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Abstract

Breast cancer is one of the main causes of death world-
wide. Histopathological cellularity assessment of resid-
ual tumors in post-surgical tissues is used to analyze a tu-
mor’s response to a therapy. Correct cellularity assess-
ment increases the chances of getting an appropriate treat-
ment and facilitates the patient’s survival. In current clin-
ical practice, tumor cellularity is manually estimated by
pathologists; this process is tedious and prone to errors
or low agreement rates between assessors. In this work,
we evaluated three strong novel Deep Learning-based ap-
proaches for automatic assessment of tumor cellularity from
posttreated breast surgical specimens stained with hema-
toxylin and eosin. We validated the proposed methods on
the BreastPathQ SPIE challenge dataset that consisted of
2395 image patches selected from whole slide images ac-
quired from 64 patients. Compared to expert pathologist
scoring, our best performing method yielded the Cohen’s
kappa coefficient of 0.70 (vs. 0.42 previously known in lit-
erature) and the intra-class correlation coefficient of 0.89
(vs. 0.83). Our results suggest that Deep Learning-based
methods have a significant potential to alleviate the bur-
den on pathologists, enhance the diagnostic workflow, and,
thereby, facilitate better clinical outcomes in breast cancer
treatment.

1. Introduction

Breast cancer is one of the most common cancer types di-
agnosed in women in the United States and worldwide [[1]].
Biopsies and histological assessment allow pathologists to
analyze microscopic structures of breast tissues and, in par-
ticular, assess the cancer’s aggressiveness.

Multiple options are available to manage and monitor the
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breast cancer treatment based on the information provided
from the tumor’s response to it. In addition to the treatment
effect on the tumor size, the therapy may also alter the tu-
mor’s cellularity [2]]. During anticancer therapy, the size of
the tumor may remain the same, but the overall cellularity
may be drastically reduced [3]. As a result, it makes the
residual tumor cellularity an important factor in assessing
the response treatment.

Currently, tumor cellularity is manually assessed by
pathologists from hematoxylin and eosin (H&E)-stained
slides [3]]. The costs of such estimation are high, the pro-
cess is tedious and subjective, and the quality and reliability
might be also be affected by high inter-observer variability
even among senior pathologists. This potentially may af-
fect prognostic power assessment in clinical trials [4]. The
subjectivity in visual tissue assessment motivates the use of
computer-aided methods to improve the diagnosis accuracy,
reduce human error and increase inter-observer agreement
and reproducibility [3)6]. Automated analysis of the H&E
slide using computer vision could provide immediate bene-
fits to patient care. Recent success in Deep Learning (DL)
[7,18]], and in particular the advances in convolutional neural
networks (CNN), have recently shown high potential in this
realm [9]].

In this work, we evaluate three DL-methods to score
the cellularity of the breast tissue from histopathologi-
cal images. In particular, our first approach employs
a weakly-supervised segmentation model with Resnet-34
[LO] encoder and Feature Pyramid Network (FPN)[L1] and
a second-stage regression network that predicts the cellu-
larity score using the predicted segmentation maps. Our
second approach is also based on segmentation, however,
instead of using the segmentation maps directly, we extract
various features from them and use the gradient boosting
trees (GBT) [12] to predict the cellularity score. Finally, we
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Figure 1: Generic description of the methods developed and evaluated in this study. Our first approach leverages segmentation
model, feature extraction and gradient boosted trees. The second approach directly predicts the cellularity from the raw data.
Finally, in our third setting, we combine the first and the second approach and used a deep convolutional neural network to

predict the cellularity score from segmentation mask.

also evaluate using H&E image patches directly to predict
the cellularity score.

2. Related work

CNNs have recently been successfully applied to many
tasks in biomedical image analysis, often outperforming
conventional machine learning methods [9, [13} [14]. As
such, they have successfully been utilized for digital pathol-
ogy image analysis and have demonstrated great potential
for improving breast cancer diagnostics [[15} 16} 17, [18].

Although there are not many studies focusing directly
on automated quantitative cellularity assessment, it has
been shown that this task can be solved by first segment-
ing malignant cells and then computing the tumor’s area
[19]. Many efforts have been devoted to developing su-
pervised and unsupervised methods for automated cell and
nuclear segmentation and detection [20, 21]. Supervised
segmentation models have superior performance but require
hand-labeled nuclear mask annotations [20]. In these ap-
proaches, segmented nuclear bodies are used to extract fea-
tures that are typically inspired by visual markers recog-
nized by pathologists. Commonly used features describe
morphology, texture, and spatial relationships among cell
nuclei in tissue [19, 22]].

The conventional approach most relevant to our work is
by Peikari et al. [[19] who proposed an automated cellular-
ity assesement protocol. First, they used smaller patches,
or regions of interest (Rol), extracted from whole slide im-
ages to segment all present cell nuclei. Then they extracted
a number of predefined features from segmented nuclei and
used support vector machines to distinguish lymphocytes

and normal epithelial nuclei from malignant ones. Cellular-
ity estimation was done using distinguished malignant ep-
ithelial figures for every Rol.

Alternatively, segmentation-free methods that directly
estimate cellularity from histopathology imaging data and
nuclei locations annotated by human observers were also
shown promising. In particular, Veta et al. 23] proposed
a deep learning-based method that leverages an informa-
tion from a tumor’s cells nuclei locations (centroids) and
predicts the areas of individual nuclei and mean nuclear
area without the intermediate step of nuclei segmentation.
In particular, this approach was based on a 10-layer deep
neural network predicting nuclear areas quantized into 20
histogram bins. The results showed that predicted mea-
surements had substantial agreement with manual measure-
ments, which suggests that it is possible to compute the
areas directly from imaging data, without the intermediate
step of nuclei segmentation. This is in spirit similar to one
of our approaches, but we do not directly compare our meth-
ods to Veta et al. since we use different datasets and perfor-
mance metrics.

Recent works by Akbar et al. [24} 125 have compared
the conventional approach based on segmentation and fea-
ture extraction and direct applications of deep CNNSs to im-
age patches in both regression and classification settings.
Overall, they showed that the DL-based approach outper-
formed hand-crafted features in both accuracy and intra-
class correlation (ICC) with expert pathologist annotations.
Specifically, their best result was achieved by using a pre-
trained Inception [26] model that reached ICC of 0.83 and
0.81 with two expert pathologists. In this study we eval-
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Figure 2: Encoder-decoder segmentation network architecture with Resnet-34 encoder and feature pyramid network decoder.

Spatial Dropout 2D is added after multi-layer concatenation.

uate even wider range of DL-based approaches, including
segmentation-based and segmentation-free, in both regres-
sion and classification settings. We provide appropriate per-
formance comparisons with previously reported results. All
the methods developed in this study are fully automatic and
do not require any involvement of the human annotators at
the test time.

3. Methods

In this study, we propose and evaluate three different
methods. The first two methods are based on the nuclei
segmentation and the third method leverages the raw image
without preceding segmentation step. Graphical illustration
of our approach is presented in Figure

3.1. Segmentation

Network Architecture. Most modern segmentation ar-
chitectures inherit the encoder-decoder architecture similar
to U-Net [27], where convolutional layers in the contract-
ing branch (encoder) are followed by an upsampling branch
that brings segmentation back to the original image size (de-
coder). In addition, skip connections are used between con-
tracting and upsampling modules to help the localization in-
formation propagate through the complex multilayer struc-
ture and eventually improve segmentation accuracy [27]. U-
Net and architectures inspired by this idea have produced
state of the art results in various segmentation problems, and
many improvements for the architecture and its training pro-
tocols have recently been proposed. In particular, Iglovikov

et al. [28, 29] used batch normalization [30] and exponen-
tial linear unit (ELU) as the primary activation function and
an ImageNet pre-trained VGG-11 network [31] as an en-
coder. Liu et al. [32] proposed an hourglass-shaped net-
work (HSN) with residual connections, which is also very
similar to the U-Net architecture. Rakhlin et al. [33] used
the Resnet-34 network [34] as the encoder and the Lovasz-
Softmax loss function [35] along with Stochastic Weight
Averaging (SWA) [36] for training.

In our proposed architecture, the segmentation module
also inherits the U-Net architecture. The contracting branch
(encoder) of our model is based on the Resnet-34 [34] net-
work architecture where we have introduced several useful
modifications. In particular, we have replaced ReLU acti-
vations with ELU that does not saturate gradients and keeps
the output close to zero mean and have changed order of
batch normalization [30] and activation layers. In SectionE]
we compare encoders initialized with random He’s initial-
ization [37]] and pretrained on ImageNet.

A major difference between the proposed model and the
classical U-Net architecture originates in the limited dataset
size, characteristic for the BreastPathQ Cancer Cellularity
Challenge and for medical imaging in general. We utilize
two regularization techniques to alleviate the problem of
overfitting to limited training data: (1) data augmentation
and (2) spatial 2D dropout incorporated into the upsampling
branch.

The upsampling branch is implemented as a Feature
Pyramid Network (FPN) [38]], reconstructing high-level se-
mantic feature maps at four scales simultaneously. We im-
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Figure 3: Light micrograph of a histologic specimen of breast tissue stained with hematoxylin and eosin (top). The bottom
row shows nuclei segmentation masks synthesized from weak labels: Malignant — red, Normal — green, Lymphocyte —

blue.

plement a feature pyramid block as a convolutional layer
with 64 activation maps followed by upsampling to the orig-
inal resolution with upsampling rate of 8, 4, 2, or 1 depend-
ing on the feature map depth (see Fig.2)). In Section[d] we
compare the performance of standard and FPN decoders.

We concatenate upsampled maps into a single layer of
64 x 4 = 256 maps and add after it a spatial 2D dropout
layer, which acts as a regularizer and prevents coadaptation
of the network weights, but unlike conventional dropout it
drops out not individual neurons but rather entire activation
maps. Throughout the work, we use dropout rate 0.5, ran-
domly dropping 128 out of 256 activation maps.

Finally, the output of the model is a 4-channel sigmoid
layer that assigns every pixel with four values from 0 to 1
that represent the probabilities of belonging to the Normal,
Lymphocyte, Malignant, and Background classes.

Loss functions. Binary cross entropy (BCE), while con-

venient for training, does not directly translate into Jaccard

index, the metric commonly used to evaluate segmentation
accuracy. Hence, as the loss function we use

L¢(w) = (1 — a)BCE®(w) — aJ(w), (1)

a weighted sum of BCE and the soft Jaccard loss for class

¢; in this work we set a = 0.15, a value found via cross-

validation. The soft Jaccard loss is defined as
( Yis )
yi 05— yses )

T =Y

i—1

2

N
)

where w are network parameters, ¥ is the binary label for
pixel ¢ and class ¢, {5 is the predicted probability of ¢ for
pixel ¢, and N is the total number of pixels. The total loss
function is a weighted sum of class losses:

4 4
1 (& c C
L(w)zV;L(w)v7V=;v, 3)
where v is a loss weight for class c. In this work we weigh

Normal, Lymphocyte, and Background as 1 and Malignant,
the class of primary importance in our problem, as 4.

3.2. Cellularity estimation from segmented cells

In this subsection, we describe the method for cellular-
ity assessment that leverages the output of the trained seg-
mentation network Fig.[2] We feed the segmented output
into a Resnet-34 CNN model. The model automatically
learns deep features from the 4-channel segmentation input
and regresses it onto continuous cellularity score. In this
approach, the segmentation model acts as a filter the aim
of which is to extract only the information about the cell
morphology. We hypothesized that this structured approach
makes our method similar to methods employed by expert
pathologists, makes it transparent and less sensitive to data
acquisition settings.

3.3. Feature extraction-based cellularity estimation

The second type of model is Gradient Boosted Trees
(GBT) [39]. This approach represents an example of inter-
disciplinary connection in Machine Learning. The general
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(a) 0.04 (b) 0.16 (c) 0.32 (d) 0.50

Figure 4: Segmentation results at thresholds (a) - (d) of
Malignant channel superimposed with the original image.
Masks generated after thresholding were used for feature
extraction.

(a) 0.02 (b) 0.08 (c)0.16 (d) 0.24

Figure 5: Nuclei blobs detected from the Malignant seg-
mentation maps using the Laplacian of Gaussian method at
thresholds (a)-(d). The blobs were used for feature extrac-
tion.

idea and handcrafted features are borrowed from the second
place solution for 2017 Kaggle contest for Sea Lion Popula-
tion Count in aerial imaginary [40]. The authors would like
to thank Konstantin Lopuhin for valuable discussion they
had while incorporating his method. In this study, GBT op-
erates on a vector of hand-crafted features extracted from
nuclei segmentation maps, including:

e activations and their areas aggregated over segmenta-
tion maps with different thresholds; for every segmen-
tation map in Normal, Lymphocyte, Malignant and for
7 thresholds 0.02, 0.04, 0.08, 0.16, 0.24, 0.32, 0.5, we
obtain 2 values: total area above threshold and total ac-
tivation above threshold (see Fig. E|for an illustration);

e using the Laplacian of Gaussian (LoG) method as im-
plemented in the OpenCV library [41], we find blobs
in segmentation maps at 6 thresholds: 0.02, 0.04, 0.08,
0.16, 0.24, 0.5; for each threshold we find the number
of blobs and total activation in blob centers (Fig. [5);

e total activation for every channel, computed as a sum
of the activations at every pixel after sigmoid.

In total, we obtain 3 x (7 x 246 x 24 1) = 81 features
to train the GBT model.

3.4. Cellularity estimation from the raw images

The third type of model is a deep convolutional net-
work implemented in regression or classification settings.

800 —

600 | —

400 [ |

200 | —

0 ! ! ! !
0 0.2 0.4 0.6 0.8 1

Figure 6: Cellularity score distribution.

These models do not use intermediate segmentation and
predict the cellularity score immediately from the micro-
scopic image. For classification, we categorize cellu-
larity into 101 class using regular bins with thresholds
0.00,0.01,...,1.00. The idea of direct regression of an im-
age into continuous value using CNN is not new. In particu-
lar, it was implemented in [42] where the authors use CNN
to predict bone age from radiograph.

3.5. Evaluation metrics

We assessed the results using several metrics. The main
evaluation metric is the mean squared error (MSE) between
the cellularity score obtained in our experiments and ground
truth provided by an expert pathologist.

In order to make our results comparable with previous
work, we also report Cohen’s kappa coefficient agreement
and the intra-class correlation coefficient (ICC) between ex-
pert and automated methods, similar to [19]. In all ex-
periments, we find our results superior to our predeces-
sors; however, the cellularity score itself in [19] is evaluated
based on binning it into four categories of 0-25%, 26-50%,
51-75%, and 76—100%. Such 4-class categorization is rel-
atively coarse and, in our opinion, does not represent a suit-
able evaluation metric for continuous cellularity estimation
that is our goal in this work.

4. Experiments and results
4.1. Data

The data used in this study had been acquired from the
Sunnybrook Health Sciences Centre with funding from the
Canadian Cancer Society and was made available for the
BreastPathQ challenge sponsored by the SPIE, NCI/NIH,
AAPM, and the Sunnybrook Research Institute [19].

In our experiments we used 2, 395 patches of 512 x 512
pixels in size, extracted from 96 haematoxylin and eosin
(H&E) stained whole slide images (WSI) acquired from 64
patients. Each patch in the training set has been assigned
a tumor cellularity score by an expert pathologist. In Fig-
ure [6] we present a distribution of the cellularity scores in
the dataset.
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Besides the image data, we used the annotations (X
and Y coordinates) to identify lymphocytes, malignant ep-
ithelial, and normal epithelial cell nuclei in the additional
153 patches. Using these weak annotations, we generated
the segmentation masks that were used in out experiments.
Here, at each XY location, we simply fit a blob of 15 pixels
in diameter. In Figure[3]we present the generated masks for
various classes.

4.2. Weakly-supervised cell segmentation

Highly limited amount of nuclei annotation data poses
a serious challenge for training segmentation models. In
our ablation studies, we evaluated our model in four differ-
ent settings to find how different design choices influence
the segmentation accuracy and generalization. Namely, we
compared the model as described in Section [3| with a stan-
dard U-Net decoder against an FPN decoder, and with the
encoder initialized randomly against the encoder initialized
with weights pretrained on ImageNet. In all settings, the
model was trained for 150 epochs with the Adam optimizer
and gradually decreasing learning rate from 10~% to 1075,

To obtain training patches, we downscaled the mi-
croscopy images x 2 times, randomly cropped a 256 x 256
area, and rescaled pixel values from [0, 255] to [—1, 1]. As
mentioned previously, segmentation targets were generated
as 4-channel masks with round blobs, 15 pixels in diameter
(the characteristic nucleus size), drawn in the nuclei cen-
ters. During training, we dynamically augmented images
with vertical and horizontal flips, rotation, gamma, hue, and
saturation utilizing the Albumentations library [43]].

Table 1: Segmentation results: the Jaccard index for differ-
ent decoders and initializations.

Initialization Standard decoder FPN decoder
Random 0.35 0.47
ImageNet 0.50 0.53

In the first series of experiments, we evaluated segmenta-
tion quality as an important intermediate metric for the eval-
uation of our methods. The segmentation performance as a
function of the decoder, initialization, and training epoch is
shown in Fig.[8]and Table[I] As we can see, the model with
the feature pyramid decoder and encoder pretrained on Ima-
geNet achieved significantly higher and more stable Jaccard
index on the validation set than the alternatives.

4.3. Segmentation-based cellularity assessment

Prediction from the segmented cells. As mentioned pre-
viously, we used the output of the segmentation model as in-
put for the cellularity regressor and then trained this cascade
end-to-end. We froze the segmentation model and stack its
4-channel output with a randomly initialized Resnet-34 in

Table 2: Cellularity MSE with 95% confidence intervals for
the segmentation-based (first row) and for the end-to-end
methods. Our results demonstrate the importance of Ima-
geNet pre-training. C in the parentheses indicates classifi-

cation, R — regression and S — segmentation.

Model Initialization
Random ImageNet

GBT 0.023 [0.019-0.026]  0.022 [0.019-0.026]
Resnet34 (SR) 0.013 [0.011-0.015] 0.013 [0.011-0.015]
ResNet34 (R)  0.015[0.013-0.018] 0.011 [0.010-0.012]
ResNet50 (R)  0.025[0.022-0.028] 0.011 [0.009-0.012]
Xception (R) 0.017 [0.015-0.020]  0.010 [0.009-0.012]
Xception (C) 0.012 [0.010-0.014]  0.010 [0.009-0.012]

Table 3: Cellularity Kappa (4 class binning) and Intra-Class
Correlation Coefficient (ICC) with 95% confidence inter-
vals for the segmentation-based (1°* and 2" rows) and for
the methods predicting cellularity directly, withou segmen-
tation. All the models here utilize ImageNet pre-training.
C in the parentheses indicates classification, R — regression

and S — segmentation.

Model Metric
Kappa I1CC

GBT 0.571[0.520-0.622]  0.787 [0.744-0.823]
Resnet34 (SR)  0.658 [0.604-0.704]  0.865 [0.835-0.891]
ResNet34 (R)  0.649[0.599-0.700]  0.868 [0.840-0.892]
ResNet50 (R)  0.652 [0.603-0.701]  0.867 [0.844-0.894]
Xception (R) 0.669 [0.616-0.713]  0.881 [0.853-0.904]
Xception (C) 0.689 [0.642-0.734]  0.883 [0.858-0.905]

the regression setting. We trained the regression part with
cellularity targets and MSE loss until convergence. Then we
unfroze segmentation weights and fine-tuned both modules
in an end-to-end fashion, as a single model. We repeated
this experiment with Resnet-34 pretrained on ImageNet. In
the latter case, we excluded the background channel from
segmentation output to comply with the vanilla Resnet-34
architecture that has a 3-channel input.

In these experiments, we found that after fine-tuning the
accuracy of segmentation itself slightly decreases, while the
accuracy of the overall cellularity scoring increases. This
is in line with [44]], which found that perfect segmenta-
tion of nuclei figures does not ensure better classification
of malignant objects from breast cancer tissues. This find-
ing suggests that the two branches of future work, tumor
bed segmentation and cellularity assessment, are relatively
independent.
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Figure 7: Examples of the generated segmentation masks in the Malignant channel. Left to right: (a) original patch; (b)
ground truth segmentation superimposed on the original image; (c) activation map; (d) nuclei blobs reconstructed from the

activation map with the LoG method.
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Feature extraction-based method. In this series of ex-
periments, we extracted the 81 features from segmen-

tation masks as discussed in Section [3] and trained the
LightGBM [39] regression model with mean squared error
(MSE) objective. The model was trained for 600 epochs
with learning rate 0.01. The maximum tree depth was set to
5; the number of leaves, to 8. These parameters have been
selected through cross-validation.

We report LightGBM accuracy in Table [2and show the
resulting feature importance on Fig.[T0] Feature importance
was calculated based on the total gain of the loss function
from the splits formed according to this feature. As ex-
pected, all highly important features come from the Malig-
nant channel. The most important feature is the total acti-
vation above 0.5 threshold, and the second and third most
important features are the activations above 0.32 and 0.24
thresholds, as expected since activations at different thesh-
olds are highly correlated, and the segmentation quality at
threshold 0.5 was the best, so the feature based on this mask
is a natural candidate for the most important feature. Ac-
tivations at lower thresholds provide additional value, but
a big part of the information that they contain has already
been conveyed via the 0.5 threshold feature. Interestingly,
malignant cell count (detected at threshold 0.24) is only the
9th feature in order of importance.

4.4. Direct cellularity assessment from the raw im-
ages

In our final experiments, we evaluated several deep neu-
ral architectures that take the original microscopy images
as input and output the cellularity score without interme-
diate segmentation. Similarly to previous experiments, we
trained the models with random He initialization or ini-
tialized them with weights pretrained on ImageNet. In all
cases, ImageNet initialization was superior to random, and
the overall accuracy was slightly better than for the mod-
els with intermediate segmentation. The Xception model
implemented in a classification setup with random initial-
ization performed slightly better than its counterparts (MSE
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Figure 10: GBT top feature importance.

0.012 vs. 0.017-0.025). The mean squared error of cellular-
ity prediction as a function of the training epoch for differ-
ent initializations is shown in Figure[9] All the performance
evaluation metrics are presented in Table 2]and Table[3]

4.5. Discussion

As we can see in Table [2] and Table [3] direct cellularity
assessment method slightly outperforms the segmentation-
based approach, where the regression module works on top
of the segmentation feature extractor. We believe that per-
formance improves due to two main reasons. First, seg-
mentation models were not trained on accurate segmenta-
tion masks but rather on approximate masks generated from
weakly supervised labels. Second, the cellularity score de-
pends not only on the tumor masks but also on a broader set
of features, some of which could be lost during the segmen-
tation step.

While we note the record results of our end-to-end mod-
els, we believe that the modular form of the prediction
pipeline provides benefits that more than compensate for
this small difference in the final score.

The segmentation-based approach has two significant
advantages: generalizability and interpretability. In prac-
tice, the data used for medical imaging tasks comes from
different hospitals and is collected by different hardware.
Images may differ in quality, level of noise, color and
brightness distributions. In [42], the authors proposed to
use segmentation to clean and standardize the data, which
helps with overall robustness and performance of various
task-specific models.

Better interpretability is achieved by the fact that we can
visually verify the quality of the intermediate step, i.e., seg-
mented tumors. Furthermore, the decision trees model al-
lows to estimate the feature importance for every feature
based on the information gain. If segmented tumors are cor-
rect, and the most informative features make intuitive sense,

we obtain additional confidence in our model, which is very
important in the medical setting.

5. Conclusion

In this paper, we evaluate three automatic methods to
assess the cellulalarity of residual breast tumors in H&E
stained samples. Our first method leverages the weakly-
supervised segmentation masks as inputs for deep CNN. We
believe that this method will be more generalizable and ro-
bust towards the data acquisition and easier to interpret.

Our second method that leverages feature extraction
from the weakly-supervised segmentation mask yields the
highest score among the all previously published feature
extraction-based methods [24,[19].

Finally, the third method in this study is an end-to-
end approach that predicts the cellularity score without any
intermediate segmentation step. Although it is attractive
and produces the best results it lacks interpretability of the
segmentation-based methods and could perform best due to
the dataset bias.

The main limitation of this study is the dataset size and
the weak labels for the segmentation model. We think
that given a bigger dataset and good quality annotations,
segmentation-based approach could produce better results
that less deviate from the end-to-end trained models.
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