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Abstract 

In 1929 Hans Berger discovered the alpha oscillations: a prominent, ongoing 10 Hz rhythm in 

the human EEG. These alpha oscillations are amongst the most widely studied cerebral signals, 

related to cognitive phenomena such as attention, memory and consciousness. However, the 

mechanisms by which alpha oscillations affect cognition await demonstration. Here we provide a 

novel model system from an adequately described complex neural circuit of the honey bee (Apis 

mellifera), that exhibits properties of the alpha oscillations. We found a prominent alpha wave-

like ongoing neural activity (~ 18 Hz) that is reduced in amplitude upon stimulus presentation. 

The phase of this alpha activity biased both neuronal spikes and amplitude of high frequency 

gamma activity (> 30 Hz). These results suggest a common role of oscillatory neuronal activity 

across phyla and provide an unprecedented new venue for causal studies on the relationship 

between neuronal spikes, brain oscillations and cognition. 

 

One Sentence Summary 

The cerebral circuit of the honey bee allows new vistas into mechanisms of human cognition. 

 

Introduction 

The brain encodes information by the rate and by the timing of action potentials (spikes) across 

neurons. The importance of timing has already been stressed in 1929 by Hans Berger who 

discovered the alpha oscillations: The strongest rhythmic oscillation measurable from the human 

scalp electroencephalogram (EEG) at a frequency of 10 Hz (1). In 1934 Adrian and Matthews 

confirmed this observation and concluded that the alpha oscillation arises “from an area in the 

occipital lobes connected with vision, and not from the whole cortex” (p.384) (2, 3). Today, 

alpha oscillations are amongst the most widely studied psychophysiological signals. They have 

been linked to cognitive functions such as attention and memory in humans and other vertebrates 

(4-7). Amplitude modulation of alpha oscillations is hypothesized to regulate neuronal 

excitability throughout the cortex (5, 6, 8), and the phase of alpha oscillations biases the rate of 

neuronal spiking within (9) and across cortical areas (10). On a larger scale, neural processing is 

functionally organized in feed forward (bottom up) and feedback (top down) streams (11). 

Feedback streams have been linked to alpha oscillations and feed forward streams to higher 
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frequency oscillations above 30 Hz (gamma oscillations) (12-14). Studies in humans and cats 

suggest that oscillatory synchronization across brain hemispheres serves to integrate the different 

features of a visual object into a unitary percept (15, 16). However, the exact mechanisms by 

which alpha and gamma oscillations affect neural processing and manifests in behavior still 

await demonstration. Progress in revealing the mechanisms and functions of oscillatory brain 

activity is hampered by the difficulty to relate oscillatory brain activity to the spiking activity of 

identified neurons in behaving animals.  

In recent years insects have become model systems for studying the relationship between the 

spiking activity of identified neurons and the animal’s perception and cognitive performance. For 

example, the perceived quality of an odor can be predicted from the ensemble of co-active 

olfactory neurons, each being identified by its specific pattern of afferent and lateral inputs (17-

21), and the mechanistic understanding of odor learning is unparalleled both in regard to 

molecular pathways and the identity of neuronal circuits (22-24). 

Albeit ubiquitous, most studies on insect brain function ignore oscillatory brain activity and 

focus mainly on the encoding of sensory information via stimulus-driven changes in spike rates 

rather than on network-driven spike synchrony across neurons. Insect brains show spontaneous 

oscillations that are reminiscent of alpha oscillations (water beetles (25); honey bees (26, 27)) 

and stimulus-evoked, higher frequency oscillations that are reminiscent of gamma oscillations 

(locusts (28); moths (29); flies (30); honey bees (31)). Olfactory induced gamma oscillations in 

the mushroom bodies of locusts and honey bees are driven by odorant-specific oscillatory spike 

synchronization in olfactory projection neurons and have been implicated in odor coding (31, 

32). Visually induced oscillations in fruit flies are modulated by stimulus salience and have been 

implicated in attention (30, 33). However, it is unknown, whether insect brains show 

interhemispheric oscillatory synchronization, as is the case in vertebrates (15, 16). 

To investigate interhemispheric oscillatory synchronization in the insect brain, we performed 

paired recordings of local field potentials (LFP) and spikes in both mushroom bodies of the 

honey bee. The mushroom bodies form associative odor memories (23, 34, 35), and they 

integrate unilaterally learned odor-reward associations across hemispheres (36). We found 

ongoing oscillatory 18 Hz activity in the LFP (Figure 1), which was coupled across the 

mushroom bodies of both sides of the brain (Figure 2). Spikes of putative mushroom body output 

neurons were phase-locked to the 18 Hz oscillation (Figure 2B). The ongoing 18 Hz oscillation 

was reminiscent to the human alpha oscillation in that sensory stimuli reduced its power, giving 

rise to higher frequency LFP oscillations (Figure 1C and D). Again, odorant-driven spikes were 

phase-coupled to the odorant-evoked LFP oscillations. These data demonstrate that both ongoing 

and odorant-evoked spikes in the honey bee mushroom body are precisely timed by a network-

generated oscillatory clock. This oscillatory spike synchronization might play a role in object 

segmentation as has been proposed for mammals (37). 

 

Results and Discussion 

A reliable and spontaneous ~18 Hz oscillation was observed in both hemispheres (Figure 1A). 

The amplitude of this oscillatory activity was reduced upon odor stimulation and returned back 

to baseline shortly after (Figure 1B). This power reduction was accompanied by a stimulus-

induced power increase in 20-40 Hz band (low gamma oscillation) (Figure 1C).   
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Figure 1: Spontaneous alpha and stimulus-induced gamma oscillations in the mushroom bodies. A: Raw trace of a single 

trial in a representative bee. Odor is presented at 0 sec. B: Time-frequency (5-40Hz, alpha and low gamma) representation of raw 
power (color-coded, mV²/Hz) recorded in the left (left) and right hemisphere (right) respectively. An odor stimulus was presented 
at 0 sec for the duration of 1 sec. C: Same as in B baseline corrected. Warm colors indicate increase and cold colors decrease in 
oscillatory power expressed as relative change from pre-stimulus baseline. N = 10 bees (stimulations per bee mean/SD 
52.6/28.9). D: Same as in C but for higher frequencies (40-450Hz, high gamma). E: Cross-frequency phase-to-amplitude 
coupling. Bispectra illustrating cross-frequency relationships in the left and right hemisphere respectively. The phase providing 
frequency is depicted on the x-axis and amplitude providing frequency on the y-axis. Color code depict the modulation index 
(MI). F: Same as E but during olfactory stimulation. 

In addition, there was an increase of power at frequencies above 40 Hz (high gamma activity) 

(Figure 1D). This high gamma activity coincided with the stimulus-induced low gamma 

oscillation. Increases in high gamma power are thought to reflect the increase in the underlying 

spiking activity of multiple neurons (38, 39). Both, the spontaneous alpha oscillation and the 

odor-evoked low and high gamma activity required an intact antenna ipsilateral to the recording 

site (Figure S1), suggesting that both alpha and gamma oscillations are generated in or require 

input from the ipsilateral antennal lobe (first olfactory brain center and functional analog of the 

vertebrate olfactory bulb). 

The cross-frequency coupling of high gamma activity to the phase of the ongoing alpha 

oscillation is considered a mechanism of neural communication in cortical circuits (40). Analysis 

of the cross-frequency coupling between high gamma activity and alpha oscillations confirms 

that the high gamma amplitude is modulated by the phase of the ongoing alpha oscillation 

around 18 Hz (Figure 1E). This modulation was stronger in the left as compared to the right 

hemisphere. Moreover, there was also a cross-frequency coupling between high gamma activity 
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and odor-evoked gamma oscillations (Figure 1F). In contrast to the ongoing activity, this 

modulation was stronger in the right as compared to the left hemisphere.   

In human EEG recordings such cross-frequency coupling between high gamma activity and 

alpha oscillations is typically interpreted as an indicator of stimulus- or task-induced changes in 

neuronal spiking that is biased by the phase of the ongoing alpha rhythm. Unlike in human EEG, 

in honey bees the accesses to both, LFP and neuronal spikes allow the empirical test of this 

hypothesis. An affirmative confirmation of the coupling between spikes and alpha oscillations is 

illustrated by the spike-field coherence analysis in Figure 2. A reliable 18 Hz peak in the 

coherence spectrum was visible in both hemispheres, suggesting that the timing of spikes is 

coupled to the phase of the ongoing 18 Hz oscillation. The timing of spikes in the right 

hemisphere was phase-coupled to the 18 Hz oscillation in the left hemisphere (Figure 2A). In 

contrast, the timing of spikes in the left hemisphere was not phase-coupled to the 18 Hz 

oscillation in the right hemisphere (Figure 2B). In other words, the direction of information flow 

quantified by spike transmission was stronger in the direction from the right to left hemisphere. 

 
Figure 2: Neuronal spikes are locked to the alpha phase. A: Spike-triggered averages computed on right hemisphere spikes. 
Top- Coherence between spikes and low gamma activity computed over the spike triggered averages indicating a reliable ~18 Hz 
peak in the spectrum. Bottom- Spike-triggered averages for the left and right hemisphere respectively. Spike onset is evident at 0 
sec. B: Same as A computed on spikes identified in the left hemisphere. N = 5 bees (spikes per bee mean/SD 4441/2415). C: 

Phase preference of neuronal spikes. Distribution of the spikes within the 18 Hz oscillatory cycle. Top- spikes identified during 
the odor stimulation interval. Bottom- spikes identified during the pre-stimulus baseline period. X-axis denotes the phase and y-
axis the absolute number of identified spikes. D: Granger causality spectra for an individual bee (left) and the group average (N = 
10 bees, line represents the mean, the shaded area the SEM, right).  
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Neuronal spikes were biased by the 18 Hz phase and displayed a non-uniform phase preference 

(Figure 2C). Independent of stimulus presentation recurrence of spikes was larger in the peak of 

the ongoing alpha oscillation.  

Our data show that the LFP activity in the mushroom body of the honey bee shares 

characteristics of the human EEG activity. First, there is a spontaneously generated, ongoing 

alpha oscillation with a characteristic peak in the spectrum (18 Hz in bees, 10 Hz in humans). 

Second, the amplitude of the alpha oscillation is reduced upon stimulus presentation. Third, the 

phase of the spontaneous alpha oscillation biases both high-gamma oscillatory activity and 

underlying neuronal spiking. The effective connectivity between cortical modules (left and right 

mushroom bodies) could be established based on both spike occurrence and Granger causality 

analyses which showed that the timing of spikes in the right hemisphere is controlled by the 18 

Hz oscillation in the left hemisphere. This interhemispheric coordination of spike timing could 

serve to bind bilateral olfactory information into coherent object representations (37) and could 

for example underlie bees’ ability to retrieve unilaterally learned odor-reward associations via 

both antennae (36, 41). Given that honey bees show cognitive capacities (e.g., concept learning 

(42); selective attention (43); map-like spatial memories (44)), our results suggest the honey bee 

as animal model to examine the functional role of oscillatory brain activity in perception and 

cognitive function. The ease with which brain oscillations and spikes can be recorded in honey 

bees opens opportunities inaccessible in human electrophysiology. 

 

Materials and Methods 

Animals 

Honey bees (Apis mellifera) were used in an in vivo preparation. The head capsule, 

thorax and abdomen were fixated with dental wax (Dr. Böhme & Schöps Dental GmbH, Deiberit 

502) in a metal tube. The basis of the antennae were immobilized with eicosan (Sigma Aldrich). 

The cuticle of the head capsule between antennae and eyes was removed to get access to the 

brain. The glands in the head were removed and the head capsule was rinsed with artificial 

hemolymph (in mM: NaCl 130, KCl 6, Glucose 25, MgCl2 2, CaCl2 7, Sucrose 160, 10 HEPES, 

pH 6,7, 500 mOsmol). To avoid recording muscular activity we used Philanthotoxin-343 to 

paralyze the muscles in the head (50 µl, 10-4 Mol in artificial hemolymph; donated by P.N.R. 

Usherwood). Trachea between the antennal lobes and above the vertical lobes of the mushroom 

bodies were removed. 

Olfactory stimuli 

Olfactory stimuli were applied with a computer controlled stimulator (45). The following 

odorants were used: essential oils of clove, peppermint, orange (all from Apotheke Dahlem-

Dorf), and geraniol, citral, isoamyl acetate und 1-heptanol (all from Sigma-Aldrich). Four µl of 

pure odorants were applied on 1 cm² filter paper in a 1 ml syringe. The different odorants were 

applied alternatingly with an interstimulus interval of 10 to 15 seconds. Residual odorants were 

removed via an exhaust tube (5 cm inner diameter) positioned 3 cm behind the bee. 

Data acquisition 

Local field potentials (LFP) and extracellular recordings from single neurons were 

recorded in the center of the mushroom body vertical lobes (depth: 20 – 150 µm). Recordings 

were performed with artificial hemolymph-filled glass microelectrodes (1/0.58 mm outer/inner 

diameter) that were pulled with a micropipette puller (P-2000, Sutter Instrument CO) to get a tip 

resistance of 5 to 10 µOhm and which were then broken to get a tip resistance of 1.3 – 3.5 
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MOhm. The reference electrode was a chloridized silver wire (0.2 mm diameter). The recording 

chain consisted of a 10x-amplifier (Simmonds-Amplifier, Cambridge, UK), a 1000x-amplifier 

and 0.1 – 3.000 Hz band-pass filter (AM503, Tektronix) and an analog-digital converter (1401+, 

Science Park Cambridge, UK). Experiments were performed at room temperature. 

Data analysis 

Data analysis was performed with the MATLAB FieldTrip toolbox (46). Spectral analysis 

was computed for each trial using a Fast Fourier Transformation (FFT) utilizing a multi-taper 

approach with orthogonal Slepian tapers (47). For frequencies below 40 Hz, 3 orthogonal 

Slepian tapers were used, resulting in frequency smoothing of ±2 Hz. Time frequency 

representation of power in sensor space served to confirm load-induced power modulation in the 

theta and alpha frequency ranges as reported in the literature (see above). Spectrally resolved 

Granger causality (GC) analysis (48-50) was used to identify the directionality (so-called 

feedforward vs. feedback influences) of information flow between cortical areas. The first .5 s 

post stimulus onset was omitted in order to avoid transient responses biasing Granger estimates. 

A bivariate nonparametric spectral matrix factorization approach (50) was applied in order to 

estimate GC. This algorithm estimates the spectral density matrix on the basis of Fourier 

coefficients that were computed using multitapers as described above (3 orthogonal Slepian 

tapers) with frequency smoothening of ±3 Hz for frequencies of 0 to 100 Hz with 1 Hz spectral 

resolution. On the basis of the spectral density matrix (i.e., applying spectral factorization), the 

noise covariance matrix and the transfer function were obtained (50).  

Neural spikes were identified from the raw LFP recordings using the peak detection 

algorithm implemented in MATLAB -findpeaks.m. Spikes were identified as local maxima 

exceeding 0.1 mV as illustrated in Figure S2. Subsequently the indices of these local maxima 

were used as triggers in order to re-segment the data ± 1sec around each spike.  
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Supplementary Materials 

 

 

Figure S1: Spontaneous alpha and stimulus-induced gamma oscillations require input from the ipsilateral antennal lobe. 

A: time-frequency representation of raw power below 40 Hz (alpha and low gamma) (top), baseline corrected power below (40 
Hz) (middle) and baseline corrected power above 40 Hz (high gamma) (bottom) in the mushroom body ipsilateral (left) and 
contralateral (right) to the side of antenna amputation. N = 5 bees (stimulations per bee mean/SD 23.2/17.9 B: same as in A but 
after antenna amputation. Left: ipsilateral to antenna amputation; right: contralateral to antenna amputation. N = 5 bees 
(stimulations per bee mean/SD 8.4/3.4). 

 

Figure S2: Spike detection. Raw LFP trace of the pre-stimulus baseline corresponding to the same trial illustrated in Fig 1. Red 
stars denote the identified spikes.  
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