharomyces cerevisiae or the fission yeast Schizosaccharomyces pombe undergoing 31	
mitosis, there is no somatic/germ cell distinction. Yet both S. cerevisiae and S. pombe 32	
exhibit lineage-specific aging [9–14]. In the budding yeast, for instance, the mother 33	
cell is known to accumulate aging-related damage markers such as 34	
extrachromosomal rDNA circles (ERCs) as it ages and eventually enters replicative 35	
senescence and dies, while the daughter cells that bud off from the mothers are 36	
mostly protected from the accumulated ERCs and generally enjoy a full replicative 37	
lifespan even if born from old mother cells [15]. Similar segregation of damaged 38	

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 5, 2019. ; https://doi.org/10.1101/628669doi: bioRxiv preprint 

https://doi.org/10.1101/628669


	 3	

proteins has been observed during the binary fission of S. pombe, where oxidatively 1	
damaged carbonylated proteins are concentrated in one of the two daughter cells – in 2	
this case, the one carrying the previous birth scar [16]. Lineage-specific aging has 3	
also been observed in the bacteria Caulobacter crescentus and Escherichia coli [10,17–4	
20], leading some to analogize the lineage-specific aging behavior in unicellular 5	
organisms to the somatic/germ cell distinction in higher ones. 6	

The observation of damage-partitioning behavior even in unicellular species 7	
naturally raises the question of whether there is any selective advantage resulting 8	
from it. Using a deterministic model based on ordinary differential equations (ODEs) 9	
with fixed parameter values, Erjavec and colleagues examined two forms of 10	
asymmetry during the cell-division process, which we will denote as division 11	
asymmetry and damage segregation, respectively. The former refers to the 12	
asymmetric partitioning of cell volume (as naturally seen in S. cerevisiae) between 13	
the two cells after division, while the latter refers to the asymmetric partition of 14	
damaged cellular components. They concluded that such behavior indeed confers a 15	
fitness advantage: under their model, both damage segregation and division 16	
asymmetry allowed the population to survive a higher level of protein damage 17	
without entering clonal senescence than it otherwise would have [16]. The 18	
researchers attributed this effect to the ability of these mechanisms to diversify 19	
individuals within a population; in the absence of these mechanisms, the population 20	
of cells in their simulations are entirely homogeneous [16]. 21	

The fact that real cells are not homogeneous at all raises questions about the 22	
reliability of these predictions made based on such a fully deterministic model. It is 23	
well known that the expression level of genes can fluctuate substantially, even among 24	
cells that are genetically identical or indeed in the same cell over time [21–27]. This 25	
kind of fluctuations, commonly known as noise, can come from a variety of sources: 26	
cell-to-cell variations in the abundance of transcription and translation machinery 27	
(such as RNA polymerase, general transcription factors, and ribosomes), for instance, 28	
or the stochastic nature of transcription events that take place in any single cell 29	
[21,28]. Indeed, it has been shown that stochastic noise can cause drastic differences 30	
between reality and what a deterministic model predicts [29]. 31	

Bringing a more realistic approach to the study of aging cells in terms of damage 32	
accumulation, segregation behavior, and their effects on clonal senescence and fitness, 33	
here we investigate whether, and under what circumstances, damage segregation 34	
and division asymmetry confer fitness advantages in freely dividing unicellular 35	
organism populations when noise is taken into account. We focus on two forms of 36	
fitness advantages: resistance against clonal senescence, and increased rates of 37	
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population growth. We find that damage mitigation and the rate of damage 1	
accumulation play major roles in determining the fitness of the cells. 2	

 3	

MATERIALS and METHODS 4	

 5	

Modeling of cell growth and division in aging cells 6	

We consider a cell that grows exponentially in volume during the cell cycle [30] and 7	
accumulates damage as it grows (Fig. 1A). Cells are assumed to accumulate damage 8	
(𝐷) at a constant rate 𝑟#$%, and reduce damage via two sources, actively by repair and 9	

passively by dilution due to cell division and volume growth: 10	

𝑑𝐷
𝑑𝑡 = 𝑟#$% − 𝑟*+,-.*(𝐷) −

𝐷
𝑉
𝑑𝑉
𝑑𝑡  11	

Here, D is an abstract value representing the concentration of damaged cellular 12	
components and other harmful artifacts of aging. For simplicity, we assume that the 13	
forms of damage represented by D are freely diffusible, segregable, and repairable, 14	
and that there are no other sources of damage affecting cell growth. The rate of 15	
damage repair 𝑟*+,-.*  as a function of 𝐷  is assumed to follow Michaelis-Menten 16	

kinetics with parameters 𝑣345 and 𝑘$: 17	

𝑟*+,-.*(𝐷) =
𝑣345𝐷
𝑘$ + 𝐷 18	

The cell volume (𝑉) grows exponentially at a rate that is slowed by accumulated 19	
damage: 20	

𝑑𝑉
𝑑𝑡 =

𝑟%*89:;𝑉
1 + 𝐷=  21	

where 𝑟%*89:; is the maximum growth rate constant and 𝛼 is a nonlinearity coefficient. 22	

In the initial population of cells, each cell starts at an initial volume 𝑉.. A cell is 23	
assumed to divide when it reaches a generation-dependent critical volume  𝑉?*.: (Fig. 24	
1B). This critical volume increases linearly with replicative age (Table S1), consistent 25	
with the observations on single budding yeast cells [27]. The parameters of volume 26	
growth during cell cycle were selected to roughly correspond with the microscopic 27	
growth dynamics measured in budding yeast cells (Table S1) [31], with an 28	
approximate expected damage-free doubling time of 100 minutes for symmetrically 29	
dividing cells. We separated global noise into two categories: noise in cell volume 30	
control (𝑛A), and noise in damage and its repair (𝑛#). In each case, global noise was 31	
simulated as a random perturbation applied to each corresponding parameter: the 32	
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initial parameter value of each individual cell was sampled from a normal 1	
distribution 𝑁(𝜇 = 𝑝, 𝜎 = 𝑛𝑝), where p is the selected mean parameter value from 2	
Tables S1-S2 and n is the applicable noise level. 3	

During cell division, we consider the original cell (“mother”) to retain its identity 4	
and produce a new daughter cell, for ease of reference. The accumulated damage is 5	
distributed between mother and daughter cells as follows. Let 𝐷 be the damage level 6	
of the mother cell before division, then the damage level of the newly produced 7	
daughter cell is equal to 1 − 𝑠 𝐷 , where s in the range [0, 1] is the parameter 8	
quantifying the extent of damage segregation, and the damage level of the mother 9	

cell after division is H IJK
I

, where 𝑅 is the ratio of the volume between the mother and 10	

daughter components after division. In other words, the total amount of the damage 11	
(equal to the damage level times volume) is constant across the specific cell division 12	
event. 13	

 At each cell division, we assumed that each daughter cell partially inherits its 14	
mother’s parameter values for all parameters listed in Tables S1-S2. For each 15	
parameter 𝑝 , the new value 𝑝M+9  follows the relationship 𝑝M+9 = 𝑐	𝑝$8:;+* + 1 −16	
𝑐 	𝑝P*+K; , where 𝑝P*+K;  is a parameter value freshly sampled from the normal 17	

distribution applicable to that parameter , 𝑝$8:;+*  is the parameter value for the 18	
mother cell, and c is a constant in the range [0, 1] characterizing the level of 19	
inheritance: when c = 0, the daughter gets a new parameter value from the same 20	
distribution used to generate the parameter values used for the initial population of 21	
cells, while when c = 1, the daughter perfectly inherits its mother’s parameter value. 22	

Since the simulated cells, just like real ones grown without nutrient limitations, 23	
exhibit exponential growth and can easily overwhelm the computing capacity if left 24	
unchecked (Fig. 1D), we kept the population size low by means of periodic resampling 25	
as a mimicry of using a turbidostat [25]. Because cells slow to divide due to damage 26	
are expected to be rapidly overtaken by faster-dividing cells, we did not include a 27	
separate procedure for killing cells due to accumulated damage.  28	

To keep the generality of the model intact, we determined the parameter values 29	
to use in our model by combinatorially selecting from a grid spanning a wide range 30	
(Table S2), with a total of 7.185 million sets of parameter values tested. The 31	
parameter bounds are hand-selected to cover the arguably biologically plausible 32	
range. The noise parameters were capped at 10% because each parameter is 33	
perturbed independently, and so the noise in each parameter is expected to combine 34	
to produce higher noise in the overall phenotype.  We chose the range of rdmg so that 35	
the maximum will virtually immediately block cell growth in the absence of repair, 36	
and then chose the range of the repair parameters to match the range of rdmg. These 37	
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parameters are also sampled on a logarithmic scale so as to capture a wide variety of 1	
damage strengths. 2	

For each parameter set, we recorded its population size trajectory over the 3	
course of the simulation. From these numbers we calculated the average doubling 4	
time of the population. If the calculated average doubling time was greater than 1500 5	
minutes, it was treated as 1500 minutes for the purpose of analysis. Each simulation 6	
was repeated three times and the average doubling time resulting from the three 7	
repeats was calculated. For parameter sets producing reasonable fitness levels (<400 8	
min doubling time), we do not observe significant changes in the computed doubling 9	
time if the initial 600 minutes of the trajectory is omitted. This is expected since these 10	
populations relax rapidly to the steady state and the initial conditions have very 11	
limited impact when averaged over the long course of the simulation. 12	

 13	

Simulations of the Stochastic Model 14	

The model as described above was implemented in C++ using custom-written code, 15	
utilizing the SUNDIALS library [39]. The complete set of model parameters are 16	
summarized in Tables S1-S2.  17	

Simulations for each parameter set chosen according to the tables above were 18	
performed from an initial set of 2000 cells. Every 40 minutes, the number of cells in 19	
the population was recorded and the fold-change in population growth from the 20	
previous time point was calculated, then the population was randomly resampled 21	
down to 2000 cells.  22	

For the illustration of exponential growth as shown in Figure 1E, the simulation 23	
was performed as described above, except that 24	

- The population size was recorded every 20 minutes; 25	
- Resampling was not performed until the population size reached 1000 times the 26	

initial sample size (i.e., 2 million cells); 27	
- The population size for the resampling was 50 times the initial sample size 28	

(100,000 cells). 29	

 30	

Analysis of Simulation Results 31	

We quantified the effect of changing the value of a parameter P on fitness (resistance 32	
against clonal senescence or increased rate of population growth) as follows. For 33	
simplicity, we denote the nine parameters of the model 𝑃R, … , 𝑃T , which can take 34	
𝑁R,… ,𝑁T possible values, respectively (Table S2). Without loss of generality, let 𝑃R be 35	
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the parameter P we want to examine. Then, we partition the 7.185 million 1	
combinations into 𝐺R = 𝑁.T

.VW  groups of 𝑁R  combinations each, where the 2	
combinations in each group only differ in the value of 𝑃R (and have the same values 3	
of 𝑃W, … , 𝑃T). For each group, we then computed a minimum and a maximum doubling 4	
time, from which we determined whether changing the value of 𝑃R for this particular 5	
set of parameter value combination could cause a significant change in fitness (for 6	
clonal senescence, a difference in outcome; for growth rate, defined as more than 5% 7	
difference between minimum and maximum doubling time). Repeating this for all  𝐺R 8	
groups, we found that, in 𝑀R of them, changing the value of 𝑃R resulted in a significant 9	
change in fitness. Then, the frequency at which a change in the value of 𝑃R could 10	
significantly alter fitness was 𝑀R/𝐺R. The total number of groups for all parameters 11	
combined is 𝐺 = 𝐺. = 12.56	million. For clonal senescence, we found changes in 𝑀 =12	
𝑀. = 1.41 million groups. For fitness, we found significant changes in 𝑀 = 𝑀. =13	

2.38 million groups. 14	

 15	

Quantification of Relative Abundance 16	

Each panel in Figures 3-7 and Figures S1-S4 quantifies the relative abundance of 17	
each possible value of a parameter Q among the parameter combinations where 18	
changes in the value of a different parameter P has a significant effect (>5%) on 19	
fitness. We denote the possible values of Q as 𝑄R,… , 𝑄M, and also denote the number 20	
of combinations where 𝑄 = 𝑄. and changes in P can cause a change (>5%) in fitness 21	
as 𝑍.c. We further partition 𝑍.c into three groups (colored blue, green and red in the 22	
figure panels) based on the value of P at which maximum fitness is attained (i.e.,  23	
𝑍.c = 𝑍.c 𝑏𝑙𝑢𝑒 + 𝑍.c 𝑔𝑟𝑒𝑒𝑛 + 𝑍.c(𝑟𝑒𝑑)), blue if P is at its largest possible value, red if 24	
P is at its smallest possible value, and green if P is at an intermediate value. 25	

Since the possible values of Q are arbitrarily selected from a large grid, the 26	
values are not necessarily equally responsive to fitness changes. Thus, as a 27	
normalization measure, we normalized the value of 𝑍.c (and the partitioned) by the 28	
total number of combinations where 𝑄 = 𝑄. and changes in the value of any other 29	
parameter can cause a change (>5%) in fitness. In other words, the normalized value 30	

is  𝑆.c =
jk
l

jk
l

l
. Similarly, for each color C the normalized value is 𝑆.c(𝐶) =

jk
l(n)
jk
l

l
. 31	

The value of 𝑆.c can vary significantly depending on the identity of the parameter 32	
P. To make the abundance value more uniform across panels, we further multiplied 33	

𝑆.c and 𝑆.c 𝐶  for each color by a scaling factor equal to Roo
pk
l

k
 to produce the normalized 34	

abundance of 𝑄. plotted in each panel. Thus, the normalized abundance points within 35	
in each panel add up to a constant value of 100.  36	
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 1	

RESULTS 2	

 3	

Dissecting the key parameters affecting the clonal senescence outcome 4	

In our model, a cell reaches senescence when its growth rate is slow enough as to 5	
virtually stop dividing. A clonal population of cells exhibits clonal senescence if every 6	
single cell in the population reach senescence. For the purposes of our analysis, we 7	
classified a cell population as clonally senescent if it exhibits an average doubling 8	
time greater than 1000 minutes over the course of the simulation, which is more than 9	
ten times the expected doubling time in damage-free conditions. 10	

To determine the degree of importance of a model parameter for clonal senescence, 11	
we examined how likely it is for changes in the value of one parameter to alter the 12	
senescence outcome. More formally, for each parameter P, we partitioned the 7.185 13	
million parameter value combinations into disjoint groups such that the combinations 14	
in each group only differ in the value of P, and calculated the fraction of groups whose 15	
combinations diverge in the clonal senescence outcome. While the absolute value of 16	
this fraction is necessarily dependent on the values of the other parameters we picked 17	
in the study, the relative value is still indicative of whether the parameter is relevant 18	
generally, or only when the other parameters are in a relatively narrow region of the 19	
parameter space. 20	

Changes in the damage rate 𝑟#$% caused a different senescence outcome in 93% 21	

of parameter combinations, and changes in the repair rate 𝑣345 caused a different 22	
outcome in 60% of cases. These observations were intuitive and reaffirmed the 23	
validity of the model setup, as the strongest effect was exerted on the amount of 24	
accumulated damage, with the possible values of the parameters spanning a wide 25	
range. As expected, we find the most-fit combination to be when the damage rate is 26	
lowest and the repair rate is highest (Fig. 2A, as indicated by red and blue coloring of 27	
their respective bars). 28	

Changes in damage-related noise (𝑛#), the Michaelis constant (𝑘$) for repair, 29	
and the nonlinearity of damage’s effect on growth (𝛼) are less likely to affect the clonal 30	
senescence outcome. In only 4.6% of the parameter combinations did a change in 𝛼 31	
affect the clonal senescence outcome; for 𝑘$, the number is slightly higher at 6.1%, 32	
while for 𝑛# , it is lower at 2.3%. These parameters also affect the amount of 33	
accumulated damage or its effect on the cell, but the effects are weaker and less direct. 34	
When changes in these parameters did affect the senescence outcome, the direction 35	
is essentially uniform: in almost all of the cases, clonal senescence is avoided by 36	
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having high noise, low 𝑘$, or low 𝛼 (Fig. 2A, color). This again makes sense: a lower 1	
𝑘$ means a higher repair rate, while a lower 𝛼 means a higher growth rate (when 2	
𝐷 > 1, which is necessary for clonal senescence to even come into play because if 𝐷 <3	
1 then the volume growth rate can’t fall below half of the maximum growth rate). In 4	
the borderline cases where noise matters, moreover, higher noise means a better 5	
chance to come across good parameter values that could sustain the population. 6	

Damage segregation and division asymmetry only affected the clonal senescence 7	
outcome in a very small fraction of parameter combinations – 1.6% and 0.4% 8	
respectively (Fig. 2A). We did find that damage segregation is overwhelmingly 9	
beneficial in the few cases where it did matter: in 99% of the cases in which 10	
segregation made a difference on the senescence outcome, some damage segregation 11	
(represented as the blue and green portions of the bar) was needed to avoid clonal 12	
senescence (Fig. 2A). On the other hand, division asymmetry is more likely to be 13	
detrimental, if not overwhelmingly so: in 60% of the cases where asymmetry made a 14	
difference in the senescence outcome (represented by the red portion of the bar), lack 15	
of asymmetry is necessary to avoid clonal senescence, while in the remaining 40% 16	
some level of asymmetry is necessary. 17	

We therefore conclude that damage segregation and division asymmetry are not 18	
the main effectors of the senescence outcome. Interestingly, neither mechanism is 19	
capable of altering the total amount of damage accumulated in the population, which 20	
appears to be the key determinant. Thus, changing the damage accumulation rate 21	
and the maximum repair rate are most likely to cause (or avoid) clonal senescence. 22	

 23	

Characterizing the effect of age-associated damage on population fitness 24	

Clonal senescence, which implies a complete loss of fitness, is a drastic outcome, and 25	
it is certainly conceivable that a parameter might affect population fitness 26	
incrementally without causing the entire population to become senescent. We 27	
therefore examined the ability of each model parameter to affect the growth rate (or 28	
fitness) of the population (Fig. 2B). For this analysis, we calculated the doubling time 29	
output of our model using the parameter sets determined as described in the previous 30	
section, and examined the cases where the change in the value of one parameter could 31	
lead to a significant change (>5%) in doubling time. For each parameter P, we again 32	
partitioned the 7.185 million parameter value combinations into disjoint groups such 33	
that the combinations in each group only differ in the value of P, and calculated the 34	
fraction of groups whose maximum and minimum doubling time are different by more 35	
than 5%. 36	
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The parameters most likely to affect the senescence outcome are also most likely to have 1	
strong fitness effects 2	

As in the output of clonal senescence, we found that 𝑟#$% and 𝑣345 were the two 3	

parameters most likely to cause a fitness differential (>5% in terms of doubling time). 4	
Changing the damage accumulation rate 𝑟#$%  is capable of significantly altering 5	

fitness in more than 99% of all parameter combinations used, while changes in the 6	
maximum repair rate 𝑣345  significantly altered fitness in 78% of the parameter 7	
combinations (Fig. 2B). Other damage-related parameters are also more likely to 8	
affect fitness: changes in 𝑘$ and	𝛼 are each capable of affecting fitness in about one-9	
fifth (23% and 22%, respectively) of the parameter combinations tested, compared to 10	
3% for the volume-module noise, the parameter that turned out to be the least likely 11	
to cause fitness differences (Fig. 2B). For three of the four parameters, moreover, the 12	
effect of a parameter value change on fitness is monotonic (as indicated by the 13	
prevalence of one color in the figures): a higher 𝑣345  (Fig. S2) virtually always 14	
improved fitness, while a higher 𝑟#$% (Fig. S4) or 𝑘$  (Fig. S3) decreased fitness. This 15	

is expected given the functional forms linking these parameters to the model. 𝛼, on 16	
the other hand, turned out to be a parameter with a double-edged impact on fitness, 17	
though unsurprisingly (Fig. 2B, 7, blue and red color). Introducing ultrasensitivity 18	
means that some damage levels will have less impact on fitness while others will have 19	
more. Depending on the other parameter values, then, the impact of 𝛼 on fitness could 20	
and did go in both directions (Fig. 7). 21	

 22	

Effect of damage segregation on fitness 23	

Somewhat surprisingly, we found that changes in damage segregation affected 24	
fitness in only 7% of the parameter value combinations used, compared to 6% for 25	
division asymmetry, and 7% for inheritance level and damage-related noise (Fig. 2B). 26	
To gain additional insights into what other parameters may interact with damage 27	
segregation to produce a fitness effect, we next examined those cases in which damage 28	
segregation could cause a significant change in population fitness. We found that 29	
most of the cases where damage segregation produced a fitness effect were seen when 30	
the damage rate was low and the repair rate was even lower (Fig. 3E, 3G), meaning 31	
that dilution is the primary method of damage reduction instead of active damage 32	
repair, giving significantly more prominence to the ability to sequester damage in the 33	
mother compartment. Another interesting observation related to these cases of 34	
parameter values is that higher values of 𝛼 caused damage segregation to behave 35	
more like a double-edged sword: when 𝛼 = 4, there were as many cases when damage 36	
segregation reduced fitness as when it improved fitness (Fig. 3F; compare red vs blue). 37	
This can be explained by the fact that the ultrasensitivity of fitness to damage level 38	
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caused by the high nonlinearity diminishes the impact of damage segregation on 1	
fitness when the damage level is low but amplifies the effect when a threshold is 2	
crossed – in either direction. Once the damage rate becomes higher, however, damage 3	
segregation becomes more of a double-edged sword, causing fitness decreases about 4	
as often as it causes fitness increases. As a modular validation of the modeling 5	
approach we took in this study, consistent with previous reports [32], we also found 6	
that the highest damage rate (1 min-1) means that segregation is more likely to be 7	
beneficial compared to lower damage rates (0.1 or 0.2 min-1) (Fig. 3E).  8	

 9	

Effect of division asymmetry on fitness 10	

We next examined the effect of introducing division asymmetry on population 11	
doubling time or fitness. Introduction of division asymmetry caused significant 12	
changes (>5%) in doubling time in only 6% of the parameter value combinations used, 13	
making it the parameter the second least likely to alter the fitness outcome (Fig. 2B). 14	
Unlike damage segregation, the effects of division asymmetry on fitness are more 15	
likely to be double-edged: in 40% of the cases where a change in the division 16	
asymmetry parameter significantly altered fitness, the highest fitness was seen when 17	
there was no division asymmetry (Fig. 2B, red color). Like damage segregation, this 18	
behavior was mostly seen when the damage rate was low and the repair rate was 19	
even lower (Fig. 4E, 4G), corresponding to situations where dilution is the primary 20	
means of reducing damage levels. Moreover, such detrimental effects from division 21	
asymmetry were only seen when some damage segregation was present (Fig. 4C, red 22	
line). We interpret this result as follows. The smaller daughter cell usually takes 23	
longer to reach the volume threshold before it is ready to divide for the first time, 24	
which drags down the volume growth (and therefore dilution) rate at the population 25	
level. This effect is more pronounced when the damage segregation mechanism 26	
enriched the larger mother compartment with damage, slowing the growth of the 27	
mother compartment and dilution of damage. At higher rates of damage 28	
accumulation and repair, division asymmetry also becomes predominantly beneficial 29	
(Fig. 4E, 4G, blue line).  30	

 31	

Effect of noise on fitness 32	

Just as in the case for clonal senescence, we found that in most cases, higher 33	
noise levels had a beneficial effect on population fitness (Figs. 5 and 6, blue); this was 34	
particularly pronounced when the inheritance level was high (Figs. 5D, 6D). We 35	
interpret this as due to the high inheritance level permitting the propagation of “good” 36	
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sets of parameter values selected by chance (and is more likely to be chosen if the 1	
noise value is high). 2	

 3	

Summary 4	

Overall, we found that model parameters directly affecting the accumulation of 5	
damage and its effect on the growth rate are the most likely to affect fitness. The 6	
introduction of damage segregation or division asymmetry, on the other hand, had a 7	
significant effect on population fitness in only a small fraction of the cases and in a 8	
context-dependent manner; however, when there was an effect, it was far more likely 9	
to be beneficial than detrimental. The fitness impact of asymmetric partitioning of 10	
cell volume was similarly context-dependent: when dilution was the predominant 11	
mechanism for damage removal, it was more likely to be detrimental, whereas if 12	
active damage repair was predominant, it was more likely to be beneficial.  13	

 14	

DISCUSSION 15	

In this study, we comprehensively examine the effects of age-associated damage 16	
accumulation and removal on the phenotypes of clonal senescence and population 17	
fitness. Contrary to the results from a previous study which were based on a fully 18	
deterministic model with fixed parameter values [16], we found that neither damage 19	
segregation nor division asymmetry played a major role in the avoidance of clonal 20	
senescence once the natural diversity of the population is taken into account. 21	
Introduction of damage segregation eliminated clonal senescence only in a small 22	
fraction of borderline cases, while division asymmetry had an effect on clonal 23	
senescence in an even smaller fraction of cases; however, when there was an effect, it 24	
was more likely to cause clonal senescence than to eliminate it. While we acknowledge 25	
that the exact fraction will depend on the set of values and range chosen for the 26	
parameters, we believe that the relative value is still a good and useful indicator of 27	
the approximate importance and effect size of the parameters. 28	

We note that our model differs from the model used in the previously published work 29	
in more ways than just the use of randomized coefficients. For instance, our model 30	
keeps track of single-cell volume explicitly, while the previous model used the protein 31	
count as a proxy for volume. Using protein count for cell volume inevitably led to some 32	
questionable assumptions where the partitioning of damaged proteins necessitated 33	
the inverse partitioning of undamaged proteins to maintain the protein count (and so 34	
the volume) of the daughter cell. Similarly, the sole mechanism for damaged protein 35	
to exert a detrimental effect in the previous model was by negative feedback on the 36	
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production of new proteins, which required the amount of damaged proteins to be 1	
roughly comparable to that of intact proteins to have a meaningful effect, requiring 2	
likely unrealistic amounts of damage. Our model avoids these problems by using a 3	
more abstract “damage level” concept. 4	

Uneven distribution of aging factors between daughter cells following cell 5	
division is a well-known phenomenon that has been observed in a variety of 6	
unicellular organisms, and asymmetric partitioning of volume has similarly also been 7	
observed in many unicellular organisms. In the present work, we comprehensively 8	
examine the fitness impact of these asymmetric damage and volume partitioning 9	
schemes and find that they, perhaps counterintuitively, have minimal fitness impact 10	
most of the time, as long as the natural diversity of the population is taken into 11	
account. When the repair rate was low and dilution was the predominant form of 12	
damage elimination, we found damage segregation to be more likely to be beneficial 13	
for fitness but division asymmetry to be generally detrimental. On the other hand, 14	
when active damage repair was the predominant damage elimination mechanism 15	
operating with a high damage repair rate, division asymmetry was found to be 16	
generally beneficial for fitness, while damage segregation had a double-edged impact, 17	
becoming more beneficial when the damage accumulation rate was very high. 18	

Overall, our results here indicate that parameters governing the accumulation 19	
and elimination of cellular damage are the most important determinants of 20	
population fitness. Even though asymmetric partitioning of either cell volume or age-21	
associated damage might seem beneficial at first glance, neither mechanism actually 22	
eliminates any damage on the population level, and, as we show here, they are far 23	
from being consistently beneficial evolutionarily. Why, then, are these mechanisms 24	
seen in some real organisms? To start with, the fitness impact of both mechanisms is 25	
context-dependent; depending on the values of other parameters, representing 26	
conditions both intrinsic and extrinsic to the cell, introduction of damage segregation 27	
and/or division asymmetry may be either beneficial or detrimental. Thus, it is 28	
possible that the organisms exhibiting damage segregation and/or division 29	
asymmetry fall within the section of the parameter space where such mechanisms 30	
are beneficial rather than detrimental, at least for some portion of their lifespan. And 31	
even if this region of the parameter space is not a common occurrence, the importance 32	
of avoiding irreversible senescence when it is encountered may be sufficient to 33	
preserve the mechanism evolutionarily, similar to how obscure nutrient pathways 34	
are preserved due to their critical importance under certain growth conditions. 35	
Second, in many cases, introduction of these mechanisms resulted in minimal fitness 36	
impact, but even minimal levels of fitness impact can accumulate over time and drive 37	
evolutionary selection. Moreover, several natural forms of damage are resistant to 38	
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active repair, and thus may fall within the region of the parameter space where 1	
damage segregation is beneficial. For instance, carbonylated proteins can form 2	
aggregates that are resistant to proteasome digestion [33,34], and ERCs are self-3	
replicating, suggesting that their effective repair rate – accounting for such self-4	
replication – is probably also low [15,35]. Finally, for asymmetric partitioning of 5	
damage in particular, it has been reported that some organisms like S. pombe and E. 6	
coli only exhibit this behavior during high levels of external stress [14,18,32,36], 7	
suggesting that they may actually have evolved mechanisms to activate or inactivate 8	
damage partitioning depending on the region of parameter space they are in, just like 9	
other stress response mechanisms that are only activated in the presence of stress 10	
and can be epigenetically inherited by daughter cells [37,38]. 11	

 12	

 13	

 14	

15	
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FIGURE LEGENDS 5	

 6	

Fig. 1. A. Illustration of the model. The cell grows until it reaches a critical volume 7	
and divides. It accumulates damage over time, which slows down volume growth. The 8	
accumulated damage can also be repaired. There is no separate mechanism for killing 9	
a cell due to damage, because high level of accumulated damage will prevent a cell 10	
from dividing and cause it to be rapidly overtaken by faster-dividing cells. B. The cell 11	
volume module of the model. The volume grows exponentially until it reaches a 12	
generation-dependent critical volume and the cell divides (blue dashed line). C. Two 13	
mechanisms of particular interest in this study: segregation of damaged proteins in 14	
mother cells, and division asymmetry of cell volume. Yellow dots indicate normal 15	
proteins, while green dots indicate damaged proteins. D. Illustration of the 16	
exponential growth of simulated cell population. An initial population of 2000 cells 17	
were simulated for 6000 minutes with periodic resampling (blue dashes) every time 18	
the population size exceeds 2 million cells. The red dashed line indicates the expected 19	
population size without sampling. 20	

 21	

Fig. 2. A. Sensitivity analysis for the clonal senescence outcome. The parameter 22	
combinations tested were partitioned into groups such that all combinations in each 23	
group differs only in the value of one parameter. The fraction of groups with divergent 24	
senescence outcome is plotted for each parameter. B. Sensitivity analysis for the 25	
doubling time outcome. The parameter combinations tested were partitioned into 26	
groups such that all combinations in each group differs only in the value of one 27	
parameter. The fraction of groups where the minimum doubling time is at least 5% 28	
below the maximum is plotted for each parameter. Level of transparency indicates 29	
the size of the effect. In each panel, the color indicates the value of the parameter 30	
corresponding to the most-fit combination in the group: red indicates that the 31	
smallest parameter value is the most fit; blue indicates that the largest parameter 32	
value is the most fit; and green indicates that an intermediate parameter value is the 33	
most fit. 34	

 35	

Fig. 3. A-H. Relative representation of the other parameters in the cases where 36	
changing the level of damage segregation caused a significant (>5%) fitness difference. 37	
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In each panel, the color indicates the level of damage segregation resulting in 1	
maximum fitness: red indicates that no segregation is the most fit; blue indicates that 2	
full segregation is the most fit; and green indicates that an intermediate level of 3	
segregation is the most fit. 4	

 5	

Fig. 4. A-H. Relative representation of the other parameters in the cases where 6	
changing the level of division asymmetry caused a significant (>5%) fitness difference. 7	
In each panel, the color indicates the level of division asymmetry resulting in 8	
maximum fitness: red indicates that no division asymmetry is the most fit; blue 9	
indicates that maximum asymmetry (1:4) is the most fit; and green indicates that an 10	
intermediate level of asymmetry is the most fit. 11	

 12	

Fig. 5. A-H. Relative representation of the other parameters in the cases where 13	
changing the level of damage-related noise caused a significant (>5%) fitness 14	
difference. In each panel, the color indicates the level of damage-related noise 15	
resulting in maximum fitness: red indicates that no damage-related noise is the most 16	
fit; blue indicates that maximum damage-related noise (10%) is the most fit; and 17	
green indicates that an intermediate level of damage-related noise (5%) is the most 18	
fit. 19	

 20	

Fig. 6. A-H. Relative representation of the other parameters in the cases where 21	
changing the level of volume module noise caused a significant (>5%) fitness 22	
difference. In each panel, the color indicates the level of volume module noise 23	
resulting in maximum fitness: red indicates that no volume module noise is the most 24	
fit; blue indicates that maximum volume module noise (10%) is the most fit; and green 25	
indicates that an intermediate level of volume module noise (5%) is the most fit. 26	

 27	

Fig. 7. A-H. Relative representation of the other parameters in the cases where 28	
changing the nonlinearity of the effect of damage on volume growth rate caused a 29	
significant (>5%) fitness difference. In each panel, the color indicates the level of 30	
nonlinearity resulting in maximum fitness: red indicates that no nonlinearity (𝛼 = 1) 31	
is the most fit; blue indicates that maximum nonlinearity (𝛼 = 4) is the most fit; and 32	
green indicates that an intermediate level of nonlinearity is the most fit.	33	

	34	
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